Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18323
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝國煌(Kuo-Huang Hsieh)
dc.contributor.authorHsien-Hung Huangen
dc.contributor.author黃獻弘zh_TW
dc.date.accessioned2021-06-08T00:59:45Z-
dc.date.copyright2015-02-04
dc.date.issued2015
dc.date.submitted2015-01-16
dc.identifier.citation1. 周宏隆, 溶聚乙烯醇/黏土複合材料之物理化學性質與結構分析, 國立中山大學材料科學與工程研究所碩士論文, 2000.
2. N. Ogata, S. Kawakage, and T.Ogihara, Poly (vinyl alcohol)‐clay and poly (ethylene oxide)‐clay blends prepared using water as solvent, J. Appl. Polym. Sci, 66, 573, 1997.
3. F. Suzuki, K. Nakane , and J.S. Piao , Formation of a compatible composite of silica/poly (vinyl alcohol) through the sol-gel process and a calcinated product of the composite, J.Mater. Sci, 31, 1335, 1996.
4. E.P. Giannelis, Polymer layered silicate nanocomposites , Adv. Mater, 1, 29 , 1996.
5. A. Usuki, et al. Polym. Prepr. 31, 651, 1993.
6. 簡大鈞, 各類有機改質蒙脫土/聚琥珀酸丁酯奈米複合材料之研究, 朝陽科技大學應用化學所碩士論文, 2008.
7. Yuqiang Qian, Wenhao Liu, Yong Tae Park, Chris I. Lindsay, Rafael Camargo, Christopher W. Macosko, and Andreas Stein, Modification with tertiary amine catalysts improves vermiculite dispersion in polyurethane via in situ intercalative polymerization, Polymer, 53, 5060-5068, 2012.
8. W. T. Reichle, S. Y. Kong, and D. S. Everhart, The nature of the thermal decomposition of a catalytically active anionic clay mineral, J. Catalyst, 101, 352, 1986.
9. C. Depege, F.E. Elmetoui, C. Forano, and A.D. Roy, Polymerization of Silicates inLayered Double Hydroxides , Chem. Mater, 8, 952, 1996.
10. S. Bonnet, C. Forano, A. D. Roy, and J. P. Besse. Synthesis of HybridOrgano-Mineral Materials: Anionic Tetraphenylporphyrins in Layered DoubleHydroxides, Chem. Mater, 8, 1962, 1996.
11. 董睿軒, 聚醯亞胺-黏土奈米複合材料之合成及其特性探討, 中原大學化學系碩士學位論文, 2006.
12. 陳奎, 聚合物蒙脫土奈米複合材料, 蘭州理工大學碩士論文, 2005.
13. 蔡宗燕, 奈米黏土-高分子複合材料之發展與應用, 工研院化學工業研究所.
14. J.D. Wright, and N.A. Sommerdijk, Sol-gel materials: chemistry and applications. Taylor & Francis Books Ltd, 2003.
15. 蔣孝澈, 溶凝膠製作與應用專輯化工, 46, 12, 1999.
16. L.L. Hench, and J. K. West, The sol gel process, Chem. Rev, 90, 32-72, 1990.
17. E. Matijevic, and Ralph K. Iler Award, Uniform inorganic colloid dispersion, achievements and challenges, Langmuir, 10, 8-16, 1994.
18. W. Stober, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci, 26, 62-69, 1968.
19. J.D. Wright, and N.A. Sommerdijk, Sol-gel materials: chemistry and applications. Taylor & Francis Books Ltd, 15-23, 2003.
20. C. J. Brinker, and G. W. Scherer, Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc, 123, 1990.
21. C. J. Brinker, G. W. Scherer.,Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc, 109, 1990.
22. C. J. Brinker, and G. W. Scherer, Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc, 102, 1990.
23. U. Jeong, Y. Wang, and M. Ibisate, Y. Xia, Some new developments in the synthesis, functionalization, and utilization of monodisperse colloidal spheres, Adv. Funct. Mater, 15, 1907-1921, 2005.
24. C. J. Brinker, and G. W. Scherer, Sol-gel Science: the physics and chemistry of sol-gel processing, Academic Press, Inc, 277-284, 1990.
25. 詹佳樺, 溶膠-凝膠法製備聚甲基丙烯酸甲酯/二氧化矽混成體之研究, 國立中央大學化學工程研究所碩士論文, 2001.
26. V. L. Bell, B. L. Stump, and H. Gager, J. Polym. Sci, 14, 2275, 1976
27. 陳憶明, 由雜環型二胺衍生的聚醯亞胺之合成與鑑定, 國立中山大學材料科學研究所碩士論文, 2002.
28. M.T. Bogert, and R.R. Renshaw, 4-Amino-0-phthalic acid and some of its derivatives, J. Am Chem. Sic, 30, 113, 1908.
29. L. Liang and E. Ruckenstein, Polyvinyl alcohol-Polyacrylamide interpenetrating Polymer Network Membranes and their pervaporation characteristics for Ethanol-Water mixtures, J. Membr. Sci, 106, 167~182, 1955.
30. Z.D.Cheng, F.E.Arnold, Jr.A.Zhang, S.L.C.Hsu, and F.W.Harris, Organosoluble, segmented rigid-rod polyimide film. 1. Structure formation, Macromolecules, 24, 5856, 1991.
31. H. H. Huang, and G. L. Willkes, Structure-property behaviour of hybrid materials incorporating tetraethoxysilane with multifunctional poly (tetramethylene oxide), Polymer, 30, 2001, 1989.
32. D. J. Liaw and B. Y. Liaw, Synthesis and Properties of Polyimides Derived from 1,4-Bis(4-aminophenoxy)-2-tert-butylbenzene, Polym. J, 28, 970, 1996.
33. D. J. Liaw and K. L. Wang, Synthesis and characterization of fluorine‐containing polyamides derived from 2, 2‐bis [4‐(4‐aminophenoxy) phenyl] hexafluoropropane by direct polycondensation, Polym. Sci., Part A: Polym.Chem , 34, 1209 , 1996.
34. M.K. Ghosh and K.L. Mittal, Polyimides: fundamentals and applications, New York: Marcel Dekker, 1996.
35. 范舒晴, 聚醯胺與聚醯亞胺膜於滲透蒸發與蒸氣揮發之研究, 中原大學化學工程學系博士論文, 2004.
36. 許子建, 由雜環型二胺衍生的聚醯亞胺之合成與鑑定, 國立中山大學材料科學研究所碩士論文, 2002.
37. 江選雅,聚醯亞胺的合成及其在LCD 上的應用,化工資訊13卷7期, 43-53, 1999.
38. 盧鳳生, 楊桂生, 耐高溫膠粘劑, 第六冊, 北京科學出版社, 1993.
39. 林金雀, 聚醯亞胺薄膜全球市場及應用現況, 化工資訊, 1999.
40. 林金雀, 聚醯亞胺樹脂在電子相關產業之應用, 化工資訊, 1999.
41. 張民慧, 聚醯胺醯亞胺樹脂之合成與銅箔基板性質之研究, 國立台灣科技大學高分子工程系碩士論文, 2004.
42. 林鴻明, 化工科技與商情, 5 , 2002.
43. G. Hougham, G. Tesoro, A. Viehbeck, and J. D. Chapple-Sokol, Polarization Effects of Fluorine on the Relative Permittivity in Polyimides, Macromolecules, 27, 5964-5917, 1994.
44. 陳世學, 含有線性側鏈的芳香族二胺及其衍生之聚醯亞胺的合成與性質研究, 中原大學化學工程學系碩士論文, 2001.
45. J. O. Simpson, and A. K. St.Clair, Fundamental insight on developing low dielectric constant polyimides, Thin Solid Films, 308-309, 480, 1997.
46. H. H. Huang, and G. L. Willkes, Polymer, 30, 2001, 1989.
47. L. Peters, Semiconductor International, 64, 1998.
48. X. W. Lin and Dipu Pramanik, Future interconnect technologies and copper metallization, Solid State Technology, 63, 1998.
49. P. Singer, Low k dielectrics: the search continues, Semiconductor International, 19, 88-96, 1996.
50. B. B. Jiang, J. J. Hao , and W. Y . Wang, Synthesis and thermal properties of poly(urethane-imide), Journal of Applied Polymer Science, 81, 3,773-781, 2001 .
51. M. Zuo, and T. J. Takeichi, Polym, Novel method for the preparation of poly(urethane–imide)s and their properties, Sci. Part A : Polymer Chemistry, 35, 17, 3745-3753, 1997.
52. T. H. Kim, C. D. Ki , and H. Cho, Facile preparation of core-shell type molecularly imprinted particles: molecular imprinting into aromatic polyimide coated on silica spheres, Macromolecules, 38,15, 6423-6428, 2005.
53. T. P. Gnanarajan, N. P. Iyer, A. S. Nasar and G. Radhakrishnan, Synthesis and dissociation of amine-blocked diisocyanates and polyurethane prepolymers, Polymer International, 51, 3, 195-202, 2002.
54. T. P. Gnanarajan, N. P. Iyer, A. S. Nasar, Synthesis and dissociation of amine-blocked diisocyanates and polyurethane prepolymers, Polymer International, 51, 3, 195-202, 2002.
55. Z. Yerli̇kaya, Z. Oktem, E. Bayramli, Chain-Extended bismaleimides. I. Preparation and characterization of maleimide-terminated resins, Journal of Applied Polymer Science, 59, 165-171, 1996
56. M. J. Nanjan, and K. Sivaraj, Synthesis and characterization of certain new poly(bisimide)s, Polymer Science Part A : Polymer Chemistry , 27, 375-388, 1989 .
57. D.C. Liao, and K. H. Hsieh, Synthesis and characterization of bismaleimides derived from polyurethanes, Polymer Science Part A : Polymer Chemistry , 32 : 1665-1672, 1994.
58. T. Saegusa, Organic-inorganic polymers hybrids, Pure and Appl. Chem, 67, 1965-70, 1995.
59. M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng. R-Rep, 28, 1-63, 2000.
60. N. Herron, and D.L. Thorn, Nanoparticles - uses and relationships to molecular cluster compounds, Adv. Mater, 10, 1173,1998.
61. V. Favier, G.R. Canova, S.C. Shrivastava, and J.Y. Cavaille, Mechanical percolation in cellulose whisker nanocomposites, Polym. Eng. Sci, 37, 1732-1739, 1997.
62. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, Sorption of water in nylon 6-clay hybrid, J. Appl. Polym. Sci, 49, 1259-1264, 1993.
63. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, Mechanical properties of nylon 6-clay hybrid, J. Mater, 8, 1185-1189, 1993.
64. H.R. Dennis, D.L. Hunter, D. Chang, S. Kim, J.L. White, J.W. Cho, and D.R. Paul, Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites, Polymer, 42, 9513-9522, 2001.
65. R. Magaraphan, W. Lilayuthalert, A. Sirivat, and J.W. Schwank, Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites, Compos. Sci. and Tech, 61, 1253-1264, 2001.
66. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, One-pot synthesis of nylon 6-clay hybrid, J. polym. Sci. Pt. A-Polym. Chem, 31, 1755-1758, 1993.
67. A. Usuki, A. Koiwai, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid, J. Appl. Polym. Sci, 55, 119-123, 1995.
68. A.Usuki, Y.Kojima, M.Kawasumi, A.Okada, T.Kurauchi, and O.Kamigaito, Characterization and properties of nylon 6-clay hybrid, Polymer Preprints, 31, 651-652, 1990.
69. A. Usuki, and Y. Kojima, Synthesis of nylon 6-clay hybrid, J. Materials Res, 8, 1179-1184,1993.
70. 林靜宜, 導電高分子(聚(鄰-胺基苯甲基醚)、聚咇咯) /蒙脫土奈米複合材料之合成與性質研究, 中原大學化學系碩士論文, 2002.
71. J. W. McBain, The sporption of Gases and Vapor by solids, Rutledge and Sons, London , Ch5, 1932.
72. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J.S .Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359, 710, 1992.
73. J. S. Beck, J. C.Vartuli, W. J. Roth , M. E. Leonowice , C. T. Kresge, K. D. Schmitt, C. T. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, and J. L. Schlenker , A new family of mesoporous molecular sieves prepared with liquid crystal templates, J.AmChem.Soc, 114, 10834, 1992.
74. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chemlka, and G. D. Strucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 279, 548, 1998.
75. I. M. Abrams, Removal of alkyl benzene sulfonate from liquids,US Patent , 3, 123, 553, 1964.
76. H. Corte, E. Meier, Cation Exchanger with Sponge Structure, US Patent, 3 ,586 646, 1971.
77. E. F. Meitzner, J. A. Olin, Polymerization processes and products therefrom, US Patent, 4 ,224, 415,1980.
78. J. Hedrick, J. Labadie, T. Russell, D. Hofer, and V. Wakharker, High temperature polymer foams, Polymer, 34, 4717, 1993.
79. W. C.Wang, R. H. Vora, E. T. Kang, K. G. Neoh, C. K. Ong, and L.F.Chen, Nanoporous Ultra‐Low‐κ Films Prepared from Fluorinated Polyimide with Grafted Poly (acrylic acid) Side Chains, Adv. Mater, 16, 54, 2004.
80. Y. Kojima, T. Matsuoka, and H. Takahashi, Preparation of nylon 66/mesoporous molecular sieve composite under high pressure, J. Appl. Polym. Sci, 74, 3254, 1999.
81. C. G. Wu, and T. Bein, ,Science, Conducting Polyaniline Filaments in a Mesoporous Channel Host, 264, 1757, 1994.
82. K. Moller, T. Bein, and R.X. Fischer, Synthesis of Ordered Mesoporous Methacrylate Hybrid Systems:  Hosts for Molecular Polymer Composites, Chem. Mater, 11, 665, 1999.
83. Zhongzhong Qian, Guangjun Hu, and Shimin Zhang, Mingshu Yang, Preparation and characterization of montmorillonite–silica nanocomposites: A sol–gel approach to modifying clay surfaces, Physica B: Condensed Matter, 403, 3231-3238, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18323-
dc.description.abstract本論文研究主要分成三大個部分:
第一個部分乃是利用不同重量比的四乙氧基矽烷( Tetraethyl Orthosilicate , TEOS )加入奈米黏土中,使其進入奈米黏土的層與層之間,再使用酸當觸媒,使四乙氧基矽烷與奈米黏土進行溶膠-凝膠( Sol-Gel )反應,在奈米黏土的表面及層與層之間產生多孔性的二氧化矽無機粒子,利用此方法,使奈米黏土具有多孔洞的特性,並利用動態光散射雷射粒徑儀測試儀( Dynamic Light Scattring , DLS )、比表面積與孔隙分佈分析儀 ( Specific Surface Area & Pore Size Distribution Analyzer by as Adsorption Method ),測定其分散性和孔洞體積等等。第二部分乃是合成聚脲酯-醯亞胺膜( Poly( urea-imide ) film ),固定二苯基甲烷-4,4'-二異氰酸酯( Methylene Diphenyl Diisocyanate , MDI )的含量,調整不同比例的均苯四甲酸二酐( Pyromellitic Dianhydride , PMDA ) 和 4,4'-二氨基二苯醚( 4,4'-Oxydianiline , ODA ),再以一階段方法共聚合反應形成聚脲酯-醯亞胺,並利用熱重分析儀( Thermal Gravimetric Analysis , TGA )、拉力試驗機( Tensile Strength Test ),測定其熱性質、機械性質等等。第三部分乃是結合第一、二部分所合成之多孔性奈米黏土及聚脲酯-醯亞胺,製備出多孔性黏土/聚脲酯-醯亞胺奈米複材( Poly( urea-imide )/Clay ) Nanocomposite ),並研究不同添加量的多孔性改質黏土對聚脲酯-醯亞胺的性質影響,由實驗結果可以得知,隨著改質奈米黏土含量的增加,多孔性黏土/聚脲酯-醯亞胺奈米複合材料的熱性質、機械性質皆有所提升,並由於加入了多孔性的奈米黏土,介電性質有所下降。
zh_TW
dc.description.abstractIn my thesis, it is composed of three major parts : In first part, I introduce different weight ratios of TEOS into layer of nano porous clay, and use acid as a catalyst to go through a condensation procedure named Sol-Gel reaction between TEOS and hydroxyl groups on the clay and thus resulting mesoporous silica inorganic nanoparticles or inside between layer and layer. On the basis of Dynamic Light Scattring ( DLS ), Specific Surface Area & Pore Size Distribution Analyzer, the dispersion property and pore volume can be controlled by varying the mass ratio TEOS/Clay and adding trace amount of acid as catalyst. The follow by second part, by utilizing One-step Method and different mass ratio of PMDA, ODA, and MDI, different structures of Poly( urea-imide )( PUI ) can be synthesized. The thermal stability and mechanical property are measured by Thermal Gravimetric Analysis ( TGA ) and Tensile Strength Test. The final parts is the combination of section one and two, Nano porous clay are blended with Poly( urea-imide ) to produce Poly( urea-imide )/Clay Nanocomposite. It can be determined by Thermal Gravimetric Analysis ( TGA ) and Tensile Strength Test that the thermal stability and mechanical property are enhanced by increasing the mass ratio between Clay and PUI. In addition, the dielectric constant is decreased with the increasing mass ratio of Clay/PUI.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:59:45Z (GMT). No. of bitstreams: 1
ntu-104-R01549007-1.pdf: 3038262 bytes, checksum: fbd0cb432a539f02f9fe83265f101786 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝...................................................................................................................................I
中文摘要.........................................................................................................................II
Abstract.........................................................................................................................III
目錄................................................................................................................................IV
圖目錄...........................................................................................................................VII
表目錄.............................................................................................................................IX
第一章 緒論...................................................................................................................1
1.1. 前言...........................................................................................................................1
1.2. 研究目的...................................................................................................................2
第二章 文獻回顧...........................................................................................................3
2.1. 黏土材料介紹...........................................................................................................3
2.1.1. 有機化的黏土改質........................................................................................6
2.2. 溶膠-凝膠( Sol-Gel )法............................................................................................7
2.2.1. 水解反應( Hydrolysis Reaction ) .................................................................9
2.2.2. 縮合反應( Condensation Reaction ) ...........................................................12
2.2.3. 均一粒徑分布之二氧化矽粒子..................................................................14
2.2.4. 以溶膠-凝膠法製備有機-無機混成材料方法...........................................17
2.3. 聚醯亞胺.................................................................................................................18
2.3.1. 聚醯亞胺之簡介 ( Polyimide , PI )............................................................18
2.3.2. 聚醯亞胺之合成( Polyimide Synthesis )....................................................20
2.3.3. 聚醯亞胺之特性與應用特性與應用......................................................... 25
2.3.4. 聚醯亞胺介電行為之影響因素因………………………………………. 27
2.3.5. 有機介電材料聚醯亞胺之應用…………………………………………..31
2.4. 聚胺酯-醯亞胺介紹................................................................................................33
2.4.1. 聚胺酯-醯亞胺合成.................................................................................. 34
2.5. 奈米複合材料.........................................................................................................36
2.5.1 有機-無機奈米複材料.................................................................................37
2.5.2高分子-黏土與改質黏土奈米複合材料......................................................38
2.6. 多孔材料介紹........................................................................................................42
2.6.1. 多孔洞高分子材料介紹.............................................................................43
2.6.2. 多孔洞有機-無機高分子複合材料............................................................45
第三章 實驗方法..........................................................................................................47
3.1. 實驗藥品…………………………………………………………………………47
3.2. 實驗儀器…………………………………………………………………………49
3.3. 實驗步驟…………………………………………………………………………52
3.3.1. 多孔性黏土製備………………………………………………………….52
3.3.2. 聚氨酯-醯亞胺製備……………………………………………………………55
3.3.3. 多孔性黏土/聚氨酯-醯亞胺之複合材料製備………………………………...57
3.4. 材料性質測試……………………………………………………………………59
3.4.1. 動態光散射雷射(Dynamic Light Scattring, DLS)粒徑儀測試……………….59
3.4.2. 傅立葉轉換紅外線光譜儀( Fourier-Transformed Infrared Spectra , FT-IR ) 分析測試……………………………………………………………………………....59
3.4.3. 熱重分析儀( Thermal Gravimetric Analysis , TGA )分析測試……………….59
3.4.4. 拉力試驗機( Tensile Strength Test )…………………………………………...59
3.4.5. X光繞射儀(X-ray Diffrectometer, XRD)……………………………………...59
3.4.6.介電量測儀( Agilent Precision LCR Meters,LCR )…………………………..60
3.4.7. 比表面積與孔隙分佈分析儀 ( Specific Surface Area & Pore Size Distribution Analyzer by as Adsorption Method )………………………………………………….60
第四章 結果與討論…………………………………………………………………62
4.1. 多孔性奈米黏土之傅立葉轉換紅外線光譜分析……………………..62
4.2. 多孔性奈米黏土之X光繞射測試分析……………………………....63
4.3. 多孔性奈米黏土之粒徑大小分析…………………………………….64
4.4. 多孔洞奈米黏土之比表面積與孔隙分佈分析……………………….71
4.5. 聚氨酯-醯亞胺以及多孔性黏土/聚氨酯-醯亞胺之熱重損失分( Thermal Gravimetric Analysis , TGA )………………………………………………..73
4.6. 聚氨酯-醯亞胺及多孔性奈米黏土/聚氨酯-醯亞胺之拉伸測試……..77
4.7. 聚氨酯-醯亞胺及多孔性奈米黏土/聚氨酯-醯亞胺之介電特性分析..79
第五章 結論…………………………………………………………………………81
參考文獻........................................................................................................................82
 
圖目錄
圖 2.1 黏土之結晶構造圖………………………………………………………5
圖 2.2 Sol-Gel水解反應機制圖…………………………………………………….9
圖 2.3 矽上取代基的誘導效應(R、OR、OH、OSi)…………………………………..10
圖 2.4 TEOS、H2O、Synasol於25℃的三相圖………………………………………11
圖 2.5矽烷氧化物縮合反應機制…………………………………………………...12
圖 2.6矽鹽在有水存在時的聚合反應示意圖………………………………………13
圖 2.7製作膠體粒子的三種不同方法……………………………………………....15
圖 2.8二氧化矽粒子成核成長機制示意圖…………………………………………15
圖 2.9 0.28M的四乙氧基矽烷在乙醇中以不同的氨濃度和水的濃度所製成的二氧化矽小球粒徑分佈……………………………………………………...16
圖 2.10 Kapton ( PMDA-ODA )化學結構…………………………………………….18
圖 2.11 二步合成法聚亞醯胺……………………………………………………..20
圖 2.12 一步合成法聚亞醯胺………………………………………………………...21
圖 2.13 加成型聚亞醯胺……………………………………………………………...22
圖 2.14 在不同頻率作用下極化機制對介電常數的影響…………………………27
圖 2.15 PU預聚法合成PUI…………………………………………………………...34
圖 2.16 以NH2( Amino )封端的PU預聚體和酸酐反應成PUI的機制……………34
圖 2.17 以-NCO封端的PI預聚體和二醇反應成PUI的機制………………………35
圖 2.18 高分子/黏土混成複合材料的種類…………………………………………..39
圖 2.19 原位聚合法製備高分子-黏土奈米複合材料之反應機制流程圖…………40
圖 2.20 孔洞的高分子薄膜機製圖…………………………………………………...43
圖 2.21 孔洞聚醯亞胺薄膜的合成機制圖…………………………………………44
圖 2.22 孔洞高分子複合材料示意圖…………………………………………...........46
圖 3.1 多孔性黏土示意圖…………………………………………………………….54
圖 3.2 反應單體結構圖……………………………………………………………….56
圖 3.3 聚氨酯-醯亞胺薄膜之製備流程圖……………………………………………56
圖 3.4 多孔性黏土/聚氨酯-醯亞胺之複合材料製備流程圖………………………58
圖 4.1多孔性奈米黏土之FT-IR圖……………………………………………………62
圖 4.2 多孔性奈米黏土之XRD圖…………………………………………………63
圖 4.3 NSP-Si-73粒徑分析結果………………………………………………………65
圖 4.4 NSP-Si-73-T11粒徑分析結果…………………………………………………65
圖 4.5 NSP-Si-73-T12粒徑分析結果…………………………………………………66
圖 4.6 NSP-Si-73-T13粒徑分析結果…………………………………………………66
圖 4.7 NSP-Si-73-T15粒徑分析結果…………………………………………………67
圖 4.8 C-NSP-Si-73粒徑分析結果……………………………………………………67
圖 4.9 C-NSP-Si-73-T11粒徑分析結果………………………………………………68
圖 4.10 C-NSP-Si-73-T12粒徑分析結果……………………………………………62
圖 4.11 C-NSP-Si-73-T13粒徑分析結果……………………………………………69
圖 4.12 C-NSP-Si-73-T15粒徑分析結果……………………………………………63
圖 4.13 聚氨酯-醯亞胺之TGA圖……………………………………………………74
圖 4.14不同比列改質黏土-聚脲酯-醯亞胺( MDI 0.5PMDA 0.5ODA )之TGA圖..75
圖 4.15不同比列改質黏土-聚氨酯-醯亞胺( MDI 0.8PMDA 0.2ODA )之TGA圖..75
圖 4.16不同比列改質黏土-聚氨酯-醯亞胺( MDI 0.9PMDA 0.1ODA )之TGA圖..76

表目錄
表 2.1 黏土種類………………………………………………………………………...4
表 2.2 加成型聚亞醯胺和縮合型聚亞醯胺之比較………………………………….24
表 2.3 聚醯亞胺與無機材料特性比較………………………………………………26
表 2.4 不同聚醯亞胺結構其極化能力對介電常數之影響…………………………28
表 2.5 不同聚醯亞胺結構其自由體積對介電常數之影響…………………………29
表 2.6 聚醯亞胺結構中氟基含量對介電常數之影響………………………………30
表 2.7 有機高分子低介電材料的基本特性………………………………………….32
表 2.8 Nylon 6 與Clay之熱性質及機械性質………………………………………..38
表 2.9 孔徑分類……………………………………………………………………….42
表 3.1不同重量比例的奈米黏土與四乙氧基矽烷之比例表……………………..52
表 4.1 改質黏土粒徑分析結果……………………………………………………….70
表 4.2 改質黏土孔洞體積、比表面積( BET )和孔洞直徑分析分析結果…………72
表4.3 經由燒結過後的改質黏土孔洞體積、比表面積( BET )和孔洞直徑分析分析結果………………………………………………………………………………72
表 4.4聚氨酯-醯亞胺之Td5%溫度…………………………………………………74
表 4.6改質黏土以不同比列混摻聚氨酯-醯亞胺( MDI 0.5PMDA 0.5ODA )之Td5%溫度……………………………………………………………………………77
表 4.6改質黏土以不同比列混摻聚氨酯-醯亞胺( MDI 0.8PMDA 0.2ODA )之Td5%溫度……………………………………………………………………………77
表 4.7改質黏土以不同比列混摻聚氨酯-醯亞胺( MDI 0.9PMDA 0.1ODA )之Td5%溫度……………………………………………………………………………77
表 4.8 聚氨酯-醯亞胺之Elongation ( % )和Tensile Strength ( MPa )…………….....78
表 4.9改質奈米黏土/聚氨酯-醯亞胺( MDI 0.5 PMDA 0.5 ODA )之Elongation和Tensile Strength………………………………………………………………..79
表 4.10改質奈米黏土/聚氨酯-醯亞胺( MDI 0.8 PMDA 0.2 ODA )之Elongation和Tensile Strength………………………………………………………………79
表 4.11改質奈米黏土/聚氨酯-醯亞胺( MDI 0.9PMDA 0.1 ODA )之Elongation和Tensile Strength………………………………………………………………..79
表 4.12聚氨酯-醯亞胺之介電常數…………………………………………………80
表 4.13改質黏土-聚脲酯-醯亞胺( MDI 0.5PMDA 0.5ODA )之介電常數………….81
表 4.13改質黏土-聚脲酯-醯亞胺( MDI 0.8PMDA 0.2ODA )之介電常數………….81
表 4.13改質黏土-聚脲酯-醯亞胺( MDI 0.9PMDA 0.1ODA )之介電常數………….81
dc.language.isozh-TW
dc.title多孔性黏土及聚脲酯-醯亞胺複合材料之製備與性質探討zh_TW
dc.titleSynthesis and Characterization of Poly( urea-imide )/Clay Nanocompositeen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林江珍(Jiang-Zhen Lin),莊清男(Ching-Nan Chuang),陳思賢(Suz-Hsien Chen)
dc.subject.keyword聚?酯-醯亞胺,聚醯亞胺,聚?酯,奈米黏土,zh_TW
dc.subject.keywordPolyimide,Polyurethane,Poly( urethane-imide ),Nanoclay,en
dc.relation.page90
dc.rights.note未授權
dc.date.accepted2015-01-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved