請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18296完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞峰 | |
| dc.contributor.author | Wen-Hao Shao | en |
| dc.contributor.author | 邵文豪 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:58:33Z | - |
| dc.date.copyright | 2015-03-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-01-28 | |
| dc.identifier.citation | [1] D. Openbrier, M. Irwin, R. Rogers, G. Gottlieb, J. Dauber, D. Van Thiel, and B. Pennock, 'Nutritional status and lung function in patients with emphysema and chronic bronchitis,' CHEST Journal, vol. 83, pp. 17-22, 1983.
[2] C. Mathers, D. M. Fat, and J. Boerma, The global burden of disease: 2004 update: World Health Organization, 2008. [3] R. Kessler, M. R. Partridge, M. Miravitlles, M. Cazzola, C. Vogelmeier, D. Leynaud, and J. Ostinelli, 'Symptom variability in patients with severe COPD: a pan-European cross-sectional study,' European Respiratory Journal, vol. 37, pp. 264-272, 2011. [4] M. J. Espinosa de los Monteros, C. Pena, E. J. Soto Hurtado, J. Jareno, and M. Miravitlles, 'Variability of respiratory symptoms in severe COPD,' Archivos de Bronconeumologia (English Edition), vol. 48, pp. 3-7, 2012. [5] B. Celli, W. MacNee, A. Agusti, A. Anzueto, B. Berg, A. Buist, P. Calverley, N. Chavannes, T. Dillard, and B. Fahy, 'Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper,' European Respiratory Journal, vol. 23, pp. 932-946, 2004. [6] R. Pierce and D. P. Johns, 'Spirometry: the measurement and interpretation of ventilatory function in clinical practice,' 1995. [7] A. Kavitha, C. Sujatha, and S. Ramakrishnan, 'Prediction of Spirometric Forced Expiratory Volume (FEV1) Data Using Support Vector Regression,' Measurement Science Review, vol. 10, pp. 63-67, 2010. [8] W. Ulmer, 'Lung function--clinical importance, problems, and new results,' Journal of physiology and pharmacology: an official journal of the Polish Physiological Society, vol. 54, pp. 11-13, 2003. [9] J. Roca, A. Granena, R. Rodriguez-Roisin, P. Alvarez, A. Agusti-Vidal, and C. Rozman, 'Fatal airway disease in an adult with chronic graft-versus-host disease,' Thorax, vol. 37, p. 77, 1982. [10] R. J. Knudson, M. Lebowitz, C. Holberg, and B. Burrows, 'Changes in the normal maximal expiratory flow-volume curve with growth and aging,' The American review of respiratory disease, vol. 127, pp. 725-734, 1983. [11] H. Hedenstrom, P. Malmberg, and H. V. Fridriksson, 'Reference values for lung function tests in men: regression equations with smoking variables,' Upsala journal of medical sciences, vol. 91, pp. 299-310, 1986. [12] P. H. Quanjer, G. Tammeling, J. Cotes, O. Pedersen, R. Peslin, and J. Yernault, 'Lung volumes and forced ventilatory flows,' European Respiratory Journal, vol. 6, pp. 5-40, 1993. [13] J. L. Hankinson, J. R. Odencrantz, and K. B. Fedan, 'Spirometric reference values from a sample of the general US population,' American journal of respiratory and critical care medicine, vol. 159, pp. 179-187, 1999. [14] J. D. Anderson, Computational fluid dynamics: Springer, 1995. [15] D. Drikakis and S. Tsangaris, 'On the accuracy and efficiency of CFD methods in real gas hypersonics,' International journal for numerical methods in fluids, vol. 16, pp. 759-775, 1993. [16] C.-Y. Ho, H.-M. Liao, C.-Y. Tu, C.-Y. Huang, C.-M. Shih, M.-Y. L. Su, J.-H. Chen, and T.-C. Shih, 'Numerical analysis of airflow alteration in central airways following tracheobronchial stent placement,' Experimental hematology & oncology, vol. 1, p. 23, 2012. [17] S. A. Wood, J. D. Hoford, E. A. Hoffman, E. A. Zerhouni, and W. A. Mitzner, 'Quantitative 3D reconstruction of airway and pulmonary vascular trees using HRCT,' in IS&T/SPIE's Symposium on Electronic Imaging: Science and Technology, 1993, pp. 316-323. [18] K. Mori, J.-i. Hasegawa, J. Toriwaki, H. Anno, and K. Katada, 'Recognition of bronchus in three-dimensional X-ray CT images with applications to virtualized bronchoscopy system,' in Pattern Recognition, 1996., Proceedings of the 13th International Conference on, 1996, pp. 528-532. [19] K. Mori, J.-i. Hasegawa, Y. Suenaga, and J.-i. Toriwaki, 'Automated anatomical labeling of the bronchial branch and its application to the virtual bronchoscopy system,' Medical Imaging, IEEE Transactions on, vol. 19, pp. 103-114, 2000. [20] J. Pu, C. Fuhrman, W. F. Good, F. C. Sciurba, and D. Gur, 'A differential geometric approach to automated segmentation of human airway tree,' Medical Imaging, IEEE Transactions on, vol. 30, pp. 266-278, 2011. [21] P. Lo, B. van Ginneken, J. Reinhardt, T. Yavarna, P. A. de Jong, B. Irving, C. Fetita, M. Ortner, R. Pinho, and J. Sijbers, 'Extraction of airways from CT (EXACT'09),' 2012. [22] M. W. Graham, J. D. Gibbs, D. C. Cornish, and W. E. Higgins, 'Robust 3-D airway tree segmentation for image-guided peripheral bronchoscopy,' Medical Imaging, IEEE Transactions on, vol. 29, pp. 982-997, 2010. [23] D. Aykac, E. A. Hoffman, G. McLennan, and J. M. Reinhardt, 'Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images,' Medical Imaging, IEEE Transactions on, vol. 22, pp. 940-950, 2003. [24] K. Suzuki, I. Horiba, and N. Sugie, 'Linear-time connected-component labeling based on sequential local operations,' Computer Vision and Image Understanding, vol. 89, pp. 1-23, 2003. [25] H. Samet, 'Connected component labeling using quadtrees,' Journal of the ACM (JACM), vol. 28, pp. 487-501, 1981. [26] J. Davis, S. R. Marschner, M. Garr, and M. Levoy, 'Filling holes in complex surfaces using volumetric diffusion,' in 3D Data Processing Visualization and Transmission, 2002. Proceedings. First International Symposium on, 2002, pp. 428-441. [27] J. Wang and M. M. Oliveira, 'A hole-filling strategy for reconstruction of smooth surfaces in range images,' in Computer Graphics and Image Processing, 2003. SIBGRAPI 2003. XVI Brazilian Symposium on, 2003, pp. 11-18. [28] L. S. Tekumalla and E. Cohen, 'A hole-filling algorithm for triangular meshes,' School of Computing, University of Utah, UUCS-04-019, UT, USA, vol. 2, 2004. [29] W. Zhao, S. Gao, and H. Lin, 'A robust hole-filling algorithm for triangular mesh,' The Visual Computer, vol. 23, pp. 987-997, 2007. [30] K.-J. Oh, S. Yea, and Y.-S. Ho, 'Hole filling method using depth based in-painting for view synthesis in free viewpoint television and 3-d video,' in Picture Coding Symposium, 2009. PCS 2009, 2009, pp. 1-4. [31] R. M. Haralick, S. R. Sternberg, and X. Zhuang, 'Image analysis using mathematical morphology,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, pp. 532-550, 1987. [32] W. J. Schroeder, L. S. Avila, and W. Hoffman, 'Visualizing with VTK: a tutorial,' Computer Graphics and Applications, IEEE, vol. 20, pp. 20-27, 2000. [33] A. M. Tahmasebi, P. Abolmaesumi, D. Thompson, and K. Hashtrudi-Zaad, 'Software structure design for a haptic-based medical examination system,' in Haptic Audio Visual Environments and their Applications, 2005. IEEE International Workshop on, 2005, pp. 89-94. [34] C. Lindenbeck, H. Ebert, H. Ulmer, L. Pallozzi Lavorante, and R. Pflug, 'TRICUT: a program to clip triangle meshes using the rapid and triangle libraries and the visualization toolkit,' Computers & Geosciences, vol. 28, pp. 841-850, 2002. [35] J. S. Fong and H. Ibrahim, 'Development of a virtual reality system for Hepatocellular Carcinoma pre-surgical planning,' in Software Technology and Engineering (ICSTE), 2010 2nd International Conference on, 2010, pp. V1-41-V1-45. [36] R. C. Gonzales and R. E. Woods, 'Digital Image Processing, 2-nd Edition,' ed: Prentice Hall, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18296 | - |
| dc.description.abstract | 肺計量測定在慢性阻塞性肺病的診斷上扮演相當重要的角色。在臨床上,肺功能量計記錄了病人吸滿氣時用力吐出的吐氣量。但事實上對於慢性阻塞性肺病或是呼吸困難的病患來說,用力的吐氣是相當困難的,故時常肺功能量計的數據會與真實數值有所誤差,並有可能會造成診斷上的誤判。因此,對於肺功能量計數值的準確預估對於診斷慢性阻塞性肺病會有相當大的幫助。傳統上對於肺功能量計數值的預測是使用病人的健康資訊,包括年齡、身高與體重等。在本篇研究中,利用計算流體力學在人體氣管模型中模擬出的氣體入口到出口的壓力差也將被用於肺功能量計的預測。首先,先利用區域生長將氣管的區域從胸腔電腦斷層攝影影像中切割出來。但由於切割出來的氣管是由許多平面的切片所組成的,所以第二步是將切割出的氣管區域建立出立體的氣管模型。第三,標示出氣管模型的入口及出口以供計算流體力學模擬使用。最後,在邊界標設作業完成的氣管模型上使用計算流體力學模擬出氣管從入口到出口的氣體壓力差。在本篇研究中提出了一個新的肺計量的預測模型,其方法為結合氣管的資訊以及病人的健康資訊以達到更高的準確度。 | zh_TW |
| dc.description.abstract | Spirometry plays an important role in the diagnosis of chronic obstructive pulmonary disease (COPD). In the present clinical workflow, spirometry records the volume of air exhausted from the fully aerated lungs of every patients. However, it was difficult to forcibly exhale for the patients that suffer with the difficulties in breathing. Therefore, the prediction model for spirometry could powerfully support the diagnosis of COPD. In the traditional prediction, the health information such as age and height of patients was used for predicting the values of spirometry. In this study, the pressure drop generated from computational fluid dynamics (CFD) simulation in the airway was considered. First, the airway was segmented from CT slices based on a 3-D region growing method. However, the segmented airway was composed by 2-D slices. Therefore, second, the 3-D airway model was constructed based on the segmented airway from region growing. Third, in order to run the CFD simulation, the inlet and the outlets had to be set correctly. Finally, the CFD simulation ran on the well-prepared airway model to generate the pressure drop from the inlet to the outlets of the airway model. In this study, a new prediction model, which used the combination of the airway information which was the pressure drop in the airway model and the health information, was proposed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:58:33Z (GMT). No. of bitstreams: 1 ntu-104-R01922091-1.pdf: 1841440 bytes, checksum: 459ba8768e1ea76f96d194152e3cbe28 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv Table of Contents v List of Figures vi List of Tables viii Chapter 1 Introduction 1 Chapter 2 Materials 4 Chapter 3 The Proposed Method 5 3.1 Airway Segmentation 7 3.1.1 Automatic Region Growing 9 3.1.2 Morphological Closing 13 3.2 3-D Model Construction 15 3.2.1 Surface Smoothing 17 3.3 Boundary Setting 18 3.3.1 Inlet/Outlet Setting 19 3.3.2 Mesh Reconstruction 22 3.4 Computational Fluid Dynamics 24 Chapter 4 Experimental Results and Discussion 27 4.1 Experimental Results 27 4.2 Discussion 35 Chapter 5 Conclusion and Future Work 39 References 41 | |
| dc.language.iso | en | |
| dc.title | 使用計算流體力學模擬氣管模型之肺功能分析 | zh_TW |
| dc.title | Analysis of Spirometry Using Computational Fluid Dynamics Simulation in 3-D Airway Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張允中,張簡光哲 | |
| dc.subject.keyword | 慢性阻塞性肺病,肺功能量計,胸腔電腦斷層攝影,氣管立體模型,計算流體力學, | zh_TW |
| dc.subject.keyword | chronic obstructive pulmonary disease,spirometry,chest CT,3-D airway model,computational fluid dynamics, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-01-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
