Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18285
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林新智
dc.contributor.authorPo-Hsuan Huangen
dc.contributor.author黃伯瑄zh_TW
dc.date.accessioned2021-06-08T00:58:00Z-
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-02-03
dc.identifier.citation[1] R. L. Rich and D. G. Myszka, “Advances in surface plasmon resonance biosensor analysis”, Current Opinion in Biotechnology, (2000), vol. 11(1), p. 54-p. 61.
[2] F. A. Tanious, and W. D. Wilson, “Biosensor-surface plasmon resonance: Quantitative analysis of small molecule-nucleic acid interactions”, Anal. Biochem., (2000), vol. 42, p. 150-p.161.
[3] J. G. Quinn and R. O. Kennedy, “Biosensor-based estimation of kinetic and equilibrium constants”, Analytical Biochemistry, (2001), vol. 290(1), p. 36-p. 46.
[4] C. E. Jordan, “Surface Plasmon Resonance Imaging Measurements of DNA Hybridization Adsorption and Streptavidin / DNA Multilayer Formation at Chemically Modified Gold Surfaces”, Anal. Chem., (1997), vol. 69, p. 4939-p. 4947.
[5] Y. Kostov, G. Rao, L. Gryczynski, J. Malicka, D. S. Smith, Z. Gryczynski, and J. R. Lakowicz, “First Observation of Surface Plasmon-Coupled Emission Due to LED Excitation”, Journal of Fluorescence, (2005), vol. 15, p. 895-p. 896.
[6] H. A. Atwater, “Plasmonics for improved photovoltaic devices”, Nature materials, (2010) vol.9, p. 209.
[7] Z. Salamon, M. F. Brown, and G. Tollin, “Surface plasmon resonance spectroscopy: probing molecular interactions within membranes”, Trends in Biomedical Sciences, (1999), vol. 24, p. 213-p.219.
[8] A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett., (2000), vol. 76, p. 1665-p. 1667.
[9] 林明為、廖駿偉、王俊凱,電漿子與奈米結構,台灣奈米科技,(2003)。
[10] 王俊凱,奈米結構的電磁共振現象,工業材料雜誌,(2002)。
[11] R. H. Ritchie, “Plasma losses by fast electrons in thin films”, Phys. Rev., (1957), vol. 106, p. 874.
[12] C. J. Powell and J. B. Swan, “Effect of Oxidation on the Characteristics Loss Sepectra of Aluminum and Magnesium”, Phys. Rev., (1960), vol. 118, p. 640.
[13] D. A. Schultz, “Plasmon resonant particles for biological detection”, Current Opinion in Biotechnology, (2003), vol. 14, p.13.
[14] M. Moskovits, Surface-enhanced spectroscopy”, Rev. Mod. Phys., (1985), vol. 57, p. 783.
[15] H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings”, Springer Tracts in Modern Physics, (1988), vol. 111, p. 1-p. 3.
[16] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nanooptics of surface plasmon polaritons”, Phys. Reports, (2005), vol .408, p. 131.
[17] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, (2003), vol. 424, p. 824-p. 830.
[18] E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance”, Adv. Mater., (2004), vol. 16, p. 1685-p. 1706.
[19] J. Tominaga, and D. P. Tsai., “Optical nanotehcnologies: the manipulation of surface and local plasmons”, Springer, Heidelberg, (2002).
[20] J. Kottmann and O. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles”, Opt. Lett., (2001), vol. 26, p. 1096-p. 1098.
[21] F. Mafune, J. Y. Kohno, Y. Takeda, and T. Kondow, “Formation of stable platinum nanoparticles by laser ablation in water”, J. Phys. Chem., (2000), vol. 104, p. 9111.
[22] G. Mie, “Beitrage zur Optik truber Medien, speziell kollaidaler Metallosungen”, Ann. Phys., (1908), vol. 25, p. 377.
[23] K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles”, Nano Letter, (2003), vol. 3, p. 1087-p.1090.
[24] H. Ko, S. Chang, and V. V. Tsukruk, “Porous Substrates for Label-Free Molecular Level Detection of Nonresonant Organic Molecules”, ACS Nano, (2008), vol. 3, p. 181- p.188 .
[25] S. M. Nie, and J. W. Simons, “Nanotechnology applications in cancer”, Annu. Rev. Biomed. Eng., (2007), vol. 9, p. 257- p. 288.
[26] K. Awazu, M. Fujimaki, “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide”, J. Am. Chem. Soc., (2008), vol.130, p. 1676-p. 1680.
[27] H. Van der Merwe, “Theoretical considerations in growing uniform epilayers”, Interface Science, (1993), vol. 1, p. 77-p. 86.
[28] 賴耿陽,電漿工學的基礎,復文書局出版,(2002)。
[29] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,(1999),277-279頁。
[30] B. Chapman,”Glow discharge processes sputtering and plasma etching”, published by John Wiley, New York, (1980).
[31] M. Konuma,”Films deposition by plasma techniques”, published by Springer-Verlag, (1992).
[32] W. R. Harshbarger, R. A. Porter, T. A. Miller, and P. Norton,”A study of the optical emission from an RF plasma during semiconductor etching”, Applied Spectroscopy, (1977), vol. 31, p.201-p.207.
[33] 王立衡、黃運添、鄭海濤,薄膜技術,清華大學出版社,(1991),16-18頁。
[34] D. L. Smith,”Thin-film deposition principles & practice”, published by McGraw-Hill Inc, (1995).
[35] 張益新,銅製程矽晶片上ZnO薄膜合成之研究,(1999)。
[36] R. A. Ristau, K. Barmak, L. H. Lewis, K. R. Coffey, and J. K. Howard, “On the relationship of high coercivity and L10 ordered phase in CoPt and FePt thin films”, J. Appl. Phys., (1999), vol. 86, p. 4527-p. 4533.
[37] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, 'The atmospheric-pressure plasma jet: A review and comparison to other plasma sources,' Ieee Transactions on Plasma Science, (1998), vol. 26, p. 1685-1694.
[38] 陳建人,微機電系統技術與應用,行政院國家科學委員會精密儀器發展中心出版,民國 92 年。
[39] J. Venables, G. D. T. Spiller and M. Hanbucken, “Nucleation and growth of thin films”, Reports on Progress in Physics, (1984), vol. 47, p. 399.
[40] J. E. Ayers, “Heteroepitaxy of semiconductors: theory, growth, and characterization”, CRC Press, FL, (2007), p. 105-137.
[41] G. Springholz, N. Frank, and G. Bauer, “The origin of surface roughing in lattice-mismatched vandermerwe, frank type heteroepitaxy”, (1995), vol. 267, p. 15-p. 23.
[42] 秦玉玲,以反應性磁控濺鍍沉積氧化亞銅薄膜之結構與光電性質研究,國立成功大學材料科學及工程學系,碩士論文,民國95年。
[43] J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, Journal of Vacuum Science & Technology Archives, (1974), vol. 11(4), p. 666.
[44] T. J. Seebeck, Magnetic polarization of metals and minerals, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, vol. 265, (1821), p. 1822-p. 1823.
[45] T. J. Seebeck, Methode, “Platinatiegel auf ihr chemische reinheit durck thermomagnetismus zu prufen, Sschweiggers”, J. Phys., (1826), vol. 46, p. 101.
[46] D. M. Rowe, “CRC Handbook of Thermoelectrics”, punblished by CRC Press LLC, (1994) , p. 1-p. 131.
[47] T. J. Seebeck, “Uber deen magnetismus der gavenische kette”, Abh. K. Akad. Wiss. Berlin, (1821), p. 289.
[48] F. J. Blatt, P. A. Schroeder, C. L. Foiles and D. Greig, “Thermoelectric Power of
Metals”, punbloshed by Plenum Press, NewYork, 1976.
[49] D. D. Pollock, “Thermoelectircity: theory, Thermometry, tool, ASTM Special Technical Publication 852, American Society for Testing and 
Materials, Philadelphia, PA, (1985).
[50] J. C. Peltier, “Nouvelles experiences sur la caloriecete des courans electriques”, Ann. Chem., (1834), p. 371-387.
[51] G. J. Snyder, T. Caillat, “Using the compatibility factor to design high efficiency segmented thermoelectric generators”, MRS Proceedings, (2004), vol. 793, p. 37.
[52] H. J. Goldsmid, “Electronic Refrigeration”, punblished by London, (1986), p. 1-194.
[53] W. Thomson, “On a mechanical theory of thermoelectric currents”, Proceeding of the Royal Society of Edinburgh, (1851), p. 91-p. 98.
[54] D. D. Pollock, “Physics of Engineering Materials”, Prentice Hall, Englewood Cliffs, NJ, (1990), p. 330.
[55] W. Thomson, “An account of Carnot’s theory of the motive power of heat”, Proc. R. Soc. Edinburgh, (1849), vol. 16, p. 541.
[56] O. Yamashita, S. Tomiyoshi, et al., “Bismuth telluride compounds with high thermoelectric figures of merit”, Journal of Appl. Physics, (2003), vol. 93(1), p. 368-374.
[57] D. Y. Chung, T. Hogan, et al. “CsBi4Te6: A high-performance thermoelectric material for low-temperature applications”, Science, (2000), vol. 287, p. 5455.
[58] J. Jiang, L. Chen, et al. “Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering”, Scripta Materialia, (2005), vol. 52, p. 347-p. 351.
[59] H. J. Goldsmid and R. W. Douglas, “The use of semiconductors in thermoelectric refrigeration”, British Journal of Applied Physics, (1954), vol. 5(11), p. 386.
[60]材料世界網,熱電材料與應用現況,2009年12月。
[61]李雅明,固態電子學,91頁-121頁,235頁-257頁,(1997)。
[62] Charles Kittel, “Introduction to solid state physics”, 8th edition, punblished by Wiley.
[63] J. Callaway and H. C. Von Baeyer, “Effect of point imperfections on lattice thermal conductivity”, Physical Review, (1960), vol.120, p.1149.
[64] M. S. Lubell and R. Mazelsky, “Carrier compensation in germanium telluride”, Solid-State Electronics Pergamon Press, (1965), vol.6, p. 729-733
[65] David Jiles, “Introduction to Electronic Properties of Materials”, punblished by CRC press, 2nd edition, p. 46-48.
[66] V.C. Mei, F.C. Chen, B. Mathiprakasam, “Comparison of thermoelectric and vapor cycle technologies for ground-water heat pump application”, Journal of Solar Energy Eng, vol. 111, (1989), p. 353-p. 357
[67] G. S. Nolas, J. Sharp and H. J. Goldsmid, “Thermoelectrics: Basic Principles and New Materials Developments”, Springer, Berlin, (2001).
[68] F. J. Blatt, P. A. Schroeder and C. L. Foils, “Thermoelectric power of metals”, Plenum Press, New York and London, (1976), p.1-p.47.
[69] D. K. C. MacDonald, “Thermoelectricity: An Introduction to the Principles”, punblished by John Wiley and Sons, New York, (1962), p.61.
[70] T. M. Tritt, “Thermoelectric materials: Holey and Unholey Semiconductors”, Scienc, (1999), vol. 283, p. 804.
[71] T. C. Lin, A. Marjumdar and F. M. Gerner, “Microscale Energy Transport”, Washington, D.C., (1998).
[72] 熱電致冷及廢熱發電節能技術研討會,2008年5月18日。
[73] L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit”, Physical Review, (1993), vol. 47, p. 12727-p. 12731.
[74] S. Cho, Y. Kim and J. B. Ketterson, “Thermoelectric power of MBE grown Bi thin films and Bi/CdTe superlattices on CdTe substrates”, Solid State Communications, vol. 102, p. 673-p.676.
[75] A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, E. Charles and A.Boyer, “Growth parameters effect on the electric and thermoelectric characteristics of Bi2Se3 thin films grown by MOCVD system”, Journal of Crystal Growth, (2002), vol. 241, p. 463-p. 470
[76] B. L. Huang et. al., “Low-temperature characterization and micro patterning of co-evaporated Bi-Te and Sb-Te films”, Journal of Applied Physics, (2008) vol. 104, p. 1137.
[77] B.Y. Yoo, C.-K. Huang, J.R. Lim, J. Herman, M.A. Ryan, J.-P. Fleurial, V. Myung, “Electrochemically deposited thermoelectric n-type Bi2Te3 thin films”, Electrochimica Acta, (2005), vol. 50, p. 4371-p. 4377.
[78] H. Noro, K. Sato and H. Kagechika, “The thermoelectric properties and crystallography of Bi-Sb-Te-Se thin films grown by ion beam sputtering”, Journal of Applied Physics, (1993), vol. 73, p. 1252.
[79] H. J. Lee, H. S. Park, S. H. and J. Y. Kim,“Thermoelectric properties of n-type Bi-Te thin films with deposition conditions using RF magnetron co-sputtering”, (2012), vol. 542(20), p. 57-61
[80] Z. H. Zheng, P. Fan, T. B. Chen, Z. K. Cai, P. J. Liu, G. X. Liang, D. P. Zhang, X. and M. Cai, “Optimization in fabricating bismuth telluride thin films by ion beam sputtering deposition”, Thin Solid Film, (2012), vol. 520, Issue 16.
[81] D. Bourgault, C. Giroud Garampon, N. Caillault, L. Carbone , J. A. Aymami, “Thermoelectric properties of n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thin films deposited by direct current magnetron sputtering”, Thin Solid Films, (2008), vol. 516, p. 8579-p. 8583
[82] J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, “Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States”, Science, (2008), vol. 321, p. 554-p. 557.
[83] R. Venkatasubramanian, T. Colpitts, B. O’Quinn, S. Liu, N. El-Masry and M. Lamvik, “Low-temperature organometallic epitaxy and its application to superlattice structures in thermoelectrics”, Applied Physics Letters, (1999), vol. 75(8), p. 1104.
[84] T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge, “Thermoelectric quantum-dot superlattices with high ZT”, Science, (2002), vol. 297, p. 2229.
[85] Y. Zhang, et al., “Silver-based intermetallic heterostructures in Sb2Te3 thick films with enhanced thermoelectric power factors”, Nano Lett., (2012), vol. 12, p. 1075-1080.
[86] K. F. Hsu et al., “Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit”, Science, (2004), vol. 303, p. 818.
[87] M. K. Han, K. Ahn, H. J. Kim, J. S. Rhyee and S. J. Kim, “Formation of Cu nanoparticles in layered Bi2Te3 and their effect on ZT enhancement”, J. Mater. Chem., (2011), vol. 21, p. 11365
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18285-
dc.description.abstract本實驗藉由磁控射頻濺鍍製程與熱處理之方法形成不同形貌的金屬奈米銀粒子分布,觀察其微觀結構並直接鍍上一層Bi2Te2.7Se0.3熱電薄膜,量測熱電性質、微觀結構觀察、晶體結構分析等所得之結果,推斷金屬奈米銀粒子結構是否適用於熱電薄膜之熱電效率提升的應用上,研究發現,在奈米銀粒子結構上方覆蓋不同厚度之熱電薄膜層,當熱電薄膜厚度為64 nm,其拉曼光譜具有較明顯的特徵波峰,且金屬銀薄膜的濺鍍時間為10秒鐘,經過真空退火處理使得銀薄膜形成奈米顆粒,退火溫度為400℃,持續30分鐘,此製程參數對熱電薄膜所產生的表面電漿子共振效應最好,另外,我們也將奈米銀粒子生長於熱電薄膜上,由實驗結果得知,奈米銀粒子被包覆於熱電薄膜中,其表面電漿共振強度較大。由於在極接近奈米粒子的表面會引發極強的近場增強型(Near-field Enhancement)電磁場,使得熱電薄膜在金屬奈米粒子的表面電漿子共振效應作用之下,提高其功率因子,實驗得到最佳狀態的表面電漿子共振,最好的熱電功率因子為8.1 W/K2m。zh_TW
dc.description.abstractThe experiment by sputtering and heat treatment process to form a silver nanoparticles with different morphologies. We observe the thermoelectric properties and microstructure whether the silver nanoparticles can apply to improve the thermoelectric efficiency. As the study found, covering different thickness of thermoelectric thin film layer above the silver nanoparticles, when the thickness of thermoelectric film is 64 nm. The Raman spectroscopy has obvious peaks. And sputtering time of silver film is 10 seconds after vacuum annealing allowing the formation of nanoparticles. The annealing temperature is 400 ℃ and duration time is 30 minutes. As extremely close to the surface of nanoparticles will lead to a highly strong near-field enhanced electromagnetic fields, making the thermoelectric film under the plasmson resonance effect improve its power factor. The best thermoelectric power factor is 8.1 W/K2m.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:58:00Z (GMT). No. of bitstreams: 1
ntu-104-R02527006-1.pdf: 18470350 bytes, checksum: a9a9f80df7b0c421c34e94ffc9038187 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents總目錄
中文摘要 I
Abstract II
總目錄 III
圖目錄 VI
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3論文架構 5
第二章 理論與文獻回顧 6
2-1 表面電漿子 6
2-2 濺鍍理論 17
2-3 薄膜理論 27
2-3-1 薄膜沉積 27
2-3-2 薄膜微觀結構 28
2-4 熱電理論 33
2-4-1 Seebeck效應 34
2-4-2 Peltier效應 35
2-4-3 Thomson效應 36
2-4-4 熱電材料之物理性質 37
2-5 熱電材料製備方法與其熱電效率評估 52
2-6 Bi2Te3基本特性 61
2-7 退火熱處理 62
第三章 實驗步驟與方法 63
3-1 實驗流程 63
3-2 材料準備 66
3-2-1 基板 66
3-2-2 靶材 66
3-3 分析與量測之儀器 67
3-3-1 場發射掃描式電子顯微鏡 67
3-3-2 原子力顯微鏡 69
3-5-3 X-ray繞射分析儀 71
3-5-4 雷射拉曼光譜儀 72
3-5-5 熱電特性量測 73
3-5-6 光電子化學分析儀 78
3-5-7 穿透式電子顯微鏡 80
第四章 結果與討論 83
4-1銀薄膜與奈米金屬銀粒子 83
4-2 N型Bi2Te2.7Se0.3熱電奈米金屬銀粒子薄膜 91
4-2-1 晶體結構之分析 91
4-2-2 微觀結構分析 93
4-2-3熱電性質分析 95
4-3退火後N型Bi2Te2.7Se0.3熱電奈米金屬銀粒子薄膜 101
4-3-1 晶體結構之分析 98
4-3-2 微觀結構分析 100
4-3-3 熱電薄膜之成分分析 103
4-3-4 高角度環狀暗場像分析 108
4-3-5 熱電性質分析 110
4-4奈米銀粒子於熱電薄膜上方之分析 114
4-4-1 熱電性質量測 114
4-4-2 微觀結構分析 116
4-4-3晶體結構分析與拉曼光譜儀分析 117
第五章 結論 119
參考文獻 121
dc.language.isozh-TW
dc.title表面電漿子應用於熱電薄膜之研究zh_TW
dc.titleThe Surface Plasmon Resonance Effect Applied in Studying the N-type Bi2Te2.7Se0.3 Thermoelectric filmen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.coadvisor林明志
dc.contributor.oralexamcommittee林昆明
dc.subject.keyword射頻磁控濺鍍,熱電薄膜,表面電漿子,功率因子,zh_TW
dc.subject.keywordRF sputtering,Thermoelectric film,Surface plasmon,Power factor,en
dc.relation.page129
dc.rights.note未授權
dc.date.accepted2015-02-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
18.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved