請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18280完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李明亭(Ming-Ting Lee) | |
| dc.contributor.author | Wei-Jun Zhang | en |
| dc.contributor.author | 鄭維鈞 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:57:48Z | - |
| dc.date.copyright | 2015-03-13 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-02-05 | |
| dc.identifier.citation | Adlercreutz, H. (1990). Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scand J Clin Lab Invest Suppl, 201, 3-23.
Albini, A., Iwamoto, Y., Kleinman, H. K., Martin, G. R., Aaronson, S. A., Kozlowski, J. M., & McEwan, R. N. (1987). A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res, 47(12), 3239-3245. Brenneisen, P., Sies, H., & Scharffetter-Kochanek, K. (2002). Ultraviolet-B irradiation and matrix metalloproteinases: from induction via signaling to initial events. Ann N Y Acad Sci, 973, 31-43. Brigelius-Flohe, R., Banning, A., Kny, M., & Bol, G. F. (2004). Redox events in interleukin-1 signaling. Arch Biochem Biophys, 423(1), 66-73. Burdon, R. H. (1995). Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med, 18(4), 775-794. Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nat Rev Cancer, 11(2), 85-95. doi: 10.1038/nrc2981 Carter, C. A., & Kane, C. J. M. (2004). Therapeutic potential of natural compounds that regulate the activity of protein kinase C. Curr Med Chem, 11(21), 2883-2902. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2(8), 563-572. doi: 10.1038/nrc865 Chandel, N. S., McClintock, D. S., Feliciano, C. E., Wood, T. M., Melendez, J. A., Rodriguez, A. M., & Schumacker, P. T. (2000). Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1 alpha during hypoxia - A mechanism of O-2 sensing. Journal of Biological Chemistry, 275(33), 25130-25138. doi: DOI 10.1074/jbc.M001914200 Chen, Q., Vazquez, E. J., Moghaddas, S., Hoppel, C. L., & Lesnefsky, E. J. (2003). Production of reactive oxygen species by mitochondria - Central role of complex III. Journal of Biological Chemistry, 278(38), 36027-36031. doi: DOI 10.1074/jbc.M304854200 Chen, S. X., & Schopfer, P. (1999). Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. Eur J Biochem, 260(3), 726-735. Chung-man Ho, J., Zheng, S., Comhair, S. A., Farver, C., & Erzurum, S. C. (2001). Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res, 61(23), 8578-8585. Clark, E. A., Golub, T. R., Lander, E. S., & Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406(6795), 532-535. doi: 10.1038/35020106 Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2(3), 161-174. doi: 10.1038/nrc745 Fidler, I. J. (1970). Metastasis: guantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2'-deoxyuridine. J Natl Cancer Inst, 45(4), 773-782. Fidler, I. J. (1975). Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res, 35(1), 218-224. Fidler, I. J. (1990). Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res, 50(19), 6130-6138. Finkel, T. (2001). Reactive oxygen species and signal transduction. IUBMB Life, 52(1-2), 3-6. doi: 10.1080/15216540252774694 Gomez, D. E., Skilton, G., Alonso, D. F., & Kazanietz, M. G. (1999). The role of protein kinase C and novel phorbol ester receptors in tumor cell invasion and metastasis (Review). Oncol Rep, 6(6), 1363-1370. Guo, W., & Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nat Rev Mol Cell Biol, 5(10), 816-826. doi: 10.1038/nrm1490 Gupta, A., Rosenberger, S. F., & Bowden, G. T. (1999). Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis, 20(11), 2063-2073. Halliwell, B. (1991). Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med, 91(3C), 14S-22S. Halliwell, B. (1996). Free radicals, proteins and DNA: oxidative damage versus redox regulation. Biochem Soc Trans, 24(4), 1023-1027. Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86(3), 353-364. Hart, I. R., & Fidler, I. F. (1978). An in vitro quantitative assay for tumor cell invasion. Cancer Res, 38(10), 3218-3224. Hart, I. R., & Fidler, I. J. (1980). Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res, 40(7), 2281-2287. Hendrix, M. J., Seftor, E. A., Seftor, R. E., & Fidler, I. J. (1987). A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Lett, 38(1-2), 137-147. Hirst, J., King, M. S., & Pryde, K. R. (2008). The production of reactive oxygen species by complex I. Biochem Soc Trans, 36(Pt 5), 976-980. doi: 10.1042/BST0360976 Huang, Y. T., Hwang, J. J., Lee, P. P., Ke, F. C., Huang, J. H., Huang, C. J., . . . Lee, M. T. (1999). Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol, 128(5), 999-1010. doi: 10.1038/sj.bjp.0702879 Kandaswami, C., Lee, L. T., Lee, P. P., Hwang, J. J., Ke, F. C., Huang, Y. T., & Lee, M. T. (2005). The antitumor activities of flavonoids. In Vivo, 19(5), 895-909. Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., . . . Massague, J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537-549. Kao, W. T., Lin, C. Y., Lee, L. T., Lee, P. P., Hung, C. C., Lin, Y. S., . . . Lee, M. T. (2008). Investigation of MMP-2 and -9 in a highly invasive A431 tumor cell sub-line selected from a Boyden chamber assay. Anticancer Res, 28(4B), 2109-2120. Kermorgant, S., Zicha, D., & Parker, P. J. (2004). PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO J, 23(19), 3721-3734. doi: 10.1038/sj.emboj.7600396 Kinnula, V. L., & Crapo, J. D. (2004). Superoxide dismutases in malignant cells and human tumors. Free Radic Biol Med, 36(6), 718-744. doi: 10.1016/j.freeradbiomed.2003.12.010 Kruger, J. S., & Reddy, K. B. (2003). Distinct mechanisms mediate the initial and sustained phases of cell migration in epidermal growth factor receptor-overexpressing cells. Mol Cancer Res, 1(11), 801-809. Laurie, G. W., Leblond, C. P., & Martin, G. R. (1982). Localization of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin to the basal lamina of basement membranes. J Cell Biol, 95(1), 340-344. Lee, L. T., Huang, Y. T., Hwang, J. J., Lee, A. Y., Ke, F. C., Huang, C. J., . . . Lee, M. T. (2004). Transinactivation of the epidermal growth factor receptor tyrosine kinase and focal adhesion kinase phosphorylation by dietary flavonoids: effect on invasive potential of human carcinoma cells. Biochem Pharmacol, 67(11), 2103-2114. doi: 10.1016/j.bcp.2004.02.023 Lee, L. T., Huang, Y. T., Hwang, J. J., Lee, P. P., Ke, F. C., Nair, M. P., . . . Lee, M. T. (2002). Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer Res, 22(3), 1615-1627. Lee, S. R., Kwon, K. S., Kim, S. R., & Rhee, S. G. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem, 273(25), 15366-15372. Lin, Y. S., Tsai, P. H., Kandaswami, C. C., Cheng, C. H., Ke, F. C., Lee, P. P., . . . Lee, M. T. (2011). Effects of dietary flavonoids, luteolin, and quercetin on the reversal of epithelial-mesenchymal transition in A431 epidermal cancer cells. Cancer Sci, 102(10), 1829-1839. doi: 10.1111/j.1349-7006.2011.02035.x Liotta, L. A., Lee, C. W., & Morakis, D. J. (1980). New method for preparing large surfaces of intact human basement membrane for tumor invasion studies. Cancer Lett, 11(2), 141-152. Liotta, L. A., Steeg, P. S., & Stetler-Stevenson, W. G. (1991). Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell, 64(2), 327-336. Mates, J. M., Perez-Gomez, C., & Nunez de Castro, I. (1999). Antioxidant enzymes and human diseases. Clin Biochem, 32(8), 595-603. McDonald, D. M., & Baluk, P. (2002). Significance of blood vessel leakiness in cancer. Cancer Res, 62(18), 5381-5385. Meng, T. C., Fukada, T., & Tonks, N. K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell, 9(2), 387-399. Middleton, E., Jr. (1998). Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol, 439, 175-182. Middleton, E., Jr., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev, 52(4), 673-751. Mori, K., Shibanuma, M., & Nose, K. (2004). Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Res, 64(20), 7464-7472. doi: 10.1158/0008-5472.CAN-04-1725 Mundy, G. R., & Yoneda, T. (1995). Facilitation and suppression of bone metastasis. Clin Orthop Relat Res(312), 34-44. Nicolson, G. L. (1988). Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev, 7(2), 143-188. Nijveldt, R. J., van Nood, E., van Hoorn, D. E., Boelens, P. G., van Norren, K., & van Leeuwen, P. A. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr, 74(4), 418-425. Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol, 144(6), 1235-1244. Noe, V., Fingleton, B., Jacobs, K., Crawford, H. C., Vermeulen, S., Steelant, W., . . . Mareel, M. (2001). Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci, 114(Pt 1), 111-118. Osada, H., & Takahashi, T. (2002). Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer. Oncogene, 21(48), 7421-7434. doi: 10.1038/sj.onc.1205802 Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63(7), 1035-1042. doi: Doi 10.1021/Np9904509 Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signalling. Curr Med Chem, 11(9), 1163-1182. Postma, M., Bosgraaf, L., Loovers, H. M., & Van Haastert, P. J. (2004). Chemotaxis: signalling modules join hands at front and tail. EMBO Rep, 5(1), 35-40. doi: 10.1038/sj.embor.7400051 Quideau, S., Deffieux, D., Douat-Casassus, C., & Pouysegu, L. (2011). Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl, 50(3), 586-621. doi: 10.1002/anie.201000044 Ramaswamy, S., Ross, K. N., Lander, E. S., & Golub, T. R. (2003). A molecular signature of metastasis in primary solid tumors. Nat Genet, 33(1), 49-54. doi: 10.1038/ng1060 Ross, J. A., & Kasum, C. M. (2002). Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr, 22, 19-34. doi: 10.1146/annurev.nutr.22.111401.144957 Rudolph, J. (2005). Redox regulation of the Cdc25 phosphatases. Antioxid Redox Signal, 7(5-6), 761-767. doi: 10.1089/ars.2005.7.761 Savaraj, N., Wei, Y., Unate, H., Liu, P. M., Wu, C. J., Wangpaichitr, M., . . . Tien Kuo, M. (2005). Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells. Free Radic Res, 39(4), 373-381. Scott, T. A. (1983). The Concise Encyclopedia of Biochemistry - Brewer,M, Scott,Ta. Biochemical Education, 11(4), 147-149. Siwik, D. A., Pagano, P. J., & Colucci, W. S. (2001). Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol, 280(1), C53-60. Sternlicht, M. D., & Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol, 17, 463-516. doi: 10.1146/annurev.cellbio.17.1.463 Stetler-Stevenson, W. G., Aznavoorian, S., & Liotta, L. A. (1993). Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol, 9, 541-573. doi: 10.1146/annurev.cb.09.110193.002545 Storz, G., & Polla, B. S. (1996). Transcriptional regulators of oxidative stress-inducible genes in prokaryotes and eukaryotes. EXS, 77, 239-254. Szatrowski, T. P., & Nathan, C. F. (1991). Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res, 51(3), 794-798. Timpl, R., Rohde, H., Robey, P. G., Rennard, S. I., Foidart, J. M., & Martin, G. R. (1979). Laminin--a glycoprotein from basement membranes. J Biol Chem, 254(19), 9933-9937. Torres, M. (2003). Mitogen-activated protein kinase pathways in redox signaling. Front Biosci, 8, d369-391. Vinson, J. A., Dabbagh, Y. A., Serry, M. M., & Jang, J. H. (1995). Plant Flavonoids, Especially Tea Flavonols, Are Powerful Antioxidants Using an in-Vitro Oxidation Model for Heart-Disease. Journal of Agricultural and Food Chemistry, 43(11), 2800-2802. doi: Doi 10.1021/Jf00059a005 Wenk, J., Brenneisen, P., Wlaschek, M., Poswig, A., Briviba, K., Oberley, T. D., & Scharffetter-Kochanek, K. (1999). Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1. J Biol Chem, 274(36), 25869-25876. Westermarck, J., Li, S. P., Kallunki, T., Han, J., & Kahari, V. M. (2001). p38 mitogen-activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP-1) gene expression. Mol Cell Biol, 21(7), 2373-2383. doi: 10.1128/MCB.21.7.2373-2383.2001 Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80(8 Suppl), 1529-1537. Wu, W. S. (2006). The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev, 25(4), 695-705. doi: 10.1007/s10555-006-9037-8 Wu, W. S., Tsai, R. K., Chang, C. H., Wang, S., Wu, J. R., & Chang, Y. X. (2006). Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell Hepg2. Mol Cancer Res, 4(10), 747-758. doi: 10.1158/1541-7786.MCR-06-0096 Xu, D., Rovira, II, & Finkel, T. (2002). Oxidants painting the cysteine chapel: redox regulation of PTPs. Dev Cell, 2(3), 251-252. Yu, Q., & Stamenkovic, I. (1999). Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev, 13(1), 35-48. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18280 | - |
| dc.description.abstract | 癌細胞的轉移一直是癌症致死的主要原因,因此了解癌細胞的轉移機制一直是個重要的研究課題。在過去的文獻中指出,癌細胞內的活性氧 (reactive oxygen species,ROS) 程度和其惡化有密切的關係,在較惡性的癌細胞內常偵測到較高程度的活性氧,在癌細胞惡化的過程中,活性氧含量會改變並活化不同的訊息傳遞途徑,且提升基質金屬蛋白酶 (matrix metalloproteinase,MMP) 的表現及釋放,進而造成癌細胞的入侵和轉移能力上升。
為了研究轉移的機制,本實驗室將A431子宮頸上皮癌細胞 (A431-P) 利用Boyden chamber進行篩選,經過連續三次穿膜篩選出擁有較高入侵轉移能力之A431第三代細胞 (A431-III)。A431-III具有較高的入侵和移動能力,並表現較高量的基質金屬蛋白酶,這樣的A431細胞系統提供了一個好的研究模型來探討癌細胞之轉移入侵過程。藉由兩株細胞之比較,我們發現A431-III相較於A431-P產生較多的活性氧,實驗結果發現A431-III的抗氧化酵素MnSOD表現量上升,而catalase表現量下降,因此A431-III細胞內活性氧量上升可能是因為抗氧化酵素表現量改變所造成的,這些抗氧化酵素是細胞平衡內部活性氧含量的一道重要清除機制。 類黃鹼素 (flavonoid) 是一群廣泛存在於蔬果中的天然化合物,根據已發表的報告指出其有相當多的生物活性,其中包括了抗癌及抗轉移。本實驗室先前篩選出兩個具高抗癌潛能的類黃鹼素:木樨草素 (Luteolin) 與槲皮素 (Quercetin),對癌細胞活性、生長及轉移均具極佳抑制效果。初步研究發現Luteolin和Quercetin能有效降低A431-III內部的活性氧含量,此外Luteolin和Quercetin處理也增加了A431-III的catalase的表現量,其結果表示了Luteolin和Quercetin能藉由改變細胞內抗氧化酵素的表現量來影響活性氧的清除,之後我們使用H2O2處理A431-P細胞提高細胞內部的活性氧含量,使用NAC、DPI處理A431-III細胞降低細胞內部的活性氧含量,結果A431-P細胞的移動能力上升,而A431-III細胞的移動能力下降,表示類黃鹼素清除活性氧的能力和其抑制癌細胞生長和轉移的抗癌活性有所關聯。 | zh_TW |
| dc.description.abstract | Tumor metastasis has always been the main factor that causes the death of cancer patients, thus it is important to realize the mechanism of cancer metastasis. It has been appreciated for a number of years that reactive oxygen species (ROS) production is increased in malignant cancer cells. During tumor progression, reactive oxygen species can activate MMP activity, cell-ECM adhesion, and subsequently promotes the capability of cell migration and cell invasion. The signaling pathway involved in these processes are thought to be achieved through redox modification of signaling molecules such as protein kinases and transcription factors.
In the previous study from our laboratory, we have selected highly invasive tumor cell sub-line A43-1III from A431-P by using Boyden Chamber Assay (unpublished data). In this study, we take the advantage of this highly invasive sub-line to further explore the role of reactive oxygen species in cancer cells. We find that reactive oxygen species production is increased in A431-III sub-line compared to A431-P. This result may attribute to differential expression of antioxidants, which were important in balancing cellular ROS levels. We find that MnSOD expression is increased whereas catalase is decreased in A431III sub-line compared to A431P. The flavonoids are polyphenolic compounds that are ubiquitous constituents of flowering plants, particularly food plants. Plant flavonoids have been recognized as possessing antitumor effects. Two dietary flavonoid constituents, luteolin (Lu) and quercetin (Qu), generally appear to be the most potent among plant flavonoids in terms of their in vitro biological activities. ROS level was decreased in A431-III sub-line after treatment of luteolin or quercetin. Furthermore, luteolin or quercetin treatment in A431-IIII sub-line promoted catalase expression on protein level. These results suggest that luteolin and quercetin can influence ROS elimination in cells by regulating the expression of antioxidant enzymes. Then, we tested the effect of ROS level in A431 cells. We promoted ROS level in A431-P by direct H2O2 treatment, and suppressed ROS level in A431-III by treating antioxidant, NAC and DPI. The capability of migration was promoted in A431-P and suppressed in A431-III. Experimental results are shown that the ability of flavonoids scavenging reactive oxygen species is associated with their anti-tumor activity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:57:48Z (GMT). No. of bitstreams: 1 ntu-104-R01B46024-1.pdf: 2026800 bytes, checksum: a4da00d590fa31fa8f2029182dc39929 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………………………………………...1
Abstract…………………………………………………………………………………3 引言…………………………………………………………………………………...…5 壹、癌細胞轉移(metastasis)機制………………………………………………….5 貳、癌細胞入侵(invasion)機制……………………………………………………6 參、轉移潛力模型與挑選具高侵犯力癌細胞的方法…………………………....6 肆、活性氧(reactive oxygen species)和癌症的發展……………………………...8 伍、基質金屬蛋白酶(matrix metalloproteinase,MMP)…………………………..9 陸、哺乳動物細胞中主要的抗氧化代謝途徑………………………………..…10 柒、類黃酮(Flavonoid)……………………………………………………….......11 捌、活性氧對訊號傳遞途徑的調節……………………………………………..13 材料與方法………………………………………………………………………….....23 壹、Materials and antibodies……………………………………………………..23 貳、Cell culture…………………………………………………………………...23 參、Cell lysate preparation………………………………………………………..23 肆、Western blotting……………………………………………………………...24 伍、Wound healing assay………………………………………………………....25 陸、ROS measurement…………………………………………………………....26 柒、Hydrogen peroxide measure…………………………………………………26 結果…………………………………………………………………………………….28 壹、A431-III植株偵測到較高的細胞內活性氧含量…………………………...28 貳、細胞內部抗氧化蛋白的表現量差異………………………………………..28 參、類黃酮(flavonoids)減少A431-III細胞內部的活性氧含量………………...29 肆、類黃酮對A431-III細胞侵犯和轉移相關能力的影響……………………...30 伍、外源性調控活性氧含量對癌細胞移動能力的影響………………………..31 討論………………………………………………………………………………….....37 引用文獻………………………………………………………………………….........39 | |
| dc.language.iso | zh-TW | |
| dc.title | 類黃鹼素對A431癌細胞的活性氧影響及轉移和入侵能力之探討 | zh_TW |
| dc.title | Effects of flavonoids on reactive oxygen species and metastasis-associated ability in highly invasive A431-III sub-line | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃胤唐(Ying-Tang Huang),鄭嘉雄(Chia-Hsiung Cheng) | |
| dc.subject.keyword | 類黃鹼素,腫瘤,癌症,活性氧, | zh_TW |
| dc.subject.keyword | flavonoid,tumor,cancer,reactive oxygen species, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-02-05 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
