Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18265
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor董桂書(Kuei-Shu Tung)
dc.contributor.authorChia-Jou Linen
dc.contributor.author林佳柔zh_TW
dc.date.accessioned2021-06-08T00:57:11Z-
dc.date.copyright2020-09-17
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citationAttner, M. A., and Amon, A. (2012). Control of the mitotic exit network during meiosis. Molecular biology of the cell, 23(16), 3122-3132.
Bajgier, B. K., Malzone, M., Nickas, M., and Neiman, A. M. (2001). SPO21 is required for meiosis-specific modification of the spindle pole body in yeast. Molecular biology of the cell, 12(6), 1611-1621.
Bertin, A., McMurray, M. A., Grob, P., Park, S. S., Garcia, G., 3rd, Patanwala, I., Ng, H. L., Alber, T., Thorner, J., and Nogales, E. (2008). Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proceedings of the National Academy of Sciences of the United States of America, 105(24), 8274-8279.
Bourne, H. R., Sanders, D. A., and McCormick, F. (1991). The GTPase superfamily: conserved structure and molecular mechanism. Nature, 349(6305), 117-127.
Briza, P., Ellinger, A., Winkler, G., and Breitenbach, M. (1988). Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. J Biol Chem, 263(23), 11569-11574.
Briza, P., Winkler, G., Kalchhauser, H., and Breitenbach, M. (1986). Dityrosine is a prominent component of the yeast ascospore wall. A proof of its structure. J Biol Chem, 261(9), 4288-4294.
Caydasi, A. K., Ibrahim, B., and Pereira, G. (2010). Monitoring spindle orientation: Spindle position checkpoint in charge. Cell Div, 5, 28-28.
Caydasi, A. K., Lohel, M., Grünert, G., Dittrich, P., Pereira, G., and Ibrahim, B. (2012). A dynamical model of the spindle position checkpoint. Mol Syst Biol, 8, 582.
Chen, C.-Y. (2007). The interaction of Ady3 and Tem1 with Hsp26 in yeast sporulation. Institute of Molecular and Cellular Biology. Taipei, Taiwan, National Taiwan University. 1-59.
Chen, Y.-H. (2018). The regulatory mechanism of the Hsp26-dependent spindle checkpoint in yeast sporulation. Institute of Molecular and Cellular Biology. Taipei, Taiwan, National Taiwan University. 1-98.
D'Aquino, K. E., Monje-Casas, F., Paulson, J., Reiser, V., Charles, G. M., Lai, L., Shokat, K. M., and Amon, A. (2005). The protein kinase Kin4 inhibits exit from mitosis in response to spindle position defects. Mol Cell, 19(2), 223-234.
Davidow, L. S., Goetsch, L., and Byers, B. (1980). Preferential Occurrence of Nonsister Spores in Two-Spored Asci of SACCHAROMYCES CEREVISIAE: Evidence for Regulation of Spore-Wall Formation by the Spindle Pole Body. Genetics, 94(3), 581-595.
De Virgilio, C., DeMarini, D. J., and Pringle, J. R. (1996). SPR28, a sixth member of the septin gene family in Saccharomyces cerevisiae that is expressed specifically in sporulating cells. Microbiology, 142 ( Pt 10), 2897-2905.
Diamond, A. E., Park, J. S., Inoue, I., Tachikawa, H., and Neiman, A. M. (2009). The anaphase promoting complex targeting subunit Ama1 links meiotic exit to cytokinesis during sporulation in Saccharomyces cerevisiae. Molecular biology of the cell, 20(1), 134-145.
Falk, J. E., Campbell, I. W., Joyce, K., Whalen, J., Seshan, A., and Amon, A. (2016). LTE1 promotes exit from mitosis by multiple mechanisms. Molecular biology of the cell, 27(25), 3991-4001.
Fares, H., Goetsch, L., and Pringle, J. R. (1996). Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae. The Journal of cell biology, 132(3), 399-411.
Fraschini, R., Venturetti, M., Chiroli, E., and Piatti, S. (2008). The spindle position checkpoint: how to deal with spindle misalignment during asymmetric cell division in budding yeast. Biochem Soc Trans, 36(Pt 3), 416-420.
Geymonat, M., Spanos, A., Smith, S. J. M., Wheatley, E., Rittinger, K., Johnston, L. H., and Sedgwick, S. G. (2002). Control of mitotic exit in budding yeast. In vitro regulation of Tem1 GTPase by Bub2 and Bfa1. J Biol Chem, 277(32), 28439-28445.
Geymonat, M., Spanos, A., Walker, P. A., Johnston, L. H., and Sedgwick, S. G. (2003). In vitro regulation of budding yeast Bfa1/Bub2 GAP activity by Cdc5. J Biol Chem, 278(17), 14591-14594.
Hartwell, L. H., and Weinert, T. A. (1989). Checkpoints: controls that ensure the order of cell cycle events. Science, 246(4930), 629-634.
Haslbeck, M., Braun, N., Stromer, T., Richter, B., Model, N., Weinkauf, S., and Buchner, J. (2004). Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. The EMBO journal, 23(3), 638-649.
Haslbeck, M., Walke, S., Stromer, T., Ehrnsperger, M., White, H. E., Chen, S., Saibil, H. R., and Buchner, J. (1999). Hsp26: a temperature-regulated chaperone. The EMBO journal, 18(23), 6744-6751.
Ho, T.-M. (2005). The role of yeast Hsp26 in sporulation. Institute of Molecular and Cellular Biology. Taipei, Taiwan, National Taiwan University. 1-93.
Hotz, M., Leisner, C., Chen, D., Manatschal, C., Wegleiter, T., Ouellet, J., Lindstrom, D., Gottschling, D. E., Vogel, J., and Barral, Y. (2012). Spindle pole bodies exploit the mitotic exit network in metaphase to drive their age-dependent segregation. Cell, 148(5), 958-972.
Howell, A. S., and Lew, D. J. (2012). Morphogenesis and the cell cycle. Genetics, 190(1), 51-77.
Hu, F., Wang, Y., Liu, D., Li, Y., Qin, J., and Elledge, S. J. (2001). Regulation of the Bub2/Bfa1 GAP complex by Cdc5 and cell cycle checkpoints. Cell, 107(5), 655-665.
Huang, H.-Y. (2014). The mechanism of Hsp26 regulating spore formation in budding yeast. Institute of Molecular and Cellular Biology. Taipei, Taiwan, National Taiwan University. 1-76.
Hustedt, N., Gasser, S. M., and Shimada, K. (2013). Replication checkpoint: tuning and coordination of replication forks in s phase. Genes, 4(3), 388-434.
Ito, H., Fukuda, Y., Murata, K., and Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. J Bacteriol, 153(1), 163-168.
Jaspersen, S. L., and Winey, M. (2004). THE BUDDING YEAST SPINDLE POLE BODY: Structure, Duplication, and Function. Annu Rev Cell Dev Biol, 20(1), 1-28.
Karpova, T. S., Moltz, S. L., Riles, L. E., Güldener, U., Hegemann, J. H., Veronneau, S., Bussey, H., and Cooper, J. A. (1998). Depolarization of the actin cytoskeleton is a specific phenotype in Saccharomyces cerevisiae. J Cell Sci, 111 ( Pt 17)(Pt 17), 2689-2696.
Keng, T., Clark, M. W., Storms, R. K., Fortin, N., Zhong, W., Ouellette, B. F., Barton, A. B., Kaback, D. B., and Bussey, H. (1994). LTE1 of Saccharomyces cerevisiae is a 1435 codon open reading frame that has sequence similarities to guanine nucleotide releasing factors. Yeast, 10(7), 953-958.
Kim, J., Jang, S. S., and Song, K. (2008). Different levels of Bfa1/Bub2 GAP activity are required to prevent mitotic exit of budding yeast depending on the type of perturbations. Molecular biology of the cell, 19(10), 4328-4340.
Knop, M., and Strasser, K. (2000). Role of the spindle pole body of yeast in mediating assembly of the prospore membrane during meiosis. The EMBO journal, 19(14), 3657-3667.
Korinek, W. S., Copeland, M. J., Chaudhuri, A., and Chant, J. (2000). Molecular Linkage Underlying Microtubule Orientation Toward Cortical Sites in Yeast. Science, 287(5461), 2257.
Kreger-Van Rij, N. J. (1978). Electron microscopy of germinating ascospores of Saccharomyces cerevisiae. Arch Microbiol, 117(1), 73-77.
Kurtz, S., Rossi, J., Petko, L., and Lindquist, S. (1986). An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science, 231(4742), 1154.
Lam, C., Santore, E., Lavoie, E., Needleman, L., Fiacco, N., Kim, C., and Neiman, A. M. (2014). A visual screen of protein localization during sporulation identifies new components of prospore membrane-associated complexes in budding yeast. Eukaryot Cell, 13(3), 383-391.
Lee, L., Tirnauer, J. S., Li, J., Schuyler, S. C., Liu, J. Y., and Pellman, D. (2000). Positioning of the Mitotic Spindle by a Cortical-Microtubule Capture Mechanism. Science, 287(5461), 2260.
Li, X. C., Barringer, B. C., and Barbash, D. A. (2009). The pachytene checkpoint and its relationship to evolutionary patterns of polyploidization and hybrid sterility. 102(1), 24-30.
Liu, Y.-C. (2016). The role of a spindle position checkpoint protein, Tem1, in yeast sporulation. Institute of Molecular and Cellular Biology. Taipei, Taiwan, National Taiwan University. 1-81.
Maekawa, H., Priest, C., Lechner, J., Pereira, G., and Schiebel, E. (2007). The yeast centrosome translates the positional information of the anaphase spindle into a cell cycle signal. The Journal of cell biology, 179(3), 423-436.
Maier, P., Rathfelder, N., Maeder, C. I., Colombelli, J., Stelzer, E. H. K., and Knop, M. (2008). The SpoMBe pathway drives membrane bending necessary for cytokinesis and spore formation in yeast meiosis. The EMBO journal, 27(18), 2363-2374.
Markus, S. M., Kalutkiewicz, K. A., and Lee, W.-L. (2012). Astral microtubule asymmetry provides directional cues for spindle positioning in budding yeast. Experimental cell research, 318(12), 1400-1406.
Mathieson, E. M., Schwartz, C., and Neiman, A. M. (2010). Membrane assembly modulates the stability of the meiotic spindle-pole body. Journal of Cell Science, 123(Pt 14), 2481-2490.
Miller, R. K., and Rose, M. D. (1998). Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. The Journal of cell biology, 140(2), 377-390.
Moens, P. B., and Rapport, E. (1971). Spindles, spindle plaques, and meiosis in the yeast Saccharomyces cerevisiae (Hansen). The Journal of cell biology, 50(2), 344-361.
Moore, J. K., and Cooper, J. A. (2010). Coordinating mitosis with cell polarity: Molecular motors at the cell cortex. Semin Cell Dev Biol, 21(3), 283-289.
Moreno-Borchart, A. C., Strasser, K., Finkbeiner, M. G., Shevchenko, A., Shevchenko, A., and Knop, M. (2001). Prospore membrane formation linked to the leading edge protein (LEP) coat assembly. The EMBO journal, 20(24), 6946-6957.
Neff, N. F., Thomas, J. H., Grisafi, P., and Botstein, D. (1983). Isolation of the β-tubulin gene from yeast and demonstration of its essential function in vivo. Cell, 33(1), 211-219.
Neiman, A. M. (2005). Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 69(4), 565-584.
Neiman, A. M. (2011). Sporulation in the Budding Yeast Saccharomyces cerevisiae. Genetics, 189(3), 737-765.
Nickas, M. E., and Neiman, A. M. (2002). Ady3p links spindle pole body function to spore wall synthesis in Saccharomyces cerevisiae. Genetics, 160(4), 1439-1450.
Nickas, M. E., Schwartz, C., and Neiman, A. M. (2003). Ady4p and Spo74p are components of the meiotic spindle pole body that promote growth of the prospore membrane in Saccharomyces cerevisiae. Eukaryot Cell, 2(3), 431-445.
Ozsarac, N., Bhattacharyya, M., Dawes, I. W., and Clancy, M. J. (1995). The SPR3 gene encodes a sporulation-specific homologue of the yeast CDC3/10/11/12 family of bud neck microfilaments and is regulated by ABFI. Gene, 164(1), 157-162.
Pereira, G., and Schiebel, E. (2001). The role of the yeast spindle pole body and the mammalian centrosome in regulating late mitotic events. Curr Opin Cell Biol, 13(6), 762-769.
Pereira, G., and Schiebel, E. (2005). Kin4 kinase delays mitotic exit in response to spindle alignment defects. Mol Cell, 19(2), 209-221.
Petko, L., and Lindquist, S. (1986). Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell, 45(6), 885-894.
Rahman, D. R., Bentley, N. J., and Tuite, M. F. (1995). The Saccharomyces cerevisiae small heat shock protein Hsp26 inhibits actin polymerisation. Biochem Soc Trans, 23(1), 77s.
Roeder, G. S., and Bailis, J. M. (2000). The pachytene checkpoint. Trends Genet, 16(9), 395-403.
Sambrook, J., and Russell, D. W. (2001). Molecular cloning: a laboratory manual. Vol. 2, 3rd edn. Cold Spring Harbor Laboratory Press, New York.
Scarfone, I., and Piatti, S. (2015). Coupling spindle position with mitotic exit in budding yeast: The multifaceted role of the small GTPase Tem1. Small GTPases, 6(4), 196-201.
Scarfone, I., Venturetti, M., Hotz, M., Lengefeld, J., Barral, Y., and Piatti, S. (2015). Asymmetry of the budding yeast Tem1 GTPase at spindle poles is required for spindle positioning but not for mitotic exit. PLoS Genet, 11(2), e1004938-e1004938.
Shirayama, M., Matsui, Y., Tanaka, K., and Toh-e, A. (1994a). Isolation of a CDC25 family gene, MSI2/LTE1, as a multicopy suppressor of ira1. Yeast, 10(4), 451-461.
Shirayama, M., Matsui, Y., and Toh-E, A. (1994b). The yeast TEM1 gene, which encodes a GTP-binding protein, is involved in termination of M phase. Mol Cell Biol, 14(11), 7476-7482.
Shonn, M. A., McCarroll, R., and Murray, A. W. (2000). Requirement of the Spindle Checkpoint for Proper Chromosome Segregation in Budding Yeast Meiosis. Science, 289(5477), 300-303.
Smits, G. J., van den Ende, H., and Klis, F. M. (2001). Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology, 147(Pt 4), 781-794.
Vetter, I. R., and Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science, 294(5545), 1299-1304.
Visintin, R., Craig, K., Hwang, E. S., Prinz, S., Tyers, M., and Amon, A. (1998). The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell, 2(6), 709-718.
Wells, W. A. (1996). The spindle-assembly checkpoint: aiming for a perfect mitosis, every time. Trends in Cell Biology, 6(6), 228-234.
Yin, H., Pruyne, D., Huffaker, T. C., and Bretscher, A. (2000). Myosin V orientates the mitotic spindle in yeast. 406(6799), 1013-1015.
Yoshida, S., Ichihashi, R., and Toh-e, A. (2003). Ras recruits mitotic exit regulator Lte1 to the bud cortex in budding yeast. The Journal of cell biology, 161(5), 889-897.
Zhou, B.-B. S., and Elledge, S. J. (2000). The DNA damage response: putting checkpoints in perspective. 408(6811), 433-439.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18265-
dc.description.abstract當環境缺乏養分時,會使二倍體出芽酵母菌細胞進行減數分裂並產生孢子。對於出芽酵母菌來說這是一個營養缺乏的逆境反應,因此會誘導出一些逆境蛋白,包括Hsp26蛋白。我們實驗室先前已經發現一個與Hsp26相關的紡錘絲檢控點,其會監控第二次減數分裂過程中的紡錘絲是否適合形成孢子。之前研究也發現Tem1參與在這個檢控點中。我們想了解Tem1是如何參與在此Hsp26相關紡錘絲檢控點。因為Tem1是GTP水解酶會受GAP複合物加速GTP進行水解,我們使用兩種方法將Tem1維持在GTP狀態並探討其效應。第一,是將GAP相關基因BFA1剔除以阻止GTP水解。第二,建構TEM1-Q79L突變株,組成持續與GTP結合的Tem1。我們發現若維持Tem1-GTP狀態,會使檢控點失去功能。透過pCLB2-TEM1突變細胞關閉減數分裂中Tem1表現也會使此一檢控點失效,據此我們提出兩種可能的模型來解釋此現象,一、Tem1-GDP可以主動阻擋的方式干擾孢子形成;二、Tem1必須存在才能活化Hsp26紡錘絲檢控點,接著此檢控點會反過來調控Tem1在孢子形成中的功能。zh_TW
dc.description.abstractIn the budding yeast Saccharomyces cerevisiae, absence of nitrogen and presence of nonfermentable carbon source lead diploid cells to enter meiosis and spore formation, which called sporulation. It is a starvation-stress response to the yeast. During sporulation, several stress proteins are induced, including Hsp26. Our laboratory has discovered that there is a Hsp26-dependent spindle checkpoint to monitor spindle assembly at meiosis II and regulates spore formation. Tem1, a component of the mitotic spindle checkpoint, is also involved in this checkpoint. We would like to know how Tem1 is involved in this Hsp26-dependent spindle checkpoint. Because Tem1 is a GTPase, which switches between GTP and GDP status, we adopted two approaches to keep Tem1 in the GTP-bound form. One was to delete the GAP-related gene, BFA1, and to block GTP hydrolysis. The other one was to construct TEM1-Q79L mutant that keeps Tem1 in the GTP-bound form. We found that Tem1-GTP may inactivates this checkpoint. pCLB2-TEM1 mutants, which shut down Tem1 during meiosis, also inactivate this checkpoint. We propose two models to explain these results. First, Tem1-GDP may actively block spore formation. Alternatively, Tem1 is required to activate the Hsp26-dependent spindle checkpoint that in turn regulates Tem1 function in spore formation.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:57:11Z (GMT). No. of bitstreams: 1
U0001-1308202010232400.pdf: 2228595 bytes, checksum: 10ab807f1f9e6eefd4d4151b2a6b4dbc (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝------------------------------------------------------------------------------------------------i
中文摘要-----------------------------------------------------------------------------------------ii
ABSTRACT----------------------------------------------------------------------------------------iii
TABLE OF CONTENTS--------------------------------------------------------------------------iv
LIST OF TABLES----------------------------------------------------------------------------------viii
LIST OF FIGURES--------------------------------------------------------------------------------x
CHAPTER 1. INTRODUCTION--------------------------------------------------------------1
I. Sporulation---------------------------------------------------------------------------------1
A. Meiosis----------------------------------------------------------------------------------1
B. Spore formation-----------------------------------------------------------------------3
1. Formation of the meiotic II outer plaque------------------------------------3
2. Formation of the prospore membrane---------------------------------------4
(1) Septins---------------------------------------------------------------------------4
(2) Leading edge complex--------------------------------------------------------5
3. Prospore membrane closure----------------------------------------------------5
4. Spore wall assembly---------------------------------------------------------------6
II. Checkpoints--------------------------------------------------------------------------------6
A. Checkpoints in mitosis---------------------------------------------------------------7
1. DNA replication checkpoint------------------------------------------------------7
2. DNA damage checkpoint ---------------------------------------------------------8
3. Cell morphogenesis checkpoint-------------------------------------------------8
4. Spindle assembly checkpoint----------------------------------------------------8
5. Spindle position checkpoint------------------------------------------------------9
(1) Mitotic exit network-----------------------------------------------------------10
B. Checkpoints in meiosis---------------------------------------------------------------11
1. Pachytene checkpoint-------------------------------------------------------------11
2. Spindle assembly checkpoint----------------------------------------------------12
III. The meiotic Hsp26-dependent spindle checkpoint------------------------------13
A. The function of Hsp26 in sporulation --------------------------------------------13
1. Yeast Hsp26 protein----------------------------------------------------------------13
2. The research in Hsp26-dependent spindle checkpoint--------------------14
B. The small GTPase Tem1--------------------------------------------------------------15
1. Tem1 is a small G protein---------------------------------------------------------15
2. The universal switch mechanism-----------------------------------------------16
(1) Tem1 GTPase cycle-------------------------------------------------------------17
(2) Lte1 is long envisaged as a GEF for Tem1---------------------------------17
3. The localization of Tem1 and Bfa1/Bub2 in mitosis and meiosis--------18
VI. Specific Aims------------------------------------------------------------------------------19
CHAPTER 2. MATERIAL AND METHODS--------------------------------------------------20
I. Culture Conditions-------------------------------------------------------------------------20
II. DNA Preparation and Transformation------------------------------------------------21
III. Plasmids Constructions------------------------------------------------------------------22
IV. Yeast Strains Constructions-------------------------------------------------------------23
V. Benomyl Treatment------------------------------------------------------------------------26
VI. Spore Viability Analysis------------------------------------------------------------------27
CHAPTER 3. RESULTS--------------------------------------------------------------------------28
Analysis of sporulation in bfa1 mutants-------------------------------------------------28
Sporulation frequency in the bfa1 mutant cells was increased-----------------28
The bfa1 mutant was not affected with benomyl but fluctuate in sporulation
--------------------------------------------------------------------------------------------------28
The sporulation defects caused by the kar9 mutation could be suppressed by the bfa1 mutation--------------------------------------------------------------------------30
Sporulation frequency in the bfa1hsp26 mutants----------------------------------32
GAP-related mutant strains enhance the sporulation frequency---------------33
Analysis of sporulation in TEM1-Q79L mutant-----------------------------------------34
Sporulation frequency in the TEM1-Q79L cells was increased------------------34
Benomyl does not affect sporulation in TEM1-Q79L cells------------------------35
Benomyl-treated TEM1-Q79L mutant cells displayed a decline in spore viability
--------------------------------------------------------------------------------------------------36
TEM1-Q79L and pCLB2-TEM1 displayed similar phenotype in sporulation--37
Tem1-GTP mutants and pCLB2-TEM1 displayed similar phenotype in sporulation --------------------------------------------------------------------------------------------------38
CHAPTER 4. DISCUSSIONS--------------------------------------------------------------------40
The bfa1 mutant in sporulation------------------------------------------------------------40
The bfa1 mutation rescues the sporulation defect caused by kar9 mutation---41
The bfa1hsp26 mutant in sporulation-----------------------------------------------------42
The TEM1-Q79L mutant in sporulation---------------------------------------------------43
The contradiction between pCLB2-TEM1 and TEM1-Q79L mutants---------------44
(1) Tem1-GDP may actively block spore formation---------------------------------45
(2) Tem1 is required to activate the Hsp26-dependent spindle checkpoint that in turn regulates Tem1 function in spore formation-----------------------------------------46
REFERENCES----------------------------------------------------------------------------------------47
APPENDIX-------------------------------------------------------------------------------------------78
dc.language.isoen
dc.title過度活化的Tem1 GTPase對酵母菌孢子生成的影響zh_TW
dc.titleStudies of the Effect of Hyperactivated Tem1 GTPase on Yeast Sporulation
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡皇龍(Huang-Lung Tsai),王雅筠(Ya-Yun Wang)
dc.subject.keywordHsp26,Tem1,Bfa1,GTP酶,GTP,紡錘絲檢控點,孢子形成過程,zh_TW
dc.subject.keywordHsp26,Tem1,Bfa1,GTPase,GTP,spindle checkpoint,sporulation,en
dc.relation.page78
dc.identifier.doi10.6342/NTU202003206
dc.rights.note未授權
dc.date.accepted2020-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-1308202010232400.pdf
  目前未授權公開取用
2.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved