Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18240
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣本基(Pen-Chi Chiang)
dc.contributor.authorKuan-Wei Chenen
dc.contributor.author陳冠薇zh_TW
dc.date.accessioned2021-06-08T00:56:09Z-
dc.date.copyright2015-04-27
dc.date.issued2014
dc.date.submitted2015-02-12
dc.identifier.citationBapat, J. D. (2012). Mineral admixtures in cement and concrete: CRC Press.
Belhadj, E., Diliberto, C., and Lecomte, A. (2012). Characterization and activation of Basic Oxygen Furnace slag. Cement and Concrete Composites, 34(1), 34-40.
Belhadj, E., Diliberto, C., and Lecomte, A. (2014). Properties of hydraulic paste of basic oxygen furnace slag. Cement and Concrete Composites, 45, 15-21.
Bentz, D. P. (2014). Activation energies of high-volume fly ash ternary blends: Hydration and setting. Cement and Concrete Composites, 53, 214-223.
Bentz, D. P., Ardani, A., Barrett, T., Jones, S. Z., Lootens, D., Peltz, M. A., Weiss, W. J. (2015). Multi-scale investigation of the performance of limestone in concrete. Construction and Building Materials, 75, 1-10.
Bentz, D. P., Sato, T., De la Varga, I., and Weiss, W. J. (2012). Fine limestone additions to regulate setting in high volume fly ash mixtures. Cement and Concrete Composites, 34(1), 11-17.
Bobicki, E. R., Liu, Q., Xu, Z., and Zeng, H. (2012). Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science, 38(2), 302-320.
Brand, A. S., and Roesler, J. R. (2015). Steel furnace slag aggregate expansion and hardened concrete properties. Cement and Concrete Composites, 60, 1-9.
Celik, I. (2009). The effects of particle size distribution and surface area upon cement strength development. Powder Technology, 188(3), 272-276.
Chang, E.-E., Chen, T.-L., Pan, S.-Y., Chen, Y.-H., and Chiang, P.-C. (2013). Kinetic modeling on CO2 capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed. J Hazard Mater, 260, 937-946.
Chang, E., Pan, S.-Y., Chen, Y.-H., Tan, C.-S., and Chiang, P.-C. (2012). Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. Journal of hazardous materials, 227, 97-106.
Chen, W., Yin, X., and Ma, D. (2014). A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions. Applied Energy, 136, 1174-1183.
Chen, Z., Xie, J., Xiao, Y., Chen, J., and Wu, S. (2014). Characteristics of bonding behavior between basic oxygen furnace slag and asphalt binder. Construction and Building Materials, 64, 60-66.
Chiang, Y. W., Santos, R. M., Elsen, J., Meesschaert, B., Martens, J. A., and Van Gerven, T. (2014). Towards zero-waste mineral carbon sequestration via two-way valorization of ironmaking slag. Chemical Engineering Journal, 249, 260-269.
Chindaprasirt, P., Kanchanda, P., Sathonsaowaphak, A., and Cao, H. (2007). Sulfate resistance of blended cements containing fly ash and rice husk ash. Construction and Building Materials, 21(6), 1356-1361.
China Steel Corporation (2012). CSC Corporate Social Responsibility. 2012 Corporate Social Responsibility Report, 23.
De Weerdt, K., Haha, M. B., Le Saout, G., Kjellsen, K. O., Justnes, H., and Lothenbach, B. (2011). Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 41(3), 279-291.
Fernandez Bertos, M., Simons, S., Hills, C., and Carey, P. (2004). A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater, 112(3), 193-205.
Gambhir, M. L. (2013). Concrete Technology: Theory and Practice: Tata McGraw-Hill Education.
Goto, S., Suenaga, K., Kado, T., and Fukuhara, M. (1995). Calcium silicate carbonation products. Journal of the American Ceramic Society, 78(11), 2867-2872.
Gurney, L. R., Bentz, D. P., Sato, T., and Weiss, W. J. (2012). Reducing Set Retardation in High-Volume Fly Ash Mixtures with the Use of Limestone. Transportation Research Record: Journal of the Transportation Research Board, 2290(1), 139-146.
Hasanbeigi, A., Price, L., and Lin, E. (2012). Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renewable and Sustainable Energy Reviews, 16(8), 6220-6238.
Juenger, M. C., and Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement and Concrete Research.
Kocaba, V. (2009). Development and evaluation of methods to follow microstructural development of cementitious systems including slags.
Kourounis, S., Tsivilis, S., Tsakiridis, P., Papadimitriou, G., and Tsibouki, Z. (2007). Properties and hydration of blended cements with steelmaking slag. Cement and Concrete Research, 37(6), 815-822.
Lackner, K. S. (2002). Carbonate chemistry for sequestering fossil carbon. Annual Review of Energy and the Environment, 27(1), 193-232.
Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce Jr, E. L., and Sharp, D. H. (1995). Carbon dioxide disposal in carbonate minerals. Energy, 20(11), 1153-1170.
Lawrence, C. (1990). Sulphate attack on concrete. Magazine of Concrete Research, 42(153), 249-264.
Lin, D.-F., Chou, L.-H., Wang, Y.-K., and Luo, H.-L. (2015). Performance evaluation of asphalt concrete test road partially paved with industrial waste–Basic oxygen furnace slag. Construction and Building Materials, 78, 315-323.
Lin, P. C. H., H. C.; Ou, M. Y.; Huang, C. H.; Hsueh, W. H. . (2007). Water Immersing and Aging Treatment of Steel-making Slag (CHC Resources, Taiwan; China Steel Corp., Taiwan). Taiwan Patent.
Liu, C.-F., and Shih, S.-M. (2002). A surface coverage model for the reaction of Ca(OH)2 with SO2 at low temperatures. Journal of the Chinese Institute of Chemical Engineers, 33(4), 407-413.
Lothenbach, B., Le Saout, G., Gallucci, E., and Scrivener, K. (2008). Influence of limestone on the hydration of Portland cements. Cement and Concrete Research, 38(6), 848-860.
Lothenbach, B., Scrivener, K., and Hooton, R. (2011). Supplementary cementitious materials. Cement and Concrete Research, 41(12), 1244-1256.
Makar, J., Chan, G., and Esseghaier, K. (2007). A peak in the hydration reaction at the end of the cement induction period. Journal of materials science, 42(4), 1388-1392.
Massazza, F., and Daimon, M. (1992). Chemistry of hydration of cements and cementitious systems. Paper presented at the Proceedings of 9th International Congress on the Chemistry of Cement.
Matschei, T., Lothenbach, B., and Glasser, F. P. (2007). The role of calcium carbonate in cement hydration. Cement and Concrete Research, 37(4), 551-558.
Mechling, J.-M., Lecomte, A., and Diliberto, C. (2009). Relation between cement composition and compressive strength of pure pastes. Cement and Concrete Composites, 31(4), 255-262.
Mehta, P. K., and Monteiro, P. J. (2006). Concrete: microstructure, properties, and materials (Vol. 3): McGraw-Hill New York.
Metz, B., Davidson, O., De Coninck, H., Loos, M., and Meyer, L. (2005). Carbon dioxide capture and storage.
Mindess, S., Young, J. F., and Darwin, D. (2003). Concrete.
Monshi, A., and Asgarani, M. K. (1999). Producing Portland cement from iron and steel slags and limestone. Cement and Concrete Research, 29(9), 1373-1377.
Moon, J., Oh, J. E., Balonis, M., Glasser, F. P., Clark, S. M., and Monteiro, P. J. (2012). High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO• Al2O3• CaCO3• 11H2O. Cement and Concrete Research, 42(1), 105-110.
Morone, M., Costa, G., Polettini, A., Pomi, R., and Baciocchi, R. (2014). Valorization of steel slag by a combined carbonation and granulation treatment. Minerals Engineering, 59, 82-90.
Murphy, J., Meadowcroft, T., and Barr, P. (1997). Enhancement of the cementitious properties of steelmaking slag. Canadian Metallurgical Quarterly, 36(5), 315-331.
O'Connor, W. K., Dahlin, D. C., Nilsen, D. N., Walters, R. P., and Turner, P. C. (2000). Carbon dioxide sequestration by direct mineral carbonation with carbonic acid: Albany Research Center (ARC), Albany, OR.
Ogawa, S., Nozaki, T., Yamada, K., Hirao, H., and Hooton, R. (2012). Improvement on sulfate resistance of blended cement with high alumina slag. Cement and Concrete Research, 42(2), 244-251.
Olajire, A. A. (2013). A review of mineral carbonation technology in sequestration of CO2. Journal of Petroleum Science and Engineering, 109, 364-392.
Péra, J., Husson, S., and Guilhot, B. (1999). Influence of finely ground limestone on cement hydration. Cement and Concrete Composites, 21(2), 99-105.
Pan, S.-Y., Chiang, P.-C., Chen, Y.-H., Tan, C.-S., and Chang, E.-E. (2014). Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion. Applied Energy, 113, 267-276.
Pan, S.-Y., Chiang, P.-C., Chen, Y.-H., Tan, C.-S., and Chang, E. (2013). Ex Situ CO2 Capture by Carbonation of Steelmaking Slag Coupled with Metalworking Wastewater in a Rotating Packed Bed. Environmental science & technology, 47(7), 3308-3315.
Pişkin, S., and Özdemir, Ö. D. Effect of Process Conditions on Crystal Structure of Precipitated Calcium Carbonate (CaCO3) From Fly Ash: Na2CO3 Preparation Conditions.
QURESHI, L. A., and AHMED, S. (2009). Optimization of Fineness of Ordinary Portland Cement Manufactured in Pakistan.
Ramachandran, V. S. (1971). Kinetics of hydration of tricalcium silicate in presence of calcium chloride by thermal methods. Thermochimica Acta, 2(1), 41-55.
Ramachandran, V. S., and Beaudoin, J. J. (2000). Handbook of analytical techniques in concrete science and technology: principles, techniques and applications: Elsevier.
Rostami, V., Shao, Y., Boyd, A. J., and He, Z. (2012). Microstructure of cement paste subject to early carbonation curing. Cement and Concrete Research, 42(1), 186-193.
Salman, M., Cizer, Ö., Pontikes, Y., Santos, R. M., Snellings, R., Vandewalle, L., Van Balen, K. (2014). Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material. Chemical Engineering Journal, 246, 39-52.
Schneider, M., Romer, M., Tschudin, M., and Bolio, H. (2011). Sustainable cement production—present and future. Cement and Concrete Research, 41(7), 642-650.
Seifritz, W. (1990). CO2 disposal by means of silicates. Nature, 345, 486.
Sha, W., O'Neill, E., and Guo, Z. (1999). Differential scanning calorimetry study of ordinary Portland cement. Cement and Concrete Research, 29(9), 1487-1489.
Sharma, R., and Pandey, S. (1999). Influence of mineral additives on the hydration characteristics of ordinary Portland cement. Cement and Concrete Research, 29(9), 1525-1529.
Shi, C., and Qian, J. (2000). High performance cementing materials from industrial slags—a review. Resources, Conservation and Recycling, 29(3), 195-207.
Short, N., Purnell, P., and Page, C. (2001). Preliminary investigations into the supercritical carbonation of cement pastes. Journal of materials science, 36(1), 35-41.
Sipilä, J., Teir, S., and Zevenhoven, R. (2008). Carbon dioxide sequestration by mineral carbonation Literature review update 2005–2007. Report VT, 1, 2008.
Taylor, H. F. (1997). Cement chemistry: Thomas Telford.
Thomas, M. (2013). Supplementary cementing materials in concrete: CRC Press.
Thongsanitgarn, P., Wongkeo, W., Chaipanich, A., and Poon, C. S. (2014). Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. Construction and Building Materials, 66, 410-417.
Wang, G., Wang, Y., and Gao, Z. (2010). Use of steel slag as a granular material: volume expansion prediction and usability criteria. Journal of hazardous materials, 184(1), 555-560.
Wang, Q., and Yan, P. (2010). Hydration properties of basic oxygen furnace steel slag. Construction and Building Materials, 24(7), 1134-1140.
Xue, Y., Wu, S., Hou, H., and Zha, J. (2006). Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. Journal of hazardous materials, 138(2), 261-268.
Yang, K.-H., Jung, Y.-B., Cho, M.-S., and Tae, S.-H. (2014). Effect of supplementary cementitious materials on reduction of CO 2 emissions from concrete. Journal of Cleaner Production.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18240-
dc.description.abstract鋼鐵與水泥業是國家經濟發展之重要產業,如何兼顧產業經濟發展與環境保護儼然已成為最重要的問題。本研究探討將鹼性固體廢棄物透過碳酸化程序轉換成「永續營建材料」之可行性;同時,應用超重力旋轉填充床以提升碳酸化程序之效率。實驗材料為中鋼轉爐渣細粒料。本研究目標包括:(一) 鑑定爐渣碳酸化前後之物化性質;(二)評估不同操作因子對於轉爐渣之固碳效率與容量之影響;(三)研析碳酸化後轉爐渣對於再利用於混合水泥之效益,探討項目包括:物理性質、強度發展、體積穩定性與耐久性。
研究結果顯示,在超重力旋轉填充床中,二氧化碳可於常溫環境下有效轉換為穩定之碳酸鈣沉澱。於溫度30 oC與60 oC時,每公斤爐渣之固碳容量分別可達0.202 與 0.221 公斤CO2。此外,將碳酸化實驗數據以表面覆蓋模式進行分析,模擬其碳酸化反應之動力學特性,表面覆蓋模式迴歸之R2介於0.97至0.98。此外,碳酸化後之爐渣進行事業廢棄物毒性特性溶出程序,檢出值符合台灣建築中心之綠建材標章標準,且碳酸化可有效去除爐渣之free-CaO與Ca(OH)2,加強其再利用於混合水泥之健度與耐久性。另一方面,將碳酸化爐渣應用於混合水泥之工程材料初探,混合水泥配比為以碳酸化前後之爐渣分別取代10%重量比之水泥。碳酸化爐渣藉沉澱碳酸鈣產生之高比表面積特性,提供水泥水化產物額外之成核點,提升混合水泥水化速率、縮短凝結時間,並提升混合水泥早期之抗壓與抗彎強度發展;此結果亦藉由水化熱與水化產物微觀分析佐證。此外,爐渣經過碳酸化後於混合水泥之抗硫酸鹽侵蝕能力與乾縮行為亦明顯改善。據此,本研究結果顯示爐渣透過碳酸化程序可有效固定二氧化碳,並提升產物應用於混合水泥之潛力,早期強度發展、物理性質、抗硫酸鹽侵蝕能力與乾縮行為較未反應前爐渣優異。
zh_TW
dc.description.abstractThis study explores the feasibility of developing sustainable construction materials via mineral carbonation of steelmaking slag, i.e., basic oxygen furnace slag (BOFS). The carbon fixation capacity of BOFS was quantified by thermo-gravimetric analysis. Various engineering properties and hydration characteristics of blended cement with 10 % of both fresh BOFS and carbonated BOFS by weight as cement replacement was investigated.
The results indicate mineral carbonations accompanied by significant reduction in basicity and fixing 0.202 and 0.221 kg CO2/kg BOFS at 30 oC and 60 oC within the rotating packed bed (RPB) reactor. The reaction kinetics of carbonation experiments could be well expressed by the surface coverage model, with R2 values ranged from 0.97 to 0.98. Cement blended with 10 wt% of carbonated BOFS resulted in reduced setting times and accelerated early strength development, which was consistent with the results of hydration heat and XRD observations. The SEM observations suggest that the carbonated BOFS could serve as nuclei for the precipitation of hydration products, while also accelerating the hydration. In addition, blended cement with 10 % of carbonated BOFS improved sulfate resistance ability and drying shrinkage property compared to 10 % of fresh BOFS at ambient temperature (23oC). The mineralogical composition changes after carbonation have beneficial effects on the hydraulic property in concrete. It was thus concluded that the carbonation of steelmaking slag should be considered as a feasible and attractive process for carbon fixation and waste valorization.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:56:09Z (GMT). No. of bitstreams: 1
ntu-103-R01541112-1.pdf: 3279845 bytes, checksum: f84d12fd5b2b8958856c42db35976662 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContents
中文摘要 II
Abstract III
Contents V
Chapter 1 Introduction 1
1-1 Background 1
1-2 Objectives 5
Chapter 2 Literature Review 6
2-1 Carbon Capture, Utilization and Storage (CCUS) 6
2-1-1 Mineral Carbonation Technology (MCT) 6
2-1-2 Carbonation Process Chemistry 9
2-1-3 Carbonation Reaction Kinetics (Surface Coverage Model) 11
2-1-4 Alkaline Solid Waste 14
2-1-5 Supplementary Cementing Materials (SCMs) 17
2-2 Cement Concepts 19
2-2-1 Production and Composition of Cement 20
2-2-2 Hydration Process of Cement 22
2-2-3 Hydration Heat of Cement 25
2-2-4 Physical Properties of Cement 26
2-2-5 Drying Shrinkage 27
2-2-6 Sulfate Attack 28
Chapter 3 Materials and Methods 30
3-1 Research Flowchart 30
3-2 Materials 31
3-3 Carbonation Experiments for CO2 Fixation 32
3-3-1 Carbonation Methodology 32
3-3-2 CO2 Fixation Capacity Estimation 34
3-4 Laboratory tests for partial cement replacement 35
3-4-1 Test on Pastes 36
3-4-2 Test on Mortars 38
3-5 Material characterization techniques 40
3-5-1 Laser Particle Size Analysis 40
3-5-2 Thermo-gravimetric Analysis (TGA) 40
3-5-3 Scanning Electron Microscope (SEM) Analysis 41
3-5-4 X-ray Powder Diffractometer (XRD) Analysis 41
Chapter 4 Results and Discussion 42
4-1 Characterization of fresh and carbonated BOFS 42
4-1-1 Basic Physicochemical Properties 42
4-1-2 Toxicity characteristic leaching procedure (TCLP) test 45
4-1-3 Thermo-gravimetriv (TGA) Analysis 46
4-1-4 Scanning Electron Microscope (SEM) Analysis 48
4-1-5 X-ray Powder Diffractometer (XRD) Analysis 50
4-2 Effects of Operating Parameters for Carbonation Experiments 52
4-2-1 Reaction Kinetics 52
4-2-2 CO2 Fixation Capacity 56
4-3 Utilization of BOFS in blended cement 57
4-3-1 Physical Properties 57
4-3-2 Hydration Heat 59
4-3-3 Mechanical Strength Development 61
4-3-4 Drying Shrinkage 63
4-3-5 Sulfate Attack 64
4-3-6 Microstructure Characterization of Hydration Products 66
Chapter 5 Conclusions and Recommendations 69
5-1 Conclusions 69
5-2 Recommendations 70
Reference 71










List of Figures
Figure 1-1 BOFslag produced from steelmaking process 3
Figure 1-2 Classification and application of BOF slag under different cooling process 4
Figure 2-1 MCT process routes (Olajire, 2013) 7
Figure 2-2 Material fluxes associated with ex-situ MCT of silicate rocks and industrial residues (Bobicki et al., 2012) 8
Figure 2-3 Process concept for (a) Direct and (b) Indirect carbonation (Note: M refers to either calcium (Ca) or magnesium (Mg)) (Bobicki et al., 2012) 9
Figure 2-4 Schematic diagram of carbonation mechanism of BOFS based on the assumptions of surface coverage model (Pan et al., 2014) 13
Figure 2-5 Flow diagram of dry process for Portland cement manufacture (Mehta and Monteiro, 2006) 21
Figure 2-6 Simple illustration of the cement hydration process 22
Figure 2-7 Schematic of the rate of heat evolution during the hydration process of cement (Kocaba, 2009) 25
Figure 2-8 The effect of fineness of cement on the compressive strength of concrete (Gambhir, 2013) 27
Figure 3-1 Research flowchart in this investigation 30
Figure 3-2 SEM images of (a) virgin and (b) ground BOFS. 31
Figure 3-3 Schematic diagram of experimental setup for carbonation in RPB 32
Figure 3-4 Pictures of normal consistency and setting time test: (a)Vicat apparatus, (b) mixer, (c) moist room. 37
Figure 3-5 Pictures of autoclave soundness test: (a) specimen molds, (b) autoclave, (c) length comparator. 37
Figure 3-6 Isothermal calorimetry (I-Cal 2000 HPC, Calmetrix) 37
Figure 3-7 Pictures of compressive strength test: (a) specimen molds, (b) testing machine (Computer-Control Servo Hydraulic Concrete Compression Testing Machine, HT-8391PC, 300 Tons). 39
Figure 3-8 Pictures of flexural strength test: (a) specimen molds, (b) testing machine (Material Test System, 5 Tons), (c) flexure testing device 39
Figure 3-9 Pictures of drying shrinkage test: (a) specimens and container, (b) dry room, (c) length comparator (digital). 39
Figure 3-10 Laser particle size analyzer (CILAS 1090) 40
Figure 3-11 SEM Equipment (a) FE-SEM(S4700, Hitachi) (b) auto fine coater (JEOL JFC-1600 ) 41
Figure 3-12 X-Ray Diffractometer (XRD, D8-Advance) 41
Figure 4-1 Particle size distribution of OPC, fresh BOFS and carbonated BOFS (carbonation conversion=0.6). 44
Figure 4-2 TG-DTG-MS curves of fresh BOFS 47
Figure 4-3 TG-DTG-MS curves of carbonated BOFS (operating conditions: QG=3 L/min, QL=1.5 L/min, rotation speed=1000 rpm, 30oC, carbonation conversion=60%). 47
Figure 4-4 SEM-EDS images of fresh BOFS 49
Figure 4-5 SEM-EDS images of carbonated BOFS (operating conditions: QG=3 L/min, QL=1.5 L/min, rotation speed=1000 rpm, 30oC, carbonation conversion=60%). 49
Figure 4-6 XRD patterns of fresh and carbonated BOFS (carbonation conversion=0.6) 51
Figure 4-7 Model fitting result of carbonation experiments under different operating codition 54
Figure 4-8 Comparison of predicted carbonation conversion of BOFS by surface covererage model with experimental conversion of BOFS 55
Figure 4-9 Effects of operating conditions on CO2 uptake and pH 56
Figure 4-10 Heat of hydration of tested pastes: heat evolution 60
Figure 4-11 Heat of hydration of tested pastes: total heat evolved 60
Figure 4-12 Drying shrinkage of tested mortar under air curing condition 63
Figure 4-13 Sulfate expansion of tested mortar immersed in 5% Na2SO4 65
Figure 4-14 Comparison of XRD patterns of CBOF10 pastes at different stages of hydration 66
Figure 4-15 Comparison of XRD patterns of tested pastes at 28 days 67
Figure 4-16 SEM morphologies of the hydration products of (a) BOF10 mortar and (b) CBOF10 mortar at the age of 28 days 68






List of Tables
Table 2-1 Summary of waste products for mineral carbonation. (Bobicki et al., 2012) 15
Table 2-2 Summary of supplementary cementing material (IEA, 2009) 18
Volcanoes, some sedimentary rocks, other industries 18
Table 2-3 Composition of PC with chemical composition and weight percent 21
Table 2-4 The principal hydration stages of Portland cement (Bensted and Barnes, 2002) 23
Table 2-5 Causes of concrete deterioration (Mindess et al., 2003; Thomas, 2013) 28
Table 3-1 Summary of characteristics of the RPB reactor and operating conditions for carbonation experiment used in this study 33
Table 3-2 Mixture proportion of cementitious material for specimens 35
Table 3-3 Summary of laboratory test for partial cement replacement 35
Table 4-1. Basic physicochemical properties of OPC and BOF slag used 43
Table 4-2 TCLP results of BOFS and the limits for each of regulated elements 45
Table 4-3 Comparison of predicted carbonation conversion of BOFS by surface covererage model with experimental conversion of BOFS. 54
Table 4-4 Variation of k and r square values with operating conditions for surface coverage model. 55
Table 4-5 Physical properties of tested pastes 58
Table 4-6 Flow and mechanical strengths of tested mortars 62
dc.language.isoen
dc.title以碳酸化煉鋼爐渣進行固碳及其再利用於混合水泥zh_TW
dc.titleCarbonation of Steel-making Slag for CO2 Fixation and Utilization in Blended Cementen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee顧洋(Ku Young),張怡怡(E-E Chang),陳奕宏(Yi-Hung Chen),林逸彬(Yi-Pin Lin)
dc.subject.keyword碳酸化,混合水泥,煉鋼爐渣,碳酸鈣,表面縮核模式,成核點,zh_TW
dc.subject.keywordcarbonation,blended cement,steelmaking slag,calcium carbonate,surface coverage model,nucleation site,en
dc.relation.page79
dc.rights.note未授權
dc.date.accepted2015-02-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
3.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved