Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18226
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊雅倩
dc.contributor.authorShao-Yu Chiangen
dc.contributor.author江紹瑜zh_TW
dc.date.accessioned2021-06-08T00:55:36Z-
dc.date.copyright2015-03-12
dc.date.issued2015
dc.date.submitted2015-02-13
dc.identifier.citation1. Jass JR, Stewart SM. Evolution of hereditary non-polyposis colorectal cancer. Gut. Jun 1992;33(6):783-786.
2. Gryfe R. Inherited colorectal cancer syndromes. Clinics in colon and rectal surgery. Nov 2009;22(4):198-208.
3. Kitisin K, Mishra L. Molecular biology of colorectal cancer: new targets. Seminars in oncology. Dec 2006;33(6 Suppl 11):S14-23.
4. Bodmer WF. Cancer genetics: colorectal cancer as a model. Journal of human genetics. 2006;51(5):391-396.
5. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clinics in colon and rectal surgery. Nov 2009;22(4):191-197.
6. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. Jun 1 1990;61(5):759-767.
7. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. Jun 2010;138(6):2059-2072.
8. Soreide K. [Genetics and molecular classification of colorectal cancer]. Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke. Nov 1 2007;127(21):2818-2823.
9. Kolodner RD, Tytell JD, Schmeits JL, et al. Germ-line msh6 mutations in colorectal cancer families. Cancer research. Oct 15 1999;59(20):5068-5074.
10. Nakagawa H, Lockman JC, Frankel WL, et al. Mismatch repair gene PMS2: disease-causing germline mutations are frequent in patients whose tumors stain negative for PMS2 protein, but paralogous genes obscure mutation detection and interpretation. Cancer research. Jul 15 2004;64(14):4721-4727.
11. Manavis J, Gilham P, Davies R, Ruszkiewicz A. The immunohistochemical detection of mismatch repair gene proteins (MLH1, MSH2, MSH6, and PMS2): practical aspects in antigen retrieval and biotin blocking protocols. Applied immunohistochemistry & molecular morphology : AIMM / official publication of the Society for Applied Immunohistochemistry. Mar 2003;11(1):73-77.
12. Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D. Genetic prognostic and predictive markers in colorectal cancer. Nature reviews. Cancer. Jul 2009;9(7):489-499.
13. Kim MS, Lee J, Sidransky D. DNA methylation markers in colorectal cancer. Cancer metastasis reviews. Mar 2010;29(1):181-206.
14. Dahlin AM, Palmqvist R, Henriksson ML, et al. The role of the CpG island methylator phenotype in colorectal cancer prognosis depends on microsatellite instability screening status. Clinical cancer research : an official journal of the American Association for Cancer Research. Mar 15 2010;16(6):1845-1855.
15. Zlobec I, Bihl MP, Foerster A, Rufle A, Lugli A. The impact of CpG island methylator phenotype and microsatellite instability on tumour budding in colorectal cancer. Histopathology. Nov 2012;61(5):777-787.
16. Falk J, Bonnon C, Girault JA, Faivre-Sarrailh C. F3/contactin, a neuronal cell adhesion molecule implicated in axogenesis and myelination. Biology of the cell / under the auspices of the European Cell Biology Organization. Oct 2002;94(6):327-334.
17. Ranscht B, Moss DJ, Thomas C. A neuronal surface glycoprotein associated with the cytoskeleton. The Journal of cell biology. Nov 1984;99(5):1803-1813.
18. Ranscht B. Sequence of contactin, a 130-kD glycoprotein concentrated in areas of interneuronal contact, defines a new member of the immunoglobulin supergene family in the nervous system. The Journal of cell biology. Oct 1988;107(4):1561-1573.
19. Brummendorf T, Wolff JM, Frank R, Rathjen FG. Neural cell recognition molecule F11: homology with fibronectin type III and immunoglobulin type C domains. Neuron. Apr 1989;2(4):1351-1361.
20. Gennarini G, Cibelli G, Rougon G, Mattei MG, Goridis C. The mouse neuronal cell surface protein F3: a phosphatidylinositol-anchored member of the immunoglobulin superfamily related to chicken contactin. The Journal of cell biology. Aug 1989;109(2):775-788.
21. Berglund E, Stigbrand T, Carlsson SR. Isolation and characterization of a membrane glycoprotein from human brain with sequence similarities to cell adhesion proteins from chicken and mouse. European journal of biochemistry / FEBS. Apr 23 1991;197(2):549-554.
22. Berglund EO, Ranscht B. Molecular cloning and in situ localization of the human contactin gene (CNTN1) on chromosome 12q11-q12. Genomics. Jun 1994;21(3):571-582.
23. Kamei Y, Takeda Y, Teramoto K, Tsutsumi O, Taketani Y, Watanabe K. Human NB-2 of the contactin subgroup molecules: chromosomal localization of the gene (CNTN5) and distinct expression pattern from other subgroup members. Genomics. Oct 1 2000;69(1):113-119.
24. Yoshihara Y, Kawasaki M, Tamada A, Nagata S, Kagamiyama H, Mori K. Overlapping and differential expression of BIG-2, BIG-1, TAG-1, and F3: four members of an axon-associated cell adhesion molecule subgroup of the immunoglobulin superfamily. Journal of neurobiology. Sep 1995;28(1):51-69.
25. Mimmack ML, Saito H, Evans G, Bresler M, Keverne EB, Emson PC. A novel splice variant of the cell adhesion molecule BIG-2 is expressed in the olfactory and vomeronasal neuroepithelia. Brain research. Molecular brain research. Jul 1997;47(1-2):345-350.
26. Zeng L, Zhang C, Xu J, et al. A novel splice variant of the cell adhesion molecule contactin 4 ( CNTN4) is mainly expressed in human brain. Journal of human genetics. 2002;47(9):497-499.
27. Mayor S, Riezman H. Sorting GPI-anchored proteins. Nature reviews. Molecular cell biology. Feb 2004;5(2):110-120.
28. Kaneko-Goto T, Yoshihara S, Miyazaki H, Yoshihara Y. BIG-2 mediates olfactory axon convergence to target glomeruli. Neuron. Mar 27 2008;57(6):834-846.
29. Fernandez T, Morgan T, Davis N, et al. Disruption of Contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. American journal of human genetics. Jun 2008;82(6):1385.
30. Zuko A, Kleijer KT, Oguro-Ando A, et al. Contactins in the neurobiology of autism. European journal of pharmacology. Nov 5 2013;719(1-3):63-74.
31. Tanaka E, Maruyama H, Morino H, Nakajima E, Kawakami H. The CNTN4 c.4256C>T mutation is rare in Japanese with inherited spinocerebellar ataxia. Journal of the neurological sciences. Mar 15 2008;266(1-2):180-181.
32. Peles E, Nativ M, Campbell PL, et al. The carbonic anhydrase domain of receptor tyrosine phosphatase beta is a functional ligand for the axonal cell recognition molecule contactin. Cell. Jul 28 1995;82(2):251-260.
33. Bouyain S, Watkins DJ. The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules. Proceedings of the National Academy of Sciences of the United States of America. Feb 9 2010;107(6):2443-2448.
34. Barnea G, Silvennoinen O, Shaanan B, et al. Identification of a carbonic anhydrase-like domain in the extracellular region of RPTP gamma defines a new subfamily of receptor tyrosine phosphatases. Mol Cell Biol. Mar 1993;13(3):1497-1506.
35. Mercati O, Danckaert A, Andre-Leroux G, et al. Contactin 4, -5 and -6 differentially regulate neuritogenesis while they display identical PTPRG binding sites. Biology open. Mar 15 2013;2(3):324-334.
36. Ostman A, Hellberg C, Bohmer FD. Protein-tyrosine phosphatases and cancer. Nature reviews. Cancer. Apr 2006;6(4):307-320.
37. Rice HC, Young-Pearse TL, Selkoe DJ. Systematic evaluation of candidate ligands regulating ectodomain shedding of amyloid precursor protein. Biochemistry. May 14 2013;52(19):3264-3277.
38. Osterfield M, Egelund R, Young LM, Flanagan JG. Interaction of amyloid precursor protein with contactins and NgCAM in the retinotectal system. Development. Mar 2008;135(6):1189-1199.
39. Hansford LM, Smith SA, Haber M, Norris MD, Cheung B, Marshall GM. Cloning and characterization of the human neural cell adhesion molecule, CNTN4 (alias BIG-2). Cytogenetic and genome research. 2003;101(1):17-23.
40. Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. Oct 13 2006;314(5797):268-274.
41. Ashktorab H, Schaffer AA, Daremipouran M, Smoot DT, Lee E, Brim H. Distinct genetic alterations in colorectal cancer. PloS one. 2010;5(1):e8879.
42. Masson AL, Talseth-Palmer BA, Evans TJ, et al. Copy number variation in hereditary non-polyposis colorectal cancer. Genes. 2013;4(4):536-555.
43. Tsai MH, Fang WH, Lin SH, et al. Mapping of genetic deletions on chromosome 3 in colorectal cancer: loss of 3p25-pter is associated with distant metastasis and poor survival. Annals of surgical oncology. Sep 2011;18(9):2662-2670.
44. Xiao J, Lee ST, Xiao Y, et al. PTPRG inhibition by DNA methylation and cooperation with RAS gene activation in childhood acute lymphoblastic leukemia. International journal of cancer. Journal international du cancer. Sep 1 2014;135(5):1101-1109.
45. Linhares ND, Freire MC, Cardenas RG, et al. Modulation of expressivity in PDGFRB-related infantile myofibromatosis: a role for PTPRG? Genetics and molecular research : GMR. 2014;13(3):6287-6292.
46. Shu ST, Sugimoto Y, Liu S, et al. Function and regulatory mechanisms of the candidate tumor suppressor receptor protein tyrosine phosphatase gamma (PTPRG) in breast cancer cells. Anticancer research. Jun 2010;30(6):1937-1946.
47. Su JL, Yang CY, Shih JY, et al. Knockdown of contactin-1 expression suppresses invasion and metastasis of lung adenocarcinoma. Cancer research. Mar 1 2006;66(5):2553-2561.
48. Yan J, Wong N, Hung C, Chen WX, Tang D. Contactin-1 reduces E-cadherin expression via activating AKT in lung cancer. PloS one. 2013;8(5):e65463.
49. Wu HM, Cao W, Ye D, Ren GX, Wu YN, Guo W. Contactin 1 (CNTN1) expression associates with regional lymph node metastasis and is a novel predictor of prognosis in patients with oral squamous cell carcinoma. Molecular medicine reports. Aug 2012;6(2):265-270.
50. Yu JW, Wu SH, Lu RQ, et al. Expression and significances of contactin-1 in human gastric cancer. Gastroenterology research and practice. 2013;2013:210205.
51. Liu P, Chen S, Wu W, et al. Contactin-1 (CNTN-1) overexpression is correlated with advanced clinical stage and lymph node metastasis in oesophageal squamous cell carcinomas. Japanese journal of clinical oncology. Jul 2012;42(7):612-618.
52. Lamprianou S, Chatzopoulou E, Thomas JL, Bouyain S, Harroch S. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells. Proceedings of the National Academy of Sciences of the United States of America. Oct 18 2011;108(42):17498-17503.
53. Labbe DP, Hardy S, Tremblay ML. Protein tyrosine phosphatases in cancer: friends and foes! Progress in molecular biology and translational science. 2012;106:253-306.
54. Bourgonje AM, Navis AC, Schepens JT, et al. Intracellular and extracellular domains of protein tyrosine phosphatase PTPRZ-B differentially regulate glioma cell growth and motility. Oncotarget. Sep 30 2014;5(18):8690-8702.
55. Kastury K, Ohta M, Lasota J, et al. Structure of the human receptor tyrosine phosphatase gamma gene (PTPRG) and relation to the familial RCC t(3;8) chromosome translocation. Genomics. Mar 1 1996;32(2):225-235.
56. Cheung AK, Lung HL, Hung SC, et al. Functional analysis of a cell cycle-associated, tumor-suppressive gene, protein tyrosine phosphatase receptor type G, in nasopharyngeal carcinoma. Cancer research. Oct 1 2008;68(19):8137-8145.
57. van Roon EH, de Miranda NF, van Nieuwenhuizen MP, et al. Tumour-specific methylation of PTPRG intron 1 locus in sporadic and Lynch syndrome colorectal cancer. European journal of human genetics : EJHG. Mar 2011;19(3):307-312.
58. Galvan A, Colombo F, Frullanti E, et al. Germline polymorphisms and survival of lung adenocarcinoma patients: A genome-wide study in two European patient series. International journal of cancer. Journal international du cancer. Sep 6 2014.
59. van Doorn R, Zoutman WH, Dijkman R, et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. Jun 10 2005;23(17):3886-3896.
60. Zhang W, Savelieva KV, Tran DT, et al. Characterization of PTPRG in knockdown and phosphatase-inactive mutant mice and substrate trapping analysis of PTPRG in mammalian cells. PloS one. 2012;7(9):e45500.
61. Bouyain S, Watkins DJ. Identification of tyrosine phosphatase ligands for contactin cell adhesion molecules. Communicative & integrative biology. May 2010;3(3):284-286.
62. Hashemi H, Hurley M, Gibson A, et al. Receptor tyrosine phosphatase PTPgamma is a regulator of spinal cord neurogenesis. Molecular and cellular neurosciences. Feb 2011;46(2):469-482.
63. Venkataramani V, Rossner C, Iffland L, et al. Histone deacetylase inhibitor valproic acid inhibits cancer cell proliferation via down-regulation of the alzheimer amyloid precursor protein. The Journal of biological chemistry. Apr 2 2010;285(14):10678-10689.
64. Lim S, Yoo BK, Kim HS, et al. Amyloid-β precursor protein promotes cell proliferation and motility of advanced breast cancer. BMC cancer. 2014;14(1).
65. Willnow TE, Petersen CM, Nykjaer A. VPS10P-domain receptors [mdash] regulators of neuronal viability and function. Nat Rev Neurosci. 12//print 2008;9(12):899-909.
66. Zhou F, Gong K, Song B, et al. The APP intracellular domain (AICD) inhibits Wnt signalling and promotes neurite outgrowth. Biochimica et biophysica acta. Aug 2012;1823(8):1233-1241.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18226-
dc.description.abstract目前大腸直腸癌於全世界及臺灣皆是癌症死亡常見原因之一,大多數大腸直腸癌的發生為偶發性且多步驟染色體變異累積發展而成。於實驗室先前研究,利用179對大腸直腸癌腫瘤組織進行第3號染色體的刪除圖譜分析,定義出介於3p25.3-p26.3的最小刪除區域 (minimal deletion region, MDR)。接續以MDR內9個基因的RNA表現量進行篩選,發現細胞貼附分子Contactin 4 (CNTN4) 表現量在部分大腸直腸癌細胞株 (11/12, 91.6%) 及腫瘤檢體 (22/52, 42.3%) 都有顯著下降,顯示CNTN4可能為一個新的大腸直腸癌相關抑癌基因。本論文首先建構CNTN4表現質體 (pLAS3w-CNTN4) 並於大腸直腸癌細胞株HCT116挑選恢復表現CNTN4的單一穩定表現細胞株 ,隨後進行體外細胞實驗及活體動物實驗鑑定CNTN4的抑癌功能。結果顯示:於HCT116細胞表現CNTN4可以抑制細胞增生、固著依賴性及非固著依賴性胞落形成的能力,且會增加細胞自發性細胞凋亡,但是CNTN4的表現對於細胞的移動能力和侵襲性沒有一致性的影響。同時,在活體動物實驗則發現表現CNTN4可以減緩裸鼠皮下腫瘤的生成。初步探討CNTN4參與的訊息傳遞路徑,發現CNTN4會降低ERK1/2的磷酸化程度。綜合以上結果,推測CNTN4在大腸直腸癌的生成和發展具有抑癌的角色。另外,為了探討除了基因刪除外是否有其他機制造成CNTN4在大腸直腸癌表現量下降,將5株無CNTN4表現之大腸直腸癌細胞株以DNA去甲基化藥物5aza-CdR處理,發現DNA去甲基化無法使其CNTN4 mRNA恢復表現,因此推測DNA甲基化可能不是造成CNTN4於大腸直腸癌表現下降的主要機制之一。zh_TW
dc.description.abstractColorectal cancer (CRC) is one of the most common causes of cancer death in the world and Taiwan. Most of CRC arise sporadically by the emergence of multiple chromosomal aberrations. In our previous study, a minimal deletion region (MDR) was delineated at 3p25.3-p26.3 by fine deletion mapping of chromosome 3 with 179 pairs of primary CRC tissues. By detecting the RNA transcripts of 9 genes in the MDR, the gene expression of Contactin 4 (CNTN4), a cell adhesion molecule, was remarkably down-regulated in 11 (91.6%) of 12 CRC cell lines and 22 (42.3%) of 52 primary tumors. The findings suggest that CNTN4 might be a novel CRC-associated tumor suppressor gene. In the present study, CNTN4-expression plasmid, pLAS3w-CNTN4, was constructed and then the single stable clones of CNTN4 re-expression in CRC cells, HCT116, were selected. Tumor suppressor activities of CNTN4 were identified by in vitro cell models and in vivo xenograft tumor mouse model. Ectopic expression of CNTN4 in HCT116 reduced cell proliferation, anchorage-dependent and anchorage-independent colony formation in vitro. CNTN4 expression also increased spontaneous apoptosis of HCT116 cells. However, ectopic expression of CNTN4 did not consistently affect the migration and invasion ability of HCT116 cells. Furthermore, we found that CNTN4 re-expression could suppress the tumorigenesis of subcutaneous xenograft in nude mice. The preliminary study of CNTN4 involved signaling pathway showed that CNTN4 could decrease the phosphorylated ERK1/2 in HCT116 cells. Taken together, the results support a role of CNTN4 as a novel tumor suppressor in colorectal tumorigenesis and progression. On the other hand, to identify other mechanisms of CNTN4 down-regulation expect genetic deletion in colorectal cancer, five colorectal cancer cell lines without CNTN4 expression were treated with DNA-demethylation agent, 5-aza-CdR. However, CNTN4 expression could not be restored after DNA demethylation. The result indicated that DNA type methylation might not the major mechanism of CNTN4 down-regulation in colorectal cancer.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:55:36Z (GMT). No. of bitstreams: 1
ntu-104-R01424033-1.pdf: 2692991 bytes, checksum: 44b424fb6905bbc7ed571af70e12af6a (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
英文摘要 iv
縮寫對照表 vi
圖目錄 xi
表目錄 xii
一、研究背景 1
1. 大腸直腸癌 1
1.1 大腸直腸癌簡介 1
1.2 大腸直腸癌生成機制 2
2. Contactin 4 (CNTN4) 3
2.1 Contactin 家族簡介 3
2.2. Contactin 4 簡介 4
2.3 CNTN4 與結合蛋白 6
2.4 CNTN4 與癌症相關研究 7
3. 實驗室先前相關研究 8
二、研究目標 10
三、材料與方法 11
1. 試劑、材料及抗體 11
2. 細胞培養 11
3. 選殖基因CNTN4 11
4. 穩定表現CNTN4細胞株篩選 12
5. 蛋白質的抽取及定量 13
6. 西方點墨法 13
7. shCNTN4 knockdown 14
8. CNTN4條件培養液製備 14
9. 細胞增生分析 14
10. 非固著依賴性胞落形成試驗 15
11. 固著依賴性胞落形成試驗 15
12. 細胞傷口癒合試驗 15
13. 基底膜基質侵犯能力試驗 16
14. 細胞凋亡分析 16
15. 異種移植腫瘤之小鼠模式 17
16. DNA去甲基化藥物5-Aza-2’-deoxycytidine處理大腸直腸癌細胞 17
17. CNTN4 半定量聚合酶連鎖反應 18
18. 統計方法 18
四、研究結果 19
1. CNTN4於大腸直腸癌細胞株及大腸直腸癌檢體之蛋白質表現量 19
2. 選殖基因CNTN4及挑選穩定表現CNTN4細胞株 19
3. CNTN4 使HCT116 細胞之增生能力下降 20
5. CNTN4 抑制HCT116 細胞之貼附依賴性胞落形成能力 21
6. CNTN4 抑制HCT116 細胞之非貼附依賴性胞落形成能力 22
7. CNTN4 表現對於HCT116 細胞之移動能力沒有一致性的影響 22
8. CNTN4 表現對於HCT116 細胞之侵襲能力沒有一致性的影響 22
9. CNTN4 增加HCT116 細胞之自發性細胞凋亡 23
10. CNTN4減緩HCT116 細胞於裸鼠皮下之腫瘤生成 23
11. CNTN4表現降低ERK 的磷酸化程度 24
12. DNA甲基化並非調控CNTN4表現量的機制之一 24
五、討論 25
圖 33
表 51
參考文獻 54
附錄 60
dc.language.isozh-TW
dc.titleContactin 4 於大腸直腸癌抑癌功能之研究zh_TW
dc.titleStudy of Tumor Suppressor Functions of Contactin 4 in Colorectal Canceren
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林亮音,蘇剛毅,蔡明宏
dc.subject.keyword大腸直腸癌,抑癌基因,Contactin 4,zh_TW
dc.subject.keywordColorectal cancer,Tumor suppressor gene,Contactin 4,en
dc.relation.page71
dc.rights.note未授權
dc.date.accepted2015-02-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved