請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18222完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 繆希椿(Shi-Chuen Miaw) | |
| dc.contributor.author | Po-Yen Li | en |
| dc.contributor.author | 李柏諺 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:55:26Z | - |
| dc.date.copyright | 2015-03-12 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-02-13 | |
| dc.identifier.citation | Aziz, A., Soucie, E., Sarrazin, S., and Sieweke, M.H. (2009). MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages. Science. 326, 867-871.
Cao, S., Liu, J., Song, L., and Ma, X. (2005). The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J Immunol, 174(6), 3484-3492. Dhiman, R., Bandaru, A., Barnes, P.F., Saha, S., Tvinnereim, A., Nayak, R.C., Paidipally, P., Valluri, V.L., Rao, L.V., and Vankayalapati, R. (2011). c-Maf-dependent growth of Mycobacterium tuberculosis in a CD14(hi) subpopulation of monocyte-derived macrophages. Journal of immunology, 186, 1638-1645. Eychene, A., Rocques, N., and Pouponnot, C. (2008). A new MAFia in cancer. Nat Rev Cancer, 8(9), 683-693. Furuhashi M. and Hotamisligil G. S. (2008). Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7(6), 489-503. Garin-Shkolnik, T., Rudich, A., Hotamisligil, G. S., and Rubinstein M. (2014). FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. Diabetes 63, 900–911. Gosmain, Y., Avril, I., Mamin, A., and Philippe, J. (2007). Pax-6 and c-Maf functionally interact with the alpha-cell-specific DNA element G1 in vivo to promote glucagon gene expression. J Biol Chem, 282(48), 35024-35034. Hale, T. K., Myers, C., Maitra, R., Kolzau, T., Nishizawa, M., and Braithwaite, A. W. (2000). Maf transcriptionally activates the mouse p53 promoter and causes a p53-dependent cell death. J Biol Chem, 275(24), 17991-17999. Hegde, S.P., Zhao, J., Ashmun, R.A., and Shapiro, L.H. (1999). c-Maf induces monocytic differentiation and apoptosis in bipotent myeloid progenitors. Blood 94, 1578-1589. Ho, I. C., Hodge, M. R., Rooney, J. W., & Glimcher, L. H. (1996). The proto-oncogene c-Maf is responsible for tissue-specific expression of interleukin-4. Cell 85(7), 973-983. Homma, Y., Cao, S., Shi, X., and Ma, X. (2007). The Th2 transcription factor c-Maf inhibits IL-12p35 gene expression in activated macrophages by targeting NF-kappaB nuclear translocation. J Interferon Cytokine Res 27(9), 799-808. Hurt, E. M., Wiestner, A., Rosenwald, A., Shaffer, A. L., Campo, E., Grogan, T., and Staudt, L. M. (2004). Overexpression of c-Maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell, 5(2), 191-199. Igarashi, K., and Sun, J. (2006). The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signaling 8, 107-118. Imaki, J., Tsuchiya, K., Mishima, T., Onodera, H., Kim, J. I., Yoshida, K., Ikeda, H., & Sakai, M. (2004). Developmental contribution of c-maf in the kidney: distribution and developmental study of c-maf mRNA in normal mice kidney and histological study of c-maf knockout mice kidney and liver. Biochem Biophys Res 330(4), 1323-1327. Jamieson, R.V., Perveen, R., Kerr, B., Carette, M., Yardley, J., Heon, E., Wirth, M. G., van Heyningen, V., Donnai, D., Munier, F., and Black, G. C. M. (2002). Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Human molecular genetics, 11(1), 33-42. Kataoka, K., Nishizawa, M., and S. Kawai. (1993). Structure-function analysis of the maf oncogene product, a member of the bZip family. J Virol, 67(4), 2133-2141. Kataoka, K., Noda, M., and Nishizawa, M. (1994). Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Mol Cell Biol, 14(1), 700-712. Kataoka, K. (2007). Multiple mechanisms and functions of maf transcription factors in the regulation of tissue-specific genes. J Biochem 141(6), 775-781. Kawauchi, S., Takahashi, S., Nakajima, O., Ogino, H., Morita, M., Nishizawa, M., Yasuda, K., and Yamamoto, M. (1999). Regulation of lens fiber cell differentiation by transcription factor c-Maf. J Biol Chem, 274(27), 19254-19260. Kawai, S., Goto, N., Kataoka, K., Saegusa, T., Shinno-Kohno, H. and Nishizawa, M. (1992). Isolation of the avian transforming retrovirus, AS42, carrying the v-maf oncogene and initial characterization of its gene product. Virology, 188, 778–784. Kim, J. I., Li, T. S., Ho, I. C., Grusby, M. J. and Glimcher, L. H. (1999). Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proc Natl Acad Sci USA, 96(7), 3781-3785. Kurschner, C. and Morgan, J. I. (1995). The maf proto-oncogene stimulates transcription from multiple sites in a promoter that directs Purkinje neuron-specific gene expression. Mol Cell Biol, 15(1), 246-254. Kusakabe, M., Hasegawa, K., Hamada, M., Nakamura, M., Ohsumi, T., Suzuki, H., Tran, M.T., Kudo, T., Uchida, K. and Ninomiya, H. (2011). c-Maf plays a crucial role for the definitive erythropoiesis that accompanies erythroblastic island formation in the fetal liver. Blood 118, 1374-1385. Lai, C-Y., Lin, S-Y., Wu. C-K., Yeh, L-T., Sytwu, H-K. and Miaw, S-C. (2012). Tyrosine Phosphorylation of c-Maf Enhances the Expression of IL-4 Gene. The Journal of Immunology, 189 (4), 1545-1550 Lin, B-S., Tsai, P-Y., Hsieh, W-Y., Tsao, H-W., Liu, M-W., Grenningloh, R., Wang, L-F., Ho, I-C., Miaw, S-C. (2010). SUMOylation attenuates c-Maf-dependent IL-4 expression. Eur J Immunol, 40 (4), 1174-84. Liu Q. Y., Nambi P. (2004). Sirolimus upregulates aP2 expression in human monocytes and macrophages. Transplant Proc, 36, 3229-3231. MacLean, H. E., Kim, J. I., Glimcher, M. J., Wang, J., Kronenberg, H. M., and Glimcher, L. H. (2003). Absence of transcription factor c-Maf causes abnormal terminal differentiation of hypertrophic chondrocytes during endochondral bone development. Dev Biol, 262(1), 51-63. Mahoney, K. M., Petrovic, N., Schacke, W., and Shapiro, L. H. (2007). CD13/APN transcription is regulated by the proto-oncogene c-Maf via an atypical response element. Gene, 403(1-2), 178-187. Makowski, L., Hotamisligil, G. S. (2004). Fatty Acid Binding Proteins—The Evolutionary Crossroads of Inflammatory and Metabolic Responses. J Nutr, 134(9), 2464S–2468S. Makowski, L., Brittingham , K. C., Reynolds , J. M., Suttles , J., Hotamisligil , G.S. (2005). The fatty acid-binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity. Macrophage expression of aP2 impacts peroxisome proliferator-activated receptor gamma and IkappaB kinase activities. J Biol Chem, 280(13), 12888–12895. Monteiro, P., Gilot, D., Le Ferrec, E., Lecureur, V., N'Diaye, M., Le Vee, M., Podechard, N., Pouponnot, C., and Fardel, O. (2007). AhR- and c-maf-dependent induction of beta7-integrin expression in human macrophages in response to environmental polycyclic aromatic hydrocarbons. Biochemical and biophysical research communications, 358, 442-448. Motohashi, H., O'Connor, T., Katsuoka, F., Engel, J.D., and Yamamoto, M. (2002). Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294, 1-12. Nakamura, M., Hamada, M., Hasegawa, K., Kusakabe, M., Suzuki, H., Greaves, D. R., Moriguchi, T., Kudo, T., and Takahashi, S. (2009). c-Maf is essential for the F4/80 expression in macrophages in vivo. Gene, 445(1-2), 66-72. Herath, N. I, Rocques, N., Garancher, A., Eychene, A., Pouponnot, C. (2014) GSK3-mediated MAF phosphorylation in multiple myeloma as a potential therapeutic target. Blood Cancer J., 4(1), e175. Nishizawa, M., Kataoka, K., Goto, N., Fujiwara, K. T. and Kawai, S. (1989). v-maf, a viral oncogene that encodes a “leucine zipper” motif. Proc. Natl Acad. Sci. USA, 86, 7711–7715. Odegaard, J. I., Ganeshan, K., Chawla, A. (2013). Adipose Tissue Macrophages: Amicus adipem? Cell Metabolism, 18 (6), 767-768 Ogawa, K., Funaba, M., Chen, Y., and Tsujimoto, M. (2006). Activin A functions as a Th2 cytokine in the promotion of the alternative activation of macrophages. J Immunol, 177(10), 6787-6794. Peng, S., Wu, H., Mo, Y. Y., Watabe, K., and Pauza, M. E. (2009). c-Maf increases apoptosis in peripheral CD8 cells by transactivating Caspase 6. Immunology, 127(2), 267-278. Pot, C., Apetoh, L., and Kuchroo, V.K. (2011). Type 1 regulatory T cells (Tr1) in autoimmunity. Seminars in immunology, 23, 202-208. Rocques, N., N. Abou Zeid, K. Sii-Felice, L. Lecoin, M. P. Felder-Schmittbuhl, A. Eychene, C. Pouponnot. (2007). GSK-3-mediated phosphorylation enhances Maf-transforming activity. Mol. Cel , 28, 584–597. Rossi, A., Kapahi, P., Natoli, G., Takahashi, T., Chen, Y., Karin, M., Santoro, M. G. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature. 2000, 403, 103–108. Rutz, S., Noubade, R., Eidenschenk, C., Ota, N., Zeng, W., Zheng, Y., Hackney,J., Ding, J., Singh, H. and Ouyang, W. (2011). Transcription factor c-Maf mediates the TGF-β-dependent suppression of IL-22 production in TH17 cells. Nat Immunology, 12, 1238–1245. Sakai, M., Imaki, J., Yoshida, K., Ogata, A., Matsushima-Hibaya, Y., Kuboki, Y., Nishizawa, M., and Nishi, S. (1997). Rat maf related genes: specific expression in chondrocytes, lens and spinal cord. Oncogene, 14(6), 745-750. Schneider, C., Nobs, S.P., Kurrer, M., Rehrauer, H., Thiele, C. and Kopf, M. (2014). Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat Immunol, 15, 1026-1037. Sun, J., Muto, A., Hoshino, H., Kobayashi, A., Nishimura, S., Yamamoto, M., Hayashi, N., Ito, E., and Igarashi, K. (2001). The promoter of mouse transcription repressor bach1 is regulated by Sp1 and trans-activated by Bach1. J Biochem 130, 385-392. Vinson, C., Acharya, A., and Taparowsky, E. J. (2006). Deciphering B-ZIP transcription factor interactions in vitro and in vivo. Biochim Biophys Acta, 1759(1-2), 4-12. Yang, Y., and Cvekl, A. (2007). Large Maf Transcription Factors: Cousins of AP-1 Proteins and Important Regulators of Cellular Differentiation. Einstein J Biol Med, 23(1), 2-11. Yoshida, T., Ohkumo, T., Ishibashi, S. and Yasuda, K. (2005). The 5’-AT-rich half-site of Maf recognition element: a functional target for bZIP transcription factor Maf. Nucleic Acids Res, 33, 3465–3478. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18222 | - |
| dc.description.abstract | c-Maf(v-maf同源肌腱膜纖維肉瘤致癌基因)是Maf家族蛋白的一員,Maf家族蛋白能夠結合Maf辨識元件(MAREs)並活化下游目標基因的轉錄。c-Maf在調控輔助T細胞IL-4、IL-21和IL-22的製造中扮演重要角色。但是在巨噬細胞中的角色仍不明朗。在本研究中,我的研究目標是尋找在巨噬細胞中可能的c-Maf標的基因。利用微陣列法來分析從WT與c-Maf KO小鼠分化的古典活化(M1)與替代性活化(M2)骨髓衍生巨噬細胞(BMDM)。有218個基因在不同組別間表現相差兩倍以上而被選為候選基因。在小鼠與人類中,這些基因的啟動子序列都利用MatInspector (Genometix)和ClustalW (GenomeNet) 分析。基於MARE序列相似度與小鼠/人類的序列比序結果,有36個基因擁有保守的類MARE序列。在這些基因中,針對Fabp4基因進一步研究。Fabp4的表現在WT M2中比M1巨噬細胞高了八倍,並在c-Maf KO巨噬細胞中表現下降。微陣列的結果也經過定量PCR (qPCR) 的確認。另外,染色質免疫共沉澱(ChIP)的結果指出c-Maf能結合Fabp4的啟動子序列。而且針對Fabp4啟動子的螢光素酶法結果也顯示c-Maf能活化Fabp4基因的轉錄。總結,這些研究顯示在巨噬細胞中c-Maf能藉著結合Fabp4啟動子上的MARE位置來活化Fabp4基因的轉錄。 | zh_TW |
| dc.description.abstract | c-Maf (v-maf musculoaponeurotic fibrosarcoma oncogene homolog), a member of the Maf family, is known to transactivate downstream target genes by binding to the Maf-recognition elements (MAREs). It is well known that c-Maf plays an important role in regulating the production of IL-4, IL-21 and IL-22 in TH cells. However, the role of c-Maf in the biology of macrophages remains unclear. In this study, I aimed to search for the possible c-Maf target genes in macrophages. Microarray data were analyzed for gene expression of classically activated (M1) and alternatively activated (M2) bone marrow-derived macrophages from WT and c-Maf KO mice. Two hundred and eighteen genes were selected as candidates based on differential expression with 2-fold change as cutoff. The promoter sequences of these genes in mice and human were analyzed with the MatInspector (Genometix) program and aligned with the ClustalW (GenomeNet) program. The sequences were compared with the sequences of all the known MARE sites. Based on their similarity and alignment analysis of the sequences in mice and human, there were 36 genes with conservative MARE-like sequences. Among them, Fabp4 was chosen for further study, because mRNA microarray analysis showed that the expression of Fabp4 was 8-fold higher in WT M2 than in M1 macrophages and the expression was reduced in c-Maf KO macrophages. Quantitative PCR (qPCR) assay confirmed the microarray results. Chromatin immunoprecipitation (ChIP) assay further revealed that c-Maf binds to Fabp4 promoter. Moreover, Fabp4 promoter reporter assay also showed that c-Maf transactivates Fabp4 gene. Taken together, these findings demonstrated that c-Maf binds to MARE site of Fabp4 promoter and transactivates Fabp4 gene expression in macrophages. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:55:26Z (GMT). No. of bitstreams: 1 ntu-104-R01449007-1.pdf: 1209773 bytes, checksum: b9958d5f6612c795761cd6580ec9697f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii 英文摘要 iv 目錄 v 圖目錄 vii 表目錄 viii 第一章 研究背景 1 第一節 Maf家族蛋白 1 第二節 大型Maf蛋白 2 第三節 c-Maf的結構、功能與生物性角色 2 第四節 巨噬細胞中的c-Maf 4 第五節 Fabp4的介紹與其在巨噬細胞中的角色 5 第六節 研究目標 6 第二章 材料與方法 8 第一節 培養BMDM (骨髓衍生巨噬細胞) 8 第二節 將BMDM分化成M1和M2巨噬細胞 8 第三節 萃取RNA與定量PCR (qPCR) 9 第四節 染色質免疫共沉澱(ChIP)-定量PCR 10 第五節 轉染作用與螢光素酶法 11 第三章 實驗結果 13 第一節 對c-Maf+/+和c-Maf-/- 巨噬細胞微陣列數據的分析以搜尋候選基因啟動子中可能的保守MARE位置 13 第二節 Fabp4 mRNA表現在M2高於M1巨噬細胞並且在c-Maf-/- M2巨噬細胞中表現明顯下降 14 第三節 c-Maf能與Fabp4啟動子的MARE結合 15 第四節 Fabp4啟動子失去MARE序列會弱化c-Maf轉錄活化的表現 15 第四章 討論... 17 第一節 巨噬細胞中可能的c-Maf目標基因 17 第二節 c-Maf活化Fabp4基因的轉錄 18 第三節 c-Maf的調控與Fabp4基因 19 第四節 巨噬細胞中的Fabp4基因 19 第五章 圖 21 第六章 表 32 參考文獻 41 附錄 50 | |
| dc.language.iso | zh-TW | |
| dc.title | 鑑別骨髓衍生巨噬細胞中的c-Maf標的基因 | zh_TW |
| dc.title | Identification of c-Maf target genes in bone marrow-derived macrophages | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 伍安怡(Betty Wu-Hsieh),李建國(Chien-Kuo Lee) | |
| dc.subject.keyword | 巨噬細胞,骨髓衍生巨噬細胞,替代性活化巨噬細胞,c-Maf,Fabp4, | zh_TW |
| dc.subject.keyword | macrophage,bone marrow derived macrophage,alternatively activated macrophage,c-Maf,Fabp4, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-02-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
