Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18099
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林浩雄(Hao-Hsiung Lin)
dc.contributor.authorChien-Cheng Luen
dc.contributor.author盧建成zh_TW
dc.date.accessioned2021-06-08T00:51:08Z-
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citation[1] Koroteev, Y. M., Bihlmayer, G., Gayone, J. E., Chulkov, E. V., Blügel, S., Echenique, P. M., Hofmann, P. “Strong spin-orbit splitting on Bi surfaces,” Physical Review Letters, Vol. 93(4), pp. 046403, 2004.
[2] Lee, S., Ham, J., Jeon, K., Noh, J. S., Lee, W. “Direct observation of the semimetal-to-semiconductor transition of individual single-crystal bismuth nanowires grown by on-film formation of nanowires,” Nanotechnology, Vol. 21(40), pp. 405701, 2010.
[3] Gity, F., Ansari, L., Lanius, M., Schüffelgen, P., Mussler, G., Grützmacher, D., Greer, J. C. “Reinventing solid state electronics: Harnessing quantum confinement in bismuth thin films,” Applied Physics Letters, Vol. 110(9), pp. 093111, 2017.
[4] Hirahara, T., Matsuda, I., Yamazaki, S., Miyata, N., Hasegawa, S., Nagao, T. “Large surface-state conductivity in ultrathin Bi films,” Applied Physics Letters, Vol. 91(20), pp. 202106, 2007.
[5] Fei, P., Xue-Jin, L., Zhao-Liang, L., Shu-Li, Y., Dong-Min, C. “Origin of the metallic to insulating transition of an epitaxial Bi (111) film grown on Si (111),” Chinese Physics B, Vol. 19(8), pp. 087201, 2010.
[6] Hasegawa, Y., Ishikawa, Y., Saso, T., Shirai, H., Morita, H., Komine, T., Nakamura, H. “A method for analysis of carrier density and mobility in polycrystalline bismuth,” Physica B: Condensed Matter, Vol. 382(1-2), pp. 140-146, 2006.
[7] Komnik, Y. F., Bukhshtab, E. I., Andrievskii, V. V., Butenko, A. V. “Electron localization and interaction in bismuth thin films,” Journal of Low Temperature Physics, Vol. 52(3-4), pp. 315-333, 1983.
[8] Aitani, M., Hirahara, T., Ichinokura, S., Hanaduka, M., Shin, D., Hasegawa, S. “In situ magnetotransport measurements in ultrathin Bi films: evidence for surface-bulk coherent transport,” Physical Review Letters, Vol. 113(20), pp. 206802, 2014.
[9] Chiu, S. P., Lin, J. J. “Weak antilocalization in topological insulator Bi2Te3 microflakes,” Physical Review B, Vol. 87(3), pp. 035122, 2013.
[10] C. Kittel, “Introduction to Solid State Physics,” pp. 153.
[11] Hikami, S., Larkin, A. I., Nagaoka, Y. “Spin-orbit interaction and magneto-resistance in the two dimensional random system,” Progress of Theoretical Physics, Vol. 63(2), pp. 707-710, 1980.
[12] Lin, J. J., Giordano, N. “Electron scattering times from weak localization studies of Au-Pd films,” Physical Review B, Vol. 35(3), pp. 1071, 1987.
[13] Tkachov, G., Hankiewicz, E. M. “Weak antilocalization in HgTe quantum wells and topological surface states: Massive versus massless Dirac fermions,” Physical Review B, Vol. 84(3), pp. 035444, 2011.
[14] Huibers, A. G., Folk, J. A., Patel, S. R., Marcus, C. M., Duruöz, C. I., Harris Jr, J. S. “Low-temperature saturation of the dephasing time and effects of microwave radiation on open quantum dots,” Physical Review Letters, Vol. 83(24), pp. 5090, 1999.
[15] Abrahams, E., Anderson, P. W., Lee, P. A., Ramakrishnan, T. V. “Quasiparticle lifetime in disordered two-dimensional metals,” Physical Review B, Vol. 24(12), pp. 6783, 1981.
[16] Altshuler, B. L., Khmel'Nitzkii, D., Larkin, A. I., Lee, P. A. “Magnetoresistance and Hall effect in a disordered two-dimensional electron gas,” Physical Review B, Vol. 22(11), pp. 5142, 1980.
[17] Lu, H. Z., Shen, S. Q. “Weak localization and weak anti-localization in topological insulators,” International Society for Optics and Photonics, In Spintronics Vii, Vol. 9167, pp. 91672E, 2014.
[18] Choi, S. H., Wang, K. L., Leung, M. S., Stupian, G. W., Presser, N., Morgan, B. A., et al. “Fabrication of bismuth nanowires with a silver nanocrystal shadowmask,” Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films, Vol. 18(4), pp. 1326-1328, 2000.
[19] Lin, M. E., Fan, Z. F., Ma, Z., Allen, L. H., Morkoc, H. “Reactive ion etching of GaN using BCl3,” Applied Physics Letters, Vol. 64(7), pp. 887-888, 1994.
[20] Ast, C. R., Höchst, H. “Electronic structure of a bismuth bilayer,” Physical Review B, Vol. 67(11), pp. 113102, 2003.
[21] Zhu, K., Wu, L., Gong, X., Xiao, S., Jin, X. “Quantum transport in the surface states of epitaxial Bi (111) thin films,” Physical Review B, Vol. 94(12), pp. 121401, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18099-
dc.description.abstract本論文以分子束磊晶系統(MBE System)將鉍薄膜成長於輕摻雜矽基板上,透過利用物理性質量測系統(Physics Property Measurement System, PPMS)進行量測,藉由改變溫度以及外加磁場大小,觀察鉍薄膜在不同厚度下磁阻的變化,並嘗試了解塊材(bulk)和表面(surface)的傳輸性質。
我們首先對零磁場下的阻值進行分析,在鉍薄膜較厚的情況下,阻值隨溫度降低所呈現出來的趨勢與大部分的文獻符合,表現出典型的半導體導電機制,而較薄的鉍薄膜在零磁場下隨溫度變化的行為我們猜測有多穩態的結構,會針對高溫和低溫的區域分別進行討論分析。
藉由觀察到低溫高磁場的曲線逐漸飽和的現象,認為趨於飽和的行為是由表面態所貢獻,依此假設,我們將利用three-band transport model對3種不同厚度樣品的變溫霍爾量測結果進行擬合分析,除此之外,我們也假設塊材內部為本質半導體特性,n = p = ni。
結果顯示較厚鉍薄膜的載子遷移率其值約為2000至10000 cm2/Vs,在高溫的區域(100K - 300K)有明顯的T-1.5特性,推測是受到acoustic phonon scattering,低溫的載子遷移率則明顯不隨溫度變化而有所變動,至於載子濃度則是隨溫度降低而下降,其範圍在1x1017 - 3x1018 cm-3,認為費米能階在導電帶,尚未看到能帶打開的現象;較薄的樣品載子遷移率其值可達到80000 cm2/Vs,表面態的載子濃度在低溫大約接近1013 cm-2數量級。
在最薄的10 nm樣品上我們觀測到反弱局域(weak antilocalization, WAL)的現象,藉由引入電子相位相干時間(electron dephasing time, τφ)來探討極低溫環境下的量子傳輸行為。
zh_TW
dc.description.abstractIn this thesis, the Bismuth thin film is grown on lightly doped silicon substrates by molecular beam epitaxy (MBE). The variable temperature and magnetic field is used by Physics Property Measurement System (PPMS). Observe the change of magneto-resistance of the Bismuth thin film under different thickness, and try to understand the transport properties of bulk and surface.
We first analyze the resistance value under zero magnetic field. When the Bismuth film is thicker, the trend that the resistance value decreases with the temperature is consistent with most of the literature, showing a typical semiconductor mechanism. As the behavior of the thinner Bismuth film with temperature under zero magnetic field, we guess the Bismuth structure is multi-stable. We will discuss and analyze the high temperature and low temperature regions, respectively.
By observing the phenomenon that the curve of low temperature and high magnetic field is gradually saturated, it is believed that the behavior that tends to be saturated is contributed by the surface state. Based on this assumption, we will use the three-band transport model for the variable temperature Hall effect of three samples with different thickness. The measurement results are fitted and analyzed. In addition, we also assume that the interior of the bulk has intrinsic semiconductor characteristics, n = p = ni.
The results show that the carrier mobility of the thicker Bismuth film is about 2000 to 10000 cm2/Vs, and it has obvious T-1.5 characteristics in the high temperature region (100K - 300K). Presumably, it is caused by acoustic phonon scattering, and the low-temperature carrier mobility obviously does not change with temperature. As for the carrier concentration, it decreases with the temperature, and its range is 1x1017 - 3x1018 cm-3. It is believed that the Fermi level is in the conductive band, and the phenomenon of band opening has not yet been seen; the carrier mobility of the thinner samples can reach 80000 cm2/Vs, and the carrier concentration in the surface state is approximately the order of 1013 cm-2 at low temperature.
We observed weak antilocalization (WAL) phenomenon in the thinnest 10 nm sample. The electron dephasing time (τφ) was introduced to investigate the quantum transport behavior in extremely low temperature environments.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:51:08Z (GMT). No. of bitstreams: 1
U0001-1308202015005800.pdf: 3795002 bytes, checksum: 53e86db558af67a6753c134bb5e25e31 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x
第一章、緒論 1
1-1文獻回顧 1
1-2研究動機 2
1-3論文架構 2
第二章、相關理論基礎介紹 3
2-1霍爾效應(Hall effect)及多載子傳輸模型 3
2-1-1霍爾效應(Hall effect) 3
2-1-2多載子傳輸模型(multi-band transport model) 6
2-2反弱局域(Weak antilocalization, WAL) 8
第三章、鉍薄膜量測樣品製備與實驗流程 11
3-1鉍薄膜量測樣品製備 11
3-1-1樣品製備 11
3-1-2反應式離子蝕刻(Reactive-Ion Etching, RIE)鉍薄膜 13
3-2量測實驗流程 14
3-2-1Hall bar量測 14
3-2-2變溫霍爾量測(物理性質量測系統,PPMS) 15
第四章、實驗量測數據觀察與分析 17
4-1霍爾效應(Hall effect)及多載子模型 17
4-1-1鉍薄膜阻值分析 17
4-1-2鉍薄膜電特性擬合 20
4-2反弱局域(Weak antilocalization, WAL) 32
第五章、結論 37
參考文獻 38
dc.language.isozh-TW
dc.title分子束磊晶成長鉍薄膜的電性觀察與分析:半導體態、表面態和反弱局域zh_TW
dc.titleElectrical properties observation and analysis of Bismuth thin film grown by MBE: bulk state, surface state and weak antilocalizationen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee毛明華(Ming-Hua Mao),陳建宏(Jian-Hong Chen)
dc.subject.keyword鉍薄膜,物理性質量測系統,霍爾效應,塊材,表面態,反弱局域,zh_TW
dc.subject.keywordBismuth thin film,PPMS,Hall effect,bulk,surface state,WAL,en
dc.relation.page40
dc.identifier.doi10.6342/NTU202003261
dc.rights.note未授權
dc.date.accepted2020-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1308202015005800.pdf
  未授權公開取用
3.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved