Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
  • Help
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18098
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor貝蘇章
dc.contributor.authorHao Shien
dc.contributor.author是灝zh_TW
dc.date.accessioned2021-06-08T00:51:06Z-
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-07-01
dc.identifier.citation[1] A. E. Abdel-Hakim and A. A. Farag. Csift: A sift descriptor with
color invariant characteristics. In Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 1978–1983. IEEE, 2006.
[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In Foundations of
Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium
on, pages 459–468. IEEE, 2006.
[3] D. H. Ballard. Generalizing the hough transform to detect arbitrary
shapes. Pattern recognition, 13(2):111–122, 1981.
[4] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In Computer Vision–ECCV 2006, pages 404–417.
Springer, 2006.
[5] J. S. Beis and D. G. Lowe. Shape indexing using approximate
nearest-neighbour search in high-dimensional spaces. In Computer
Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE
Computer Society Conference on, pages 1000–1006. IEEE, 1997.
[6] M. A. Brown. Multi-image matching using invariant features. PhD
thesis, Citeseer, 2005.
[7] P. J. Burt and E. H. Adelson. A multiresolution spline with application to image mosaics. ACM Transactions on Graphics (TOG),
2(4):217–236, 1983.
[8] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian
approach tested on 101 object categories. Computer Vision and
Image Understanding, 106(1):59–70, 2007.
[9] L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. In Computer Vision and Pattern
Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 524–531. IEEE, 2005.
[10] M. A. Fischler and R. C. Bolles. Random sample consensus:
a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM,
24(6):381–395, 1981.
[11] K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classification with sets of image features. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on,
volume 2, pages 1458–1465. IEEE, 2005.
[12] C. Harris and M. Stephens. A combined corner and edge detector.
In Alvey vision conference, volume 15, page 50. Manchester, UK,
1988.
[13] P. V. Hough. Method and means for recognizing complex patterns.
Technical report, 1962.
[14] L. Juan and O. Gwun. A comparison of sift, pca-sift and surf.
International Journal of Image Processing (IJIP), 3(4):143–152,
2009.
[15] Y. Ke and R. Sukthankar. Pca-sift: A more distinctive representation for local image descriptors. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE
Computer Society Conference on, volume 2, pages II–506. IEEE,
2004.
[16] J. J. Koenderink. The structure of images. Biological cybernetics,
50(5):363–370, 1984.
[17] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories.
In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 2169–2178. IEEE,
2006.
[18] T. Lindeberg. Scale-space theory: A basic tool for analysing structures at different scales. In Journal of applied statistics. Citeseer,
1994.
[19] D. G. Lowe. Object recognition from local scale-invariant features.
In Computer vision, 1999. The proceedings of the seventh IEEE international conference on, volume 2, pages 1150–1157. Ieee, 1999.
[20] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2):91–110,
2004.
[21] K. Mikolajczyk and C. Schmid. An affine invariant interest point
detector. In Computer Vision — ECCV 2002, pages 128–142.
Springer, 2002.
[22] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 27(10):1615–1630, 2005.
[23] H. P. Moravec. Obstacle avoidance and navigation in the real world
by a seeing robot rover. Technical report, DTIC Document, 1980.
[24] J.-M. Morel and G. Yu. Asift: A new framework for fully affine
invariant image comparison. SIAM Journal on Imaging Sciences,
2(2):438–469, 2009.
[25] M. Muja and D. Lowe. Scalable nearest neighbour algorithms for
high dimensional data. 2014.
[26] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In VISAPP (1), pages 331–340,
2009.
[27] J. Shi and C. Tomasi. Good features to track. In Computer Vision and Pattern Recognition, 1994. Proceedings CVPR’94., 1994
IEEE Computer Society Conference on, pages 593–600. IEEE,
1994.
[28] C. Silpa-Anan and R. Hartley. Optimised kd-trees for fast image
descriptor matching. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.
[29] J. Sivic and A. Zisserman. Video google: A text retrieval approach
to object matching in videos. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages 1470–1477.
IEEE, 2003.
[30] S. M. Smith and J. M. Brady. Susan a new approach to low level image processing. International journal of computer vision,
23(1):45–78, 1997.
[31] M. J. Swain and D. H. Ballard. Color indexing. International
journal of computer vision, 7(1):11–32, 1991.
[32] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer
Society Conference on, volume 1, pages I–511. IEEE, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18098-
dc.description.abstract圖像匹配是圖像處理的基礎組成部分,其作用是用
來尋找兩個或兩個以上不同條件下獲得的圖像的匹配
點。這些匹配點可以進一步用於一系列應用,例如圖像
配準,圖像檢索等。一般來說,一個匹配算法有三個組
成部分。第一是特征檢測,這個過程用於尋找一些特殊
的點,這些點也被稱為角點,興趣點或特征點。第二是
計算描述所選特征的特征描述符。第三是尋找匹配的方
法,該方法將會尋找在前面的步驟中發現的特征點之間
的匹配。本文將首先介紹一些早於 SIFT 特征檢測的算
法,然後詳細介紹了 SIFT 特征檢測以及一些使得 SIFT
匹配過程更有效的算法,例如基於 K-D 樹的搜索算法和
空間檢測算法。最後基於以上介紹的算法提出了 SIFT 的
應用,包括圖像拼接和圖像分類,在介紹 SIFT 應用的同
時,也介紹了一些其他用到的算法,例如密集 SIFT 特
征,金字塔空間匹配等。
zh_TW
dc.description.abstractImage matching is one of the basic tasks in image processing. It is used to find matched points in two or more images captured under different conditions. These matches can
be further used to lots of applications such as image registration, image searching, image retrieving and so on. Generally,
one matching algorithm has three components. One is feature
detector which is used to find some points. These points are
also called corner points, interesting points or feature points.
The second one is feature descriptor which is used to describe
the selected feature. The third part is matching metrics which
shows how to use the features found in previous steps to match
points. In this thesis we will first introduce some algorithms
prior to SIFT feature detection algorithm. Then the SIFT feature detector algorithm used in the thesis is introduced in detail. Some matching algorithms is further introduced to make
the SIFT based matching process more robust, such as K-d tree
based searching algorithm and some spatial verification algorithm. Finally, some applications based on algorithms introduced above are proposed including image stitching and image classification.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:51:06Z (GMT). No. of bitstreams: 1
ntu-104-R01942123-1.pdf: 7103696 bytes, checksum: c775793158d68b8dfa4fe2de69a460de (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 iii
誌謝 v
摘要 vii
Abstract ix
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous work . . . . . . . . . . . . . . . . . . . . . . 1
1.2.1 Moravec corner detector . . . . . . . . . . . . 2
1.2.2 Harris corner detector . . . . . . . . . . . . . . 3
1.2.3 Shi–Tomasi corner detector . . . . . . . . . . . 5
1.2.4 SUSAN corner detector . . . . . . . . . . . . . 5
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . 6
2 Scale Invariant Feature Transform 7
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Gaussian function . . . . . . . . . . . . . . . . . . . . 8
2.3 Detection of scale-space extrema . . . . . . . . . . . . 9
2.3.1 scale space . . . . . . . . . . . . . . . . . . . . 9
2.3.2 DoG and LoG . . . . . . . . . . . . . . . . . . 10
2.3.3 Detection of scale-space extrema . . . . . . . . 12
2.3.4 Octaves and scale space . . . . . . . . . . . . . 14
2.4 Accurate keypoint localization . . . . . . . . . . . . . 17
2.5 Orientation assignment . . . . . . . . . . . . . . . . . . 19
2.6 Local image descriptor . . . . . . . . . . . . . . . . . . 20
2.7 Further research . . . . . . . . . . . . . . . . . . . . . 23
2.7.1 PCA-SIFT and SURF . . . . . . . . . . . . . . 23
2.7.2 Other related algorithm . . . . . . . . . . . . . 24
3 Matching Method Based on SIFT 25
3.1 Basic method . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Advanced nearest neighbor algorithm . . . . . . . . . . 25
3.2.1 K-d tree . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Further tree-based NN algorithm . . . . . . . . 30
3.2.3 LSH . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Spatial Verifications . . . . . . . . . . . . . . . . . . . 32
3.3.1 RANSAC . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Generalized Hough Transform . . . . . . . . . 34
3.3.3 Comparison of RANSAC and GHT . . . . . . 38
4 Applications Based On SIFT Algorithm 39
4.1 Image stitching . . . . . . . . . . . . . . . . . . . . . . 39
4.1.1 Introduction . . . . . . . . . . . . . . . . . . . 39
4.1.2 Image registration . . . . . . . . . . . . . . . . 39
4.1.3 Image blending . . . . . . . . . . . . . . . . . 41
4.1.4 Experiment . . . . . . . . . . . . . . . . . . . . 45
4.2 Image classification . . . . . . . . . . . . . . . . . . . 47
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . 47
4.2.2 Bag of visual words . . . . . . . . . . . . . . . 47
4.2.3 Feature Extraction . . . . . . . . . . . . . . . . 49
4.2.4 Experiment about picture classification . . . . 52
4.2.5 Experiment about Chinese character classification 54
5 Conclusion 59
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . 60
Bibliography 61
dc.language.isoen
dc.title基于 SIFT 的圖像匹配及其綜合應用研究zh_TW
dc.titleSIFT Based Image Matching and Its Applicationsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐忠枝,曾建誠,李枝宏,丁建均
dc.subject.keyword圖像匹配,尺度不?特征??,特征?提取,zh_TW
dc.subject.keywordimage matching,SIFT,feature extraction,en
dc.relation.page65
dc.rights.note未授權
dc.date.accepted2015-07-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
6.94 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved