Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18088
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor汪根欉(Ken-Tsung Wong)
dc.contributor.authorYu-Hsiang Changen
dc.contributor.author張宇翔zh_TW
dc.date.accessioned2021-06-08T00:50:47Z-
dc.date.copyright2020-09-22
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citation1.3 References
[1] Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html (accessed Jul 6, 2020).
[2] Fang, P. H., J. Appl. Phys. 1974, 45, 4672-4673.
[3] Reucroft, P. J.; Takahashi, K.; Ullal, H., J. Appl. Phys. 1975, 46, 5218-5223.
[4] Tang, C. W., Appl. Phys. Lett. 1986, 48, 183-185.
[5] Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L., Sci. Bull. 2020, 65, 272-275.
[6] Goppert-Mayer, M., Ann. Phys. 1931, 401, 273-294.
[7] Kaiser, W.; Garrett, C. G. B., Phys. Rev. Lett. 1961, 7, 229-231.
[8] Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L., Angew. Chem. Int. Ed. 2009, 48, 3244-3266.
[9] Denk, W.; Strickler, J.; Webb, W., Science 1990, 248, 73-76.
[10] Palikaras, K.; Tavernarakis, N., in eLS, 2015, pp. 1-8.
[11] Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kedzierska, E.; Knap-Czop, K.; Kotlinska, J.; Michel, O.; Kotowski, K.; Kulbacka, J., Biomed Pharmacother. 2018, 106, 1098-1107.
[12] Pope, M.; Kallmann, H. P.; Magnante, P., J. Chem. Phys. 1963, 38, 2042-2043.
[13] Tang, C. W.; VanSlyke, S. A., Appl. Phys. Lett. 1987, 51, 913-915.
[14] Samsung Galaxy Fold. https://www.samsung.com/tw/smartphones/galaxy-fold/specs/ (accessed Jul 6, 2020).
[15] Apple iPhone 11 Pro. https://www.apple.com/tw/iphone-11-pro/ (accessed Jul 6, 2020).
[16] Salzner, U.; Lagowski, J. B.; Pickup, P. G.; Poirier, P. A., Synth. Met. 1998, 96, 177-189.
[17] Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S., Chem. Rev. 2009, 109, 5868–5923.
[18] Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z. a.; Hou, J., Macromolecules 2012, 45, 9611−9617.
[19] Albota, M.; Beljonne, D.; Bre´das, J.-L.; Ehrlich, J. E.; Fu, J.-Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Ro¨ckel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X.-L.; Xu, C., Science 1998, 281, 1653-1656.
[20] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Nature 2012, 492, 234-238.
[21] Fang, Z.; Teo, T.-L.; Cai, L.; Lai, Y.-H.; Samoc, A.; Samoc, M., Org. Lett. 2009, 11, 1-4.
[22] Goldey, M. B.; Reid, D.; de Pablo, J.; Galli, G., Phys. Chem. Chem. Phys. 2016, 18, 31388-31399.
[23] Park, I. S.; Komiyama, H.; Yasuda, T., Chem. Sci. 2017, 8, 953-960.
[24] Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X., Adv. Mater. 2015, 27, 1170-1174.
2.5 References
[1] Scharber, M. C.; Sariciftci, N. S., Prog. Polym. Sci. 2013, 38, 1929-1940.
[2] Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S., Chem. Rev. 2009, 109, 5868–5923.
[3] Mishra, A.; Bauerle, P., Angew. Chem. Int. Ed. 2012, 51, 2020-2067.
[4] Qian, D.; Zheng, Z.; Yao, H.; Tress, W.; Hopper, T. R.; Chen, S.; Li, S.; Liu, J.; Chen, S.; Zhang, J.; Liu, X. K.; Gao, B.; Ouyang, L.; Jin, Y.; Pozina, G.; Buyanova, I. A.; Chen, W. M.; Inganas, O.; Coropceanu, V.; Bredas, J. L.; Yan, H.; Hou, J.; Zhang, F.; Bakulin, A. A.; Gao, F., Nat. Mater. 2018, 17, 703-709.
[5] Cao, W.; Xue, J., Energy Environ. Sci. 2014, 7, 2123–2144.
[6] Ameri, T.; Khoram, P.; Min, J.; Brabec, C. J., Adv. Mater. 2013, 25, 4245-4266.
[7] Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J., Chem. Rev. 2019, 119, 8028-8086.
[8] Meng, Y.; Wu, J.; Guo, X.; Su, W.; Zhu, L.; Fang, J.; Zhang, Z.-G.; Liu, F.; Zhang, M.; Russell, T. P.; Li, Y., Sci. China Chem. 2019, 62, 845-850.
[9] Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L., Sci. Bull. 2020, 65, 272-275.
[10] Xu, Y.; Huang, X.; Yuan, J.; Ma, W., ACS Appl. Mater. Interfaces 2018, 10, 24037-24045.
[11] Speller, E. M.; Clarke, A. J.; Luke, J.; Lee, H. K. H.; Durrant, J. R.; Li, N.; Wang, T.; Wong, H. C.; Kim, J.-S.; Tsoi, W. C.; Li, Z., J. Mater. Chem. A 2019, 7, 23361-23377.
[12] Huo, Y.; Zhang, H.-L.; Zhan, X., ACS Energy Lett. 2019, 4, 1241-1250.
[13] Li, N.; McCulloch, I.; Brabec, C. J., Energy Environ. Sci. 2018, 11, 1355-1361.
[14] Shi, Z.; Bai, Y.; Chen, X.; Zeng, R.; Tan, Z. a., Sustainable Energy Fuels 2019, 3, 910-934.
[15] Kippelen, B.; Brédas, J.-L., Energy Environ. Sci. 2009, 2, 251–261.
[16] Lin, L. Y.; Chen, Y. H.; Huang, Z. Y.; Lin, H. W.; Chou, S. H.; Lin, F.; Chen, C. W.; Liu, Y. H.; Wong, K. T., J. Am. Chem. Soc. 2011, 133, 15822-15825.
[17] Chen, Y. H.; Lin, L. Y.; Lu, C. W.; Lin, F.; Huang, Z. Y.; Lin, H. W.; Wang, P. H.; Liu, Y. H.; Wong, K. T.; Wen, J.; Miller, D. J.; Darling, S. B., J. Am. Chem. Soc. 2012, 134, 13616-13623.
[18] Griffith, O. L.; Liu, X.; Amonoo, J. A.; Djurovich, P. I.; Thompson, M. E.; Green, P. F.; Forrest, S. R., Phys. Rev. B 2015, 92, 085404.
[19] Welch, G. C.; Perez, L. A.; Hoven, C. V.; Zhang, Y.; Dang, X.-D.; Sharenko, A.; Toney, M. F.; Kramer, E. J.; Nguyen, T.-Q.; Bazan, G. C., J. Mater. Chem. 2011, 21, 12700–12709.
[20] Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J., Nat. Mater. 2011, 11, 44-48.
[21] Takacs, C. J.; Sun, Y.; Welch, G. C.; Perez, L. A.; Liu, X.; Wen, W.; Bazan, G. C.; Heeger, A. J., J. Am. Chem. Soc. 2012, 134, 16597-16606.
[22] Casey, A.; Han, Y.; Fei, Z.; White, A. J. P.; Anthopoulos, T. D.; Heeney, M., J. Mater. Chem. C 2015, 3, 265-275.
[23] Lee, T. H.; Uddin, M. A.; Zhong, C.; Ko, S.-J.; Walker, B.; Kim, T.; Yoon, Y. J.; Park, S. Y.; Heeger, A. J.; Woo, H. Y.; Kim, J. Y., Adv. Energy Mater. 2016, 6, 1600637.
[24] Kim, H. S.; Song, C. E.; Ha, J. W.; Lee, S.; Rasool, S.; Lee, H. K.; Shin, W. S.; Hwang, D. H., ACS Appl. Mater. Interfaces 2019, 11, 47121-47130.
[25] Shi, S.; Wang, H.; Uddin, M. A.; Yang, K.; Su, M.; Bianchi, L.; Chen, P.; Cheng, X.; Guo, H.; Zhang, S.; Woo, H. Y.; Guo, X., Chem. Mater. 2019, 31, 1808-1817.
[26] Shi, S.; Chen, P.; Chen, Y.; Feng, K.; Liu, B.; Chen, J.; Liao, Q.; Tu, B.; Luo, J.; Su, M.; Guo, H.; Kim, M. G.; Facchetti, A.; Guo, X., Adv. Mater. 2019, 31, 1905161.
[27] Shao, J.; Chang, J.; Chi, C., Chem. Asian. J. 2014, 9, 253-260.
[28] Wudarczyk, J.; Papamokos, G.; Marszalek, T.; Nevolianis, T.; Schollmeyer, D.; Pisula, W.; Floudas, G.; Baumgarten, M.; Mullen, K., ACS Appl. Mater. Interfaces 2017, 9, 20527-20535.
[29] Sun, Y.; Chien, S.-C.; Yip, H.-L.; Zhang, Y.; Chen, K.-S.; Zeigler, D. F.; Chen, F.-C.; Lin, B.; Jen, A. K. Y., J. Mater. Chem. 2011, 21, 13247-13255.
[30] Faust, R.; Burmester, C., Synthesis 2008, 2008, 1179-1181.
[31] Trotzki, R.; Hoffmann, M. M.; Ondruschka, B., Green Chem. 2008, 10, 873–878.
3.5 References
[1] Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L., Angew. Chem. Int. Ed. 2009, 48, 3244-3266.
[2] Palikaras, K.; Tavernarakis, N., in eLS, 2015, pp. 1-8.
[3] Xu, C.; Webb, W. W., J. Opt. Soc. Am. B 1996, 13, 481-491.
[4] Zhang, Q.; Tian, X.; Zhou, H.; Wu, J.; Tian, Y., Materials (Basel) 2017, 10, 223.
[5] Makarov, N. S.; Drobizhev, M.; Rebane, A., Opt. Express 2008, 16, 4029-4047.
[6] Albota, M.; Beljonne, D.; Bre´das, J.-L.; Ehrlich, J. E.; Fu, J.-Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Ro¨ckel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X.-L.; Xu, C., Science 1998, 281, 1653-1656.
[7] Beverina, L.; Fu, J.; Leclercq, A.; Zojer, E.; Pacher, P.; Barlow, S.; Stryland, E. W. V.; Hagan, D. J.; Bre´das, J.-L.; Marder, S. R., J. Am. Chem. Soc. 2005, 127, 7282-7283.
[8] Drobizhev, M.; Makarov, N. S.; Tillo, S. E.; Hughes, T. E.; Rebane, A., Nat. Methods 2011, 8, 393-399.
[9] Paisley, N. R.; Tonge, C. M.; Mayder, D. M.; Thompson, K. A.; Hudson, Z. M., Mater. Chem. Front. 2020, 4, 555-566.
[10] Albota, M. A.; Xu, C.; Webb, W. W., Appl. Opt. 1998, 37, 7352-7356.
[11] Xu, L.; Zhang, J.; Yin, L.; Long, X.; Zhang, W.; Zhang, Q., J. Mater. Chem. C 2020, 8, 6342-6349.
[12] Yao, S.; Schafer-Hales, K. J.; Belfield, K. D., Org. Lett. 2007, 9, 5645-5648.
[13] Kato, S.; Matsumoto, T.; Shigeiwa, M.; Gorohmaru, H.; Maeda, S.; Ishi-i, T.; Mataka, S., Chemistry 2006, 12, 2303-2317.
[14] Yao, S.; Kim, B.; Yue, X.; Colon Gomez, M. Y.; Bondar, M. V.; Belfield, K. D., ACS Omega 2016, 1, 1149-1156.
[15] Lee, S. K.; Yang, W. J.; Choi, J. J.; Kim, C. H.; Jeon, S.-J.; Cho, B. R., Org. Lett. 2005, 7, 323-326.
[16] Iwashita, H.; Torii, S.; Nagahora, N.; Ishiyama, M.; Shioji, K.; Sasamoto, K.; Shimizu, S.; Okuma, K., ACS Chem. Biol. 2017, 12, 2546-2551.
[17] Lo, Y. C.; Yeh, T. H.; Wang, C. K.; Peng, B. J.; Hsieh, J. L.; Lee, C. C.; Liu, S. W.; Wong, K. T., ACS Appl. Mater. Interfaces 2019, 11, 23417-23427.
[18] Renaud, J.; Bischoff, S. F. o.; Buhl, T.; Floersheim, P.; Fournier, B.; Geiser, M.; Halleux, C.; Kallen, J.; Keller, H.; Ramage, P., J. Med. Chem. 2005, 48, 364-379.
[19] Liu, C.; Dai, R.; Yao, G.; Deng, Y., Journal of Chemical Research 2014, 38, 593–596.
[20] Li, K.; Lei, W.; Jiang, G.; Hou, Y.; Zhang, B.; Zhou, Q.; Wang, X., Langmuir 2014, 30, 14573-14580.
[21] Zhang, J.; Parker, T. C.; Chen, W.; Williams, L.; Khrustalev, V. N.; Jucov, E. V.; Barlow, S.; Timofeeva, T. V.; Marder, S. R., J. Org. Chem. 2016, 81, 360-370.
4.5 References
[1] Zou, S.-J.; Shen, Y.; Xie, F.-M.; Chen, J.-D.; Li, Y.-Q.; Tang, J.-X., Mater. Chem. Front. 2020, 4, 788-820.
[2] Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X., Chem. Soc. Rev. 2014, 43, 3259-3302.
[3] Wong, M. Y.; Zysman-Colman, E., Adv. Mater. 2017, 29, 1605444.
[4] Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Nature 1998, 395, 151-154.
[5] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Nature 2012, 492, 234-238.
[6] Dias, F. B.; Penfold, T. J.; Monkman, A. P., Methods Appl. Fluoresc. 2017, 5, 012001.
[7] Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C., Nat. Photonics 2012, 6, 253-258.
[8] Sarma, M.; Wong, K. T., ACS Appl. Mater. Interfaces 2018, 10, 19279-19304.
[9] Zampetti, A.; Minotto, A.; Cacialli, F., Adv. Funct. Mater. 2019, 29, 1807623.
[10] Tuong Ly, K.; Chen-Cheng, R.-W.; Lin, H.-W.; Shiau, Y.-J.; Liu, S.-H.; Chou, P.-T.; Tsao, C.-S.; Huang, Y.-C.; Chi, Y., Nat. Photonics 2016, 11, 63-68.
[11] Kim, D.-H.; D’Aléo, A.; Chen, X.-K.; Sandanayaka, A. D. S.; Yao, D.; Zhao, L.; Komino, T.; Zaborova, E.; Canard, G.; Tsuchiya, Y.; Choi, E.; Wu, J. W.; Fages, F.; Brédas, J.-L.; Ribierre, J.-C.; Adachi, C., Nat. Photonics 2018, 12, 98-104.
[12] Lo, Y. C.; Yeh, T. H.; Wang, C. K.; Peng, B. J.; Hsieh, J. L.; Lee, C. C.; Liu, S. W.; Wong, K. T., ACS Appl. Mater. Interfaces 2019, 11, 23417-23427.
[13] Park, I. S.; Lee, S. Y.; Adachi, C.; Yasuda, T., Adv. Funct. Mater. 2016, 26, 1813-1821.
[14] Kothavale, S.; Lee, K. H.; Lee, J. Y., ACS Appl. Mater. Interfaces 2019, 11, 17583-17591.
[15] Zhang, Y. L.; Ran, Q.; Wang, Q.; Liu, Y.; Hanisch, C.; Reineke, S.; Fan, J.; Liao, L. S., Adv. Mater. 2019, 31, 1902368.
[16] Wang, Y.-Y.; Zhang, Y.-L.; Tong, K.; Ding, L.; Fan, J.; Liao, L.-S., J. Mater. Chem. C 2019, 7, 15301-15307.
[17] Noda, H.; Kabe, R.; Adachi, C., Chem. Lett. 2016, 45, 1463-1466.
[18] Xue, J.; Liang, Q.; Wang, R.; Hou, J.; Li, W.; Peng, Q.; Shuai, Z.; Qiao, J., Adv. Mater. 2019, 31, 1808242.
[19] Yi, C. L.; Ko, C. L.; Yeh, T. C.; Chen, C. Y.; Chen, Y. S.; Chen, D. G.; Chou, P. T.; Hung, W. Y.; Wong, K. T., ACS Appl. Mater. Interfaces 2020, 12, 2724-2732.
[20] Wang, M.; Huang, Y. H.; Lin, K. S.; Yeh, T. H.; Duan, J.; Ko, T. Y.; Liu, S. W.; Wong, K. T.; Hu, B., Adv. Mater. 2019, 31, 1904114.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18088-
dc.description.abstract相較於傳統之無機材料,有機功能性材料具有生產成本較低、可製成可撓曲元件等優點,並可以透過分子設計改變其吸光及放光之行為,因此近年來有關的研究相當盛行。在有機功能性材料的領域中,有機太陽能電池、有機發光二極體以及具有雙光子吸收性質之材料是三種相當熱門的研究主題。有機太陽能電池是利用具有高吸光係數及高載體遷移率之有機分子作為元件之主動層,吸收光能以轉換為電能,在能源逐漸耗竭的現今更加受到矚目;有機發光二極體則是以具有高螢光或磷光量子產率之有機分子作為元件之發光層,將電能轉換為光能,目前也已經廣泛的應用於商業製程中;另外,具有雙光子吸收性質之有機分子可以於皮下組織吸收近紅外光以進行光動力療法或是生物顯影,於生醫領域亦有顯著的應用。
在本篇論文中,第一章為有機功能性材料的簡介,我們將回顧有機功能性材料之發展,以及如何透過分子設計改變材料之光物理及電化學性質。第二章為有機太陽能電池之研究,以本實驗室林立彥博士於2012年發表之D-A-A型小分子染料 DTDCPB 進行改良,將中心拉電子基團苯并噻二唑分別改為吡啶噻二唑及具二氰基修飾之苯并噻二唑,設計出目標分子 DCPoPTD、DCPiPTD及 DTDCPDCBT。雖然尚未合成出 DTDCPDCBT,但DCPoPTD及DCPiPTD 相較於DTDCPB 確實如預期中吸光紅移、能隙縮小,目前以 DCPiPTD 混摻C70 所製成之太陽能電池元件於初步測試中有不錯的表現。第三章為雙光子吸收材料之研究,同樣以二氰基修飾之苯并噻二唑作為中心之拉電子基團,設計並合成出對稱結構之DDTDCBT,其具有較紅移之雙光子吸收。爾後為了提升有機分子於水中的溶解度,我們設計並合成出兩個具有新型推電子基團 MP 之分子 DMPPhBT 及 DMPPhDCBT,在分子設計上透過甲基化形成具水溶性之有機離子,提高其於生醫領域之應用性,目前也已經初步量測其雙光子激發螢光。第四章為有機發光二極體之研究,我們設計並合成出以二氰基修飾之喹喔啉為主體的電子傳輸材料56p-QN及56m-QN。此二電子傳輸層材料具有較低之分子能階,可與不同的電洞傳輸材料搭配以形成放光紅移之激態複合物系統,並具有不錯之螢光量子產率。將激態複合物系統與吸光波長匹配之螢光分子混摻製成有機發光二極體元件,其元件之放光位於近紅外光範圍,並擁有相當高之外部量子效率。
zh_TW
dc.description.abstractIn comparison to conventional inorganic materials, organic functional materials own several advantages, such as lower cost for mass production and mechanical flexibility of the devices. Moreover, according to different applications of organic functional materials, the photophysical and electrochemical properties of organic molecules could be elaborately adjusted by different designing strategies. Among different categories of organic functional materials, organic photovoltaics (OPVs), two-photon absorption (2PA) materials and organic light-emitting diodes (OLEDs) have attracted lots of attention due to their promising future. Organic photovoltaics, whose active layers are composed of organic molecules with strong extinction coefficient and high charge carrier mobility, has been thriving nowadays because of the depletion of nonrenewable energy resources. In opposite to organic photovoltaics, electric power is consumed for organic light-emitting diodes to generate light. In addition, for biomedical application, two-photon absorption materials are prominent due to their capability to absorb deep penetrating near-infrared light in the tissue.
In this thesis, the first chapter briefly introduces the history of OPVs, OLEDs and 2PA materials as well as some universal designing strategies of organic molecules to adjust their photophysical and electrochemical properties. In the second chapter, aiming at bathochromic absorption for efficient OPV devices, benzothiadiazole (BT) derivative-based small molecules were modified from previously reported D-A-A type molecule DTDCPB. While the synthesis of cyano-substituted DTDCPDCBT is not complete, thiadiazolo[3,4-c]pyridine (PTD) -based molecules DCPoPTD and DCPiPTD were synthesized and the effect of enhanced electron-withdrawing ability on bathochromic absorption has been corroborated. Moreover, the position of nitrogen atom on the PTD unit plays an important role in deciding the photophysical and electrochemical properties. By now, DCPiPTD-based OPV device could achieve PCE up to 6.6%, which is promising for further device optimization. The third chapter illustrates the design and syntheses of molecules utilized as two-photon absorption materials. In addition to cyano-substituted DDTDCBT, novel 1-methylpiperazine (MP) -based molecules DMPPhBT and DMPPhDCBT were designed to enhance the water solubility for biomedical application. 2PEF spectra of neutral molecules DDTDCBT, DMPPhBT, and DMPPhDCBT as well as organic counterion pairs DMPPhBT-MeI and DMPPhDCBT-MeI were preliminarily measured. In the last chapter, two quinoxaline-based molecules 56p-QN and 56m-QN were synthesized as electron acceptors for exciplex-based OLEDs. With elongated conjugated backbone attached by electron-withdrawing cyano groups, the energy levels of the two molecules are lowered significantly. Blend films of these two electron acceptors with appropriate electron donors exhibited exciplex characteristics with high photoluminescence quantum yields (PLQYs). Lastly, OLED devices based on these exciplex systems with suitable fluorescent emitters showed low turn-on voltages and relatively high external quantum efficiencies (EQE) among OLEDs in the range of near infrared emission.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:50:47Z (GMT). No. of bitstreams: 1
U0001-1308202015230800.pdf: 10579301 bytes, checksum: b96dfe5da628aabb58ed81b69fd6fc93 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContents
中文摘要 I
Abstract II
Contents IV
List of Figures VIII
List of Schemes XIV
List of Tables XV
List of Molecules XVII
Chapter 1. Introduction of organic functional materials 1
1.1 Development of organic functional materials 1
1.1.1 Organic photovoltaics (OPVs) 2
1.1.2 Two-photon absorption (2PA) materials 3
1.1.3 Organic light-emitting diodes (OLEDs) 5
1.2 General designing strategies of organic functional materials 6
1.2.1 Degree of π-electron delocalization 7
1.2.2 Donor-Acceptor type structure 9
1.2.3 Planarity 11
1.3 References 13
Chapter 2. Pyridothiadiazole (PTD) and dicyanobenzothiadiazole (DCBT)–based molecules for organic photovoltaics (OPVs) 16
2.1 Introduction 16
2.1.1 Working principle of organic photovoltaics 16
2.1.2 Essential parameters in organic photovoltaics 17
2.1.3 Classification of organic photovoltaics 19
2.1.4 Designing strategies 24
2.2 Molecular design and synthesis 26
2.2.1 Molecular design 26
2.2.2 Synthesis 33
2.3 Results 41
2.3.1 Photophysical properties 41
2.3.2 Electrochemical properties 43
2.3.3 Thermal properties 46
2.3.4 Crystal structure analysis 46
2.3.5 Theoretical analysis 49
2.3.6 Organic photovoltaic device performance 51
2.4 Conclusion 53
2.5 References 55
Chapter 3. Cyano-substituted Benzothiadiazole-based Two-Photon Absorption (2PA) Emitters 59
3.1 Introduction 59
3.1.1 Fundamentals of a two-photon absorption process 59
3.1.2 Measurement of two-photon absorption cross-section (δ) value 61
3.1.3 Designing strategies 63
3.2 Molecular design and synthesis 65
3.2.1 Molecular design 65
3.2.2 Synthesis 69
3.3 Results 72
3.3.1 Photophysical properties 72
3.3.2 Electrochemical properties 78
3.3.3 Thermal properties 80
3.3.4 Theoretical analysis 81
3.3.5 Two-photon excited fluorescence and water solubility 87
3.4 Conclusion 94
3.5 References 96
Chapter 4. Cyano-substituted quinoxaline-based materials for organic light-emitting diodes (OLEDs) 99
4.1 Introduction 99
4.1.1 Working principle of organic light-emitting diodes 99
4.1.2 Host-guest system and energy transfer mechanism 100
4.1.3 Development of OLEDs 103
4.1.4 Exciplex OLEDs 105
4.1.5 Near infrared OLEDs 107
4.2 Molecular design and synthesis 109
4.2.1 Molecular design 109
4.2.2 Synthesis 113
4.3 Results 114
4.3.1 Photophysical properties 114
4.3.2 Electrochemical properties 122
4.3.3 Thermal properties 125
4.3.4 Theoretical analysis 125
4.3.5 Application in exciplex OLEDs 127
4.4 Conclusion 139
4.5 References 140
Chapter 5. Experimental section 143
5.1 Instrumentation 143
5.2 Experimental details 146
Appendix A. 1H and 13C NMR Spectra 165
Appendix B. TGA and X-ray crystallography Data 184
 
List of Figures
Figure 1-1. Certified record high of power conversion efficiencies for various photovoltaic technologies to date. 3
Figure 1-2. (a) The instrumentation of a two-photon microscope, (b) the schematic diagram of a photodynamic reaction process. 5
Figure 1-3. (a) Samsung Galaxy Fold, (b) Apple iPhone X with OLED displays. 6
Figure 1-4. (a) The effect of increasing the repeating units on the energy levels, and (b) the influence of increasing the proportion of quinoid form on the energy gap. 8
Figure 1-5. (a) PBDB-T reported by Zhan et al., and (b) molecule 2 and 3 reported by Marder et al. 9
Figure 1-6. Hybridization of molecular orbitals of donor and acceptor units in a D-A type molecule. 10
Figure 1-7. (a) Chemical structure and (b) HOMO/LUMO distribution of 4CzIPN reported by Adachi et al. 11
Figure 1-8. (a) Twisted TADF emitters reported by Yasuda et al., (b) ITIC reported by Zhan et al. 13
Figure 2-1. (a) The schematic OPV device architectures of a standard device, (b) the working mechanism of donor-acceptor heterojunction organic photovoltaics. 17
Figure 2-2. A typical current-voltage characteristic (J-V curve) of an OPV device and the relationship of essential parameters. 19
Figure 2-3. Supposed structure of BHJ and BLHJ devices. 20
Figure 2-4. D18-based polymer solar cells reported by Ding et al. 21
Figure 2-5. (a) Chemical structures and (b) UV-Vis absorption profiles of C60, C70, [60]PCBM and [70]PCBM. 23
Figure 2-6. Schematic diagram of a tandem solar cell device composed of two sub-cells with complementary absorption profiles. 24
Figure 2-7. (a) Schematic diagram of energy level alignment of electron donor and acceptor, and (b) spectral photon flux density in the standardized AM 1.5 G illumination conditions. 26
Figure 2-8. Chemical structures of DTDCPB and DTDCTB. 27
Figure 2-9. Chemical structures of 4, DTS(PTTh2)2 and 6. 29
Figure 2-10. Molecular structures of P(Ge-DTDCNBT) and P(IDT-DTDCNBT). 31
Figure 2-11. Chemical structures of (a) PPDT2FBT and PPDT2CNBT, and (b) CNDTBT-IDTT-FINCN. 32
Figure 2-12. Target molecules DCPoPTD, DCPiPTD and DTDCPDCBT. 33
Figure 2-13. UV-Vis absorption spectra of DTDCPB, DCPoPTD and DCPiPTD in 10 -5 M DCM solution. 43
Figure 2-14. (a) Cyclic voltammograms of DCPoPTD and DCPiPTD, (b) energy level alignment of DTDCPB, DCPoPTD and DCPiPTD. 45
Figure 2-15. Flank and anti-parallel structures of DCPoPTD and DCPiPTD. 48
Figure 2-16. Neighboring and overall crystal packing of DCPoPTD and DCPiPTD. 48-49
Figure 2-17. Optimized HOMO and LUMO distribution of DCPoPTD and DCPiPTD. 50
Figure 2-18. (a) J-V characteristic and (b) EQE spectrum for DCPiPTD-based OPV device. 52
Figure 3-1. Jablonski diagrams of the (a) one-photon and (b) two-photon excited fluorescence processes. 60
Figure 3-2. Instrumentation of (a) the z-scan method and (b) the two-photon excited fluorescence (2PEF) method. 62
Figure 3-3. Typical (a) centrosymmetric and (b) non-centrosymmetric molecules reported by Marder et al. 65
Figure 3-4. Some benzothiadiazole-based two-photon absorption materials reported by (a) Mataka et al., (b) Belfield et al., and (c) Hudson et al. 66
Figure 3-5. Chemical structures of molecules 1 and 4 reported by Cho et al. 67
Figure 3-6. Mtphagy Dye reported by Okuma et al. 68
Figure 3-7. Target molecules DDTDCBT, DMPPhBT, DMPPhDCBT, DMPPhBT-MeI and DMPPhDCBT-MeI. 69
Figure 3-8. (a) UV-Vis spectra and (b) FL spectra of DTPBT, DDTDCBT, DMPPhBT and DMPPhDCBT in 10-5 M DCM solution. 74
Figure 3-9. UV-Vis spectra and PL spectra of DMPPhBT-MeI and DMPPhDCBT-MeI. 76
Figure 3-10. PL spectra under oxygen condition for DDTDCBT and DMPPhDCBT measured in toluene solution. 77-78
Figure 3-11. (a) Cyclic voltammograms of DDTDCBT, DMPPhBT and DMPPhDCBT, (b) energy level alignment of DTPBT, DDTDCBT, DMPPhBT and DMPPhDCBT. 79-80
Figure 3-12. HOMO and LUMO distributions of DDTDCBT, DMPPhBT, DMPPhDCBT, DMPPhBT-MeI and DMPPhDCBT-MeI. 82-83
Figure 3-13. S1 and T1 NTOs of DDTDCBT, DMPPhBT, DMPPhDCBT, DMPPhBT-MeI and DMPPhDCBT-MeI. 86-87
Figure 3-14. (a) 2PEF spectra and (b) excitation wavelength-2PEF intensity correlation of DTPBT in 1 mM DCM solution. 89
Figure 3-15. (a) 2PEF spectra and (b) excitation wavelength-2PEF intensity correlation of DDTDCBT in 1 mM DCM solution. 89
Figure 3-16. (a) 2PEF spectra and (b) excitation wavelength-2PEF intensity correlation of DMPPhBT in 1 mM DMSO solution. 91
Figure 3-17. 2PEF spectra of (a) DMPPhBT and (b) DMPPhDCBT in 5% DMSO water solution. 91
Figure 3-18. (a) 2PEF spectra and (b) excitation wavelength-2PEF intensity correlation of DMPPhBT-MeI in 1 mM DMSO solution. 93
Figure 3-19. (a) 2PEF spectra and (b) excitation wavelength-2PEF intensity correlation of DMPPhDCBT-MeI in 5% v/v DMSO water solution. 94
Figure 4-1. Working principle and simplified device architecture of an OLED device. 100
Figure 4-2. Schematic diagrams of (a) the Förster energy transfer process and (b, c) the Dexter energy transfer process. 102
Figure 4-3. Schematic diagrams of emission mechanism of the three generations of OLEDs. 105
Figure 4-4. (a) Schematic energy level diagram of exciplex formation upon photoexcitation, (b) schematic diagram of homo-molecular and hetero-molecular excitons in conventional and exciplex OLEDs. 107
Figure 4-5. A novel exciplex cohost system with selected fluorescent molecules reported by Wong et al. 109
Figure 4-6. (a) Ac-CNP reported by Yasuda et al. and (b) 6,7-DCQx-Ac and 5,8-DCQx-Ac reported by Lee et al. 110
Figure 4-7. (a, b) TPA-PZCN and W1 reported by Liao et al., (c) o-ACN, m-ACN and p-ACN reported by Adachi et al. 111-112
Figure 4-8. Target molecules 56p-QN and 56m-QN. 112-113
Figure 4-9. UV-Vis and PL spectra of (a) p-CN, 47p-QN and 56p-QN and (b) m-CN, 47m-QN and 56m-QN in 10-5 M DCM solution. 116
Figure 4-10. UV-Vis absorption, photoluminescence and phosphorescence spectra of (a) 56p-QN and (b) 56m-QN in neat film. 118
Figure 4-11. Chemical structures and neat-film UV-Vis/ PL/ Phos spectra of (a) Cbz2-HPB and (b) CPTBF. 119
Figure 4-12. Steady-state and time-resolved PL spectra of (a) Cbz2-HPB: 56p-QN, (b) Cbz2-HPB: 56m-QN, (c) CPTBF: 56p-QN, and (d) CPTBF: 56m-QN in blend films. 121
Figure 4-13. Cyclic voltammograms of 56p-QN, 56m-QN, 47p-QN and 47m-QN. 124
Figure 4-14. Optimized conformations and the corresponding HOMO and LUMO populations of 56p-QN and 56m-QN, 47p-QN and 47m-QN at their ground states. 126-127
Figure 4-15. Molecular structures of organic molecules used in the device architecture. 128
Figure 4-16. The device architecture and energy level alignment of (a) Cbz2-HPB-based and (b) CPTBF-based non-doped devices. 130
Figure 4-17. (a) J-V-L characteristics, (b) EQE-PCE-L characteristics, and (c) normalized EL spectra for the Cbz2-HPB: 56p-QN-, Cbz2-HPB: 56m-QN-, CPTBF: 56p-QN-, and CPTBF: 56m-QN-based devices. 131
Figure 4-18. The doped device architecture and energy level alignment of (a) Cbz2-HPB-based and (b) CPTBF-based devices. 135
Figure 4-19. (a) J-V-R characteristics, (b) EQE-PCE-R characteristics, and (c) normalized EL spectra for Cbz2-HPB: 56p-QN and Cbz2-HPB: 56m-QN-based devices with TTD(SF)2 as dopant. 136
Figure 4-20. (a) J-V-R characteristics, (b) EQE-PCE-R characteristics, and (c) normalized EL spectra for Cbz2-HPB: 56p-QN, Cbz2-HPB: 56m-QN, CPTBF: 56p-QN, and CPTBF: 56m-QN-based devices with TTD(Cz)2 as dopant. 137-138
 
List of Schemes
Scheme 2-1. Retrosynthesis of DCPoPTD and DCPiPTD. 35
Scheme 2-2. Retrosynthesis of DTDCPDCBT. 36
Scheme 2-3. The synthesis of DCPoPTD. 37
Scheme 2-4. The synthesis of DCPiPTD. 38
Scheme 2-5. The synthesis of compound 8. 39
Scheme 3-1. Retrosynthesis of DDTDCBT, DMPPhBT and DMPPhDCBT. 70
Scheme 3-2. Syntheses of DDTDCBT, DMPPhBT and DMPPhDCBT. 71
Scheme 3-3. Syntheses of DMPPhBT-MeI and DMPPhDCBT-MeI. 71
Scheme 4-1. The retrosynthesis of 56p-QN and 56m-QN. 113
Scheme 4-2. The synthesis of 56p-QN and 56m-QN. 114
 
List of Tables
Table 2-1. Unsuccessful reaction conditions for the Knoevenagel condensation reaction of 8. 40-41
Table 2-2. Photophysical properties and thermal properties of DTDCPB, DCPoPTD and DCPiPTD. 43
Table 2-3. Electrochemical properties of DTDCPB, DCPoPTD and DCPiPTD. 45
Table 2-4. Calculated electronic transition characteristics of DCPoPTD and DCPiPTD. 51
Table 2-5. OPV device performance under AM 1.5G simulated solar illumination. 52
Table 3-1. Photophysical and thermal properties of DTPBT, DDTDCBT, DMPPhBT and DMPPhDCBT. 74
Table 3-2. Photophysical properties of DMPPhBT-MeI and DMPPhDCBT-MeI. 76
Table 3-3. Electrochemical properties of DTPBT, DDTDCBT, DMPPhBT and DMPPhDCBT. 80
Table 3-4. Calculated S0 state electronic transition characteristics of DDTDCBT, DMPPhBT, DMPPhDCBT, DMPPhBT-MeI and DMPPhDCBT-MeI. 84
Table 3-5. Calculated S1 state electronic transition characteristics of DDTDCBT, DMPPhBT, DMPPhDCBT, DMPPhBT-MeI and DMPPhDCBT-MeI. 87
Table 4-1. Photophysical properties of p-CN, m-CN, 47p-QN, 47m-QN, 56p-QN and 56m-QN in 10-5 M DCM solution. 116
Table 4-2. Photophysical properties of 56p-QN and 56m-QN in neat film. 118
Table 4-3. PLQY and delay time of 56p-QN and 56m-QN-based blend films. 122
Table 4-4. Electrochemical properties of p-CN, m-CN, 56p-QN, 56m-QN, 47p-QN and 47m-QN. 124
Table 4-5. Thermal properties of p-CN, m-CN, 47p-QN, 47m-QN, 56p-QN and 56m-QN. 125
Table 4-6. Examination of OLED device performance for Cbz2-HPB: 56m-QN binary-blended devices with different ETL materials. 130
Table 4-7. OLED device performance of 56p-QN and 56m-Q–based non-doped devices. 132
Table 4-8. Photophysical and electrochemical properties of TTD(SF)2 and TTD(Cz)2. 135-136
Table 4-9. OLED device performance of exciplex-based devices with TTD(SF)2 as dopant. 136-137
Table 4-10. OLED device performance of exciplex-based devices with TTD(Cz)2 as dopant. 138
dc.language.isoen
dc.title以苯并噻二唑及喹喔啉衍生物為主體之有機功能性材料的設計、合成與性質
zh_TW
dc.titleDesign, Synthesis and Characteristic of 2,1,3-Benzothiadiazole Derivative and Quinoxaline Derivative-Based Organic Functional Materials
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0003-1000-135X
dc.contributor.oralexamcommittee劉舜維(Shun-Wei Liu),洪文誼(Wen-Yi Hung)
dc.subject.keyword有機太陽能電池,雙光子吸收材料,有機發光二極體,zh_TW
dc.subject.keywordOrganic photovoltaics,Two-photon absorption materials,Organic light-emitting diodes,en
dc.relation.page192
dc.identifier.doi10.6342/NTU202003269
dc.rights.note未授權
dc.date.accepted2020-08-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-1308202015230800.pdf
  未授權公開取用
10.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved