請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18053完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝國煌(Kuo-Huang Hsieh) | |
| dc.contributor.author | Chung-Chiang Yu | en |
| dc.contributor.author | 游仲強 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:49:42Z | - |
| dc.date.copyright | 2015-08-11 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-10 | |
| dc.identifier.citation | [1] R. H. Thurston, New York: D. Appleton and Company, 1878
[2] I. E. Agency, World Energy Outlook, 2012. [3] German advisory council on global change 2003. [4] REN21, Renewables Global Status Report, 2012. [5] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Journal of the American Chemical Society 2009, 131, 6050-6051. [6] H. P. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. R. Hong, J. B. You, Y. S. Liu and Y. Yang, Science 2014, 345, 542-546. [7] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science 2012, 338, 643-647. [8] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith and L. M. Herz, Advanced Materials 2014, 26, 1584-1589. [9] V. D'Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith and A. Petrozza, Nature Communications 2014, 5. [10] G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar and T. C. Sum, Science 2013, 342, 344-347. [11] J. A. Christians, R. C. Fung and P. V. Kamat, Journal of the American Chemical Society 2014, 136, 758-764 [12] O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin and H. J. Bolink, Nature Photonics 2014, 8, 128-132. [13] P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon and H. J. Snaith, Nature Communications 2013, 4. [14] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel and S. I. Seok, Nature Photonics 2013, 7, 487-492. [15] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nature 2013, 499, 316-+. [16] Y. Chen, T. Chen and L. Dai, Advanced Material 2015, 27, 1053-1059 [17] A. G. Martin, E. Keith and Yoshihi, Solar cell efficiency tables (Ver.38) 2011, 19, 565-572. [18] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, Progress in Photovoltaics 2008, 16, 235-239 [19] H. Zhou, L. Yang and W. You, Macromolecules 2012, 45, 607-632. [20] J. C. Bijleveld, A. P. Zoombelt, S. G. J. Mathijssen, M. M. Wienk, M. Turbiez, D. M. de Leeuw and R. A. J. Janssen, Journal of the American Chemical Society 2009, 131, 16616-+. [21] N. S. Lewis, Science 2007, 315, 798-801 [22] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science 1995, 270, 1789-1791. [23] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nature Photonics 2009, 3, 297-U295. [24] R. C. Coffin, J. Peet, J. Rogers and G. C. Bazan, Nature Chemistry 2009, 1, 657-661. [25] B. Oregan and M. Gratzel, Nature 1991, 353, 737-740. [26] M. Gratzel, Nature 2001, 414, 338-344 [27] A. Hagfeldt and M. Gratzel, Chemical Reviews 1995, 95, 49-68. [28] A. Hagfeldt and M. Gratzel, Accounts of Chemical Research 2000, 33, 269-277. [29] H. Sakamoto, S. Igarashi, K. Niume and M. Nagai, Organic Electronics 2011, 12, 1247-1252. [30] D. Hwang, S. M. Jo, D. Y. Kim, V. Armel, D. R. MacFarlane and S.-Y. Jang, Acs Applied Materials & Interfaces 2011, 3, 1521-1527. [31] J. G. Xue, S. Uchida, B. P. Rand and S. R. Forrest, Applied Physics Letters 2004, 85, 5757-5759. [32] J. G. Xue, B. P. Rand, S. Uchida and S. R. Forrest, Advanced Materials 2005, 17, 66+. [33] M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee and S. T. Lee, Applied Physics Letters 2007, 91. [34] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. Macdiarmid, Physical Review Letters 1977, 39, 1098-1101. [35] R. F. Service, Science 2011, 332, 293-293. [36] J. Chen and Y. Cao, Accounts of Chemical Research 2009, 42, 1709-1718. [37] Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chemical Reviews 2009, 109, 5868-5923. [38] A. Facchetti, Chemistry of Materials 2010, 23, 733-758. [39] D. Kearns and M. Calvin, Journal of Chemical Physics 1958, 29, 950. [40] C. W. Tang, Applied Physics Letters 1986, 48, 183. [41] N. S. Sariciftci, L. Smilowitz, A. J. Heegel and F. Wudl, Science 1992, 258, 1474. [42] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science 1995, 270, 1789. [43] H. Spanggaard and F. C. Krebs, Solar Energy Materials and Solar Cells 2004, 83, 125-146. [44] D. A. Skoog , D. M. West and F. J. Holler, Saunder College Pub 1988. [45] J. R. Lakowicz, Kluwer Academic 1999. [46] M. Pope and C. E. Swenberg, Oxford University Press: Oxford 1999. [47] J. Cornil, D. A. dos Santos, X. Crispin, R. Silbey and J. L. Brédas, Journal of the American Chemical Society 1998, 120, 1289-1299. [48] 葉名倉 和 蕭全佑, 國科會高瞻自然科學教學資料平台 2010. [49] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science 1992, 258, 1474-1476. [50] 張正華, 李陵嵐, 葉楚平 和 楊平華, 北京:化學工業出版社 2006. [51] T. Kietzke, Advances in OptoElectronics 2007, 2007. [52] B. C. Thompson and J. M. J. Fréchet, Angewandte Chemie International Edition 2008, 47, 58-77. [53] S. Guenes, H. Neugebauer and N. S. Sariciftci, Chemical Reviews 2007, 107, 1324-1338. [54] E. Bundgaard and F. C. Krebs, Solar Energy Materials and Solar Cells 2007, 91, 954-985. [55] C. J. Brabec, V. Dyakonov, J. Parisi and N. S. Sariciftci, Springer 2003. [56] W. L. Ma, C. Y. Yang, X. Gong, K. Lee and A. J. Heeger, Advanced Functional Materials 2005, 15, 1617-1622. [57] M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. L. Brabec, Advanced Materials 2006, 18, 789+. [58] M. D. Perez, C. Borek, S. R. Forrest and M. E. Thompson, Journal of the American Chemical Society 2009, 131, 9281-9286. [59] K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas and J. V. Manca, Nature Materials 2009, 8, 904-909. [60] L. Yang, H. Zhou and W. You, Journal of Physical Chemistry C 2010, 114, 16793-16800. [61] 胡中為, 南京大學出版社 2003. [62] in Newport Oriel Instruments, Vol. Http://www.newport.com/oriel [63] in American Society for Testing and Materials, Vol. Http://www.astm.org. [64] A. R. Chakhmouradian and R. H. MITCTIELL, The Canadian Mineralogist 1997, 953–969. [65] H. R. Wenk and A. Bulakh, New York, NY: Cambridge University Press 2004,413 [66] H. D. Megaw, Nature 1945, 155, 484-485. [67] Z. Cheng and J. Lin, CrystEngComm 2010, 12, 2646. [68] D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess and A. M. Guloy, Science 1995, 267, 1473-1476. [69] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, Nanoscale 2011, 3, 4088-4093. [70] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel and N. G. Park, Scientific Reports 2012, 2, 591. [71] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nature 2013, 499, 316-319. [72] M. Liu, M. B. Johnston and H. J. Snaith, Nature 2013, 501, 395-398. [73] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Science 2014, 345, 542-546. [74] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen, Advanced Materials 2013, 25, 3727-3732. [75] Y. Chen, T. Chen and L. Dai, Advanced Materials 2015, 27, 1053-1059. [76] P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin and A. K. Jen, Advanced Materials 2014, 26, 3748-3754. [77] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, Advanced Functional Materials 2014, 24, 151-157. [78] H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song and J. Y. Kim, Nanoscale 2014, 6, 6679-6683. [79] C. Zuo and L. Ding, Nanoscale 2014, 6, 9935-9938. [80] C. Y. Chang, C. Y. Chu, Y. C. Huang, C. W. Huang, S. Y. Chang, C. A. Chen, C. Y. Chao and W. F. Su, ACS Applied Materials Interfaces 2015, 7, 4955-4961. [81] E. Sharmin and F. Zafar, InTech 2012. [82] G. Avar, Kunststoffe international 2008 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18053 | - |
| dc.description.abstract | 本研究乃合成具有聚乙二醇鏈段的聚氨酯,並將其添加到含有氯化鉛和甲基碘化胺的鈣鈦礦前驅物溶液中,改善鈣鈦礦太陽能電池的穩定性及效率。
本研究利用利用紫外光/可見光分光光譜儀(UV/Visible spectroscopy, UV-vis)測量添加了不同比例的聚氨酯後,所形成的鈣鈦礦結晶在紫外光-可見光區的吸光範圍及強度,瞭解其變化;利用X-光繞射儀(X-Ray Diffraction, XRD)測量不同添加量的聚氨酯對於鈣鈦礦結晶強度的影響;利用掃描式電子顯微鏡(Scanning electron microscope, SEM)觀察聚氨酯對鈣鈦礦前驅物溶液的成膜性的影響;利用原子力顯微鏡(Atomic force microscopy, AFM),觀察添加聚氨酯對主動層的表面粗糙度的影響。 由結果可知,當添加100:1(鈣鈦礦重:聚氨酯重)的聚氨酯後,可得到最佳效率,從8.08 %提升到13.16 %,提升超過60 %,而平均效率從6.5 %提升到12.67 %,近乎一倍的效果,填充因子更可以達到接近70 %,而標準差則從1.80降到0.43,由此可知元件穩定性已有所提升。 | zh_TW |
| dc.description.abstract | In this study, a kind of polyurethane which contains the polyethylene glycol segments is successfully synthesized. By adding the synthesized polyurethane into the perovskite precursor solution which composed by Lead (Π) chloride (PbCl2) and methylammonium iodide (MAI) we can enhance the stability and power efficiency of perovskite solar cell.
To understand the change of light-harvesting ability of perovskite crystal with different amount of polyurethane additive, an UV/Visible spectroscopy (UV-vis) is chosen. X-Ray Diffraction (XRD) are used to measure the change of perovskite crystal’s intensity with different amount of polyurethane additive. Scanning electron microscope (SEM) helps us know how does the polyurethane affects the film formation ability of perovskite precursor solution. We use the Atomic force microscopy (AFM) to observe the change of surface roughness with different ratio of polyurethane additive. By adding the polyurethane in a 100:1 (perovskite:polyurethane) weight ratio, the best power efficiency can be enhance from 8.08 % up to 13.16 % which is 60 % increase compared to the standard. The average power efficiency can reach 12.67 % nearly twice of the standard (6.5 %). The fill factor can be reach almost 70 % and the standard derivation is reduced from 1.80 to 0.43. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:49:42Z (GMT). No. of bitstreams: 1 ntu-104-R02524014-1.pdf: 2818117 bytes, checksum: 50d3306898683de5a2360b8076a619a4 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書..........................................................................................................# 謝誌 I 摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 X Chapter 1 緒論 1 1-1 前言 1 1-2 研究動機 3 Chapter 2 文獻回顧 4 2-1 太陽能電池的種類 4 2-2 有機太陽能電池發展簡介 9 2-3 有機太陽能電池簡介──工作原理 11 2-3-1 能量轉移機制 11 2-3-2 運作機制 13 2-4 有機太陽能電池結構分類 15 2-5 有機太陽能電池簡介──元件特性參數 18 2-5-1 等效電路 18 2-5-2 開路電壓(Open-circuit photovoltage, Voc) 20 2-5-3 短路電流 21 2-5-4 填充因子(Fill factor, FF) 21 2-5-5 能量轉換效率(Power conversion efficiency, η) 22 2-5-6 外部量子效率(External Quantum Efficiency, EQE) 22 2-6 標準太陽光譜 24 2-7 鈣鈦礦結構簡介 26 2-8 鈣鈦礦太陽能電池發展簡介 31 2-9 利用添加物來提升鈣鈦礦太陽能電池之文獻回顧 34 2-10 聚胺酯簡介 35 Chapter 3 實驗部分 36 3-1 實驗藥品與溶劑 36 3-2 實驗儀器 40 3-3 PU合成步驟 47 Chapter 4 結果與討論 48 4-1 元件製備 48 4-1-1 FTO玻璃的準備 48 4-1-2 加上緻密二氧化鈦(c-TiO2)層 48 4-1-3 準備鈣鈦礦前驅物溶液 49 4-1-4 加上鈣鈦礦層 49 4-1-5 加上電洞傳導層2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴 (Spiro-OMeTAD) 50 4-1-6 真鍍上金電極 50 4-2 實驗結果 52 4-2-1 標準片的參數決定-退火溫度 52 4-2-2 標準片的參數決定-前驅物濃度 53 4-2-3 在鈣鈦礦前驅物溶液中添加聚胺酯對效率的影響 55 4-2-4 在Spiro-OMeTAD溶液中添加聚胺酯對效率的影響 62 4-3 物理性質探討 64 4-3-1 X-光繞射分析(XRD) 64 4-3-2 可見光,紫外光吸收分析 65 4-3-3 掃描式電子顯微鏡(SEM)分析 66 4-3-4 原子力顯微鏡(AFM)分析 67 Chapter 5 結論 69 Chapter 6 參考文獻 70 | |
| dc.language.iso | zh-TW | |
| dc.title | 利用聚氨酯提升鈣鈦礦太陽能電池之穩定性研究 | zh_TW |
| dc.title | Synthesis and Characterization of Polyurethane as an Additive to Enhance the Stability and Performance for Perovskite Solar Cell | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林江珍(Jiang-Jen Lin),莊清男(Ching-Nan Chuang),陳思賢 | |
| dc.subject.keyword | 鈣鈦礦太陽能電池,聚氨酯,添加劑,穩定性, | zh_TW |
| dc.subject.keyword | perovskite solar cell,polyurethane,additive,stability, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-07-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
