請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18038完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李嗣涔 | |
| dc.contributor.author | Kai-Jyun Chen | en |
| dc.contributor.author | 陳凱駿 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:49:14Z | - |
| dc.date.copyright | 2015-07-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-13 | |
| dc.identifier.citation | [1]. E. Y. i. T. Department of Health. Department of Health, Executive Yuan in Taiwan “http://www.mohw.gov.tw/EN/Ministry/Statistic_P.aspx?f_list_no=474&fod_list_no=5045&doc_no=45981”
[2]. H.P. Chan, C. Lewis, and P.S. Thomas, Exhaled breath analysis: novel approach for early detection of lung cancer. Lung Cancer, 63(2): p. 164-168. (2009). [3]. B. Hochhegger, E. Marchiori, O. Sedlaczek, K. Irion, C. Heussel, S. Ley, J. Ley-Zaporozhan, A.S. Souza Jr., and H. Kauczor, MRI in lung cancer: a pictorial essay. (2014) [4]. F. Laurent, M. Montaudon, and O. Corneloup, CT and MRI of lung cancer. Respiration, 73(2): p. 133-142. (2006). [5]. C.I. Henschke, D.F. Yankelevitz, D.M. Libby, M.W. Pasmantier, J.P. Smith, and O.S. Miettinen, Survival of patients with stage I lung cancer detected on CT screening. The New England journal of medicine, 355(17): p. 1763-1771. (2006). [6]. A. Antczak, Markers of oxidative stress in exhaled breath condensate. NATO Science Series, Series, 1: p. 333-337. (2002). [7]. M. Schweigkofler, and R. Niessner, Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC-MS/AES analysis. Environmental science & technology, 33(20): p. 3680-3685. (1999). [8]. M. Phillips, K. Gleeson, J.M.B. Hughes, J. Greenberg, R.N. Cataneo, L. Baker, and W.P. McVay, Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. The Lancet, 353(9168): p. 1930-1933. (1999). [9]. M. Phillips, R.N. Cataneo, A.R. Cummin, A.J. Gagliardi, K. Gleeson, J. Greenberg, R.A. Maxfield, and W.N. Rom, Detection of lung cancer with volatile markers in the breath. Chest Journal, 123(6): p. 2115-2123. (2003). [10]. W. Bertsch, Two‐Dimensional Gas Chromatography. Concepts, Instrumentation, and Applications–Part 1: Fundamentals, Conventional Two‐Dimensional Gas Chromatography, Selected Applications. Journal of High Resolution Chromatography, 22(12): p. 647-665. (1999). [11]. R.S. BelAiba, T. Djordjevic, A. Petry, K. Diemer, S. Bonello, B. Banfi, J. Hess, A. Pogrebniak, C. Bickel, and A. Görlach, NOX5 variants are functionally active in endothelial cells. Free Radical Biology and Medicine, 42(4): p. 446-459. (2007). [12]. P. Dekhuijzen, K. Aben, I. Dekker, L. Aarts, P. Wielders, C. Van Herwaarden, and A. Bast, Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 154(3): p. 813-816. (1996). [13]. C. Delclaux, B. Mahut, F. Zerah-Lancner, C. Delacourt, S. Laoud, D. Cherqui, C. Duvoux, A. Mallat, and A. Harf, Increased nitric oxide output from alveolar origin during liver cirrhosis versus bronchial source during asthma. American journal of respiratory and critical care medicine, 165(3): p. 332-337. (2002). [14]. B. Kiełbasa, A. Moeller, M. Sanak, J. Hamacher, M. Hutterli, A. Ćmiel, A. Szczeklik, and J.H. Wildhaber, Eicosanoids in exhaled breath condensates in the assessment of childhood asthma. Pediatric Allergy and Immunology, 19(7): p. 660-669. (2008). [15]. H. Morimatsu, T. Takahashi, T. Matsusaki, M. Hayashi, J. Matsumi, H. Shimizu, M. Matsumi, and K. Morita, An increase in exhaled CO concentration in systemic inflammation/sepsis. Journal of breath research, 4(4): p. 047103. (2010). [16]. P. Paredi, S.A. Kharitonov, and P.J. Barnes, Elevation of exhaled ethane concentration in asthma. American journal of respiratory and critical care medicine, 162(4): p. 1450-1454. (2000). [17]. S.G. Rhee, T.-S. Chang, W. Jeong, and D. Kang, Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Molecules and cells, 29(6): p. 539-549. (2010). [18]. F.L. Ricciardolo, P.J. Sterk, B. Gaston, and G. Folkerts, Nitric oxide in health and disease of the respiratory system. Physiological reviews, 84(3): p. 731-765. (2004). [19]. N.M. Tsoukias, and S.C. George, A two-compartment model of pulmonary nitric oxide exchange dynamics. Journal of Applied Physiology, 85(2): p. 653-666. (1998). [20]. M.P. McNeal, N. Moelders, M.U. Pralle, I. Puscasu, L. Last, W. Ho, A.C. Greenwald, J.T. Daly, E.A. Johnson, and T. George. Development of optical MEMS CO2 sensors. in International Symposium on Optical Science and Technology. International Society for Optics and Photonics. (2002) [21]. Y.A. Bakhirkin, A.A. Kosterev, C. Roller, R.F. Curl, and F.K. Tittel, Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection. Applied optics, 43(11): p. 2257-2266. (2004). [22]. J. Hodgkinson, and R.P. Tatam, Optical gas sensing: a review. Measurement Science and Technology, 24(1): p. 012004. (2013). [23]. H.M. Padhy, and P. Mishra, Detection of Liquefied and Gaseous form of CO2 Implementing New Method in Non-Dispersive Infrared Spectroscopy Sensor System. Global Journal of Science Frontier Research, 12(2-H). (2012). [24]. T.Y. Song Chen, and Kenzo Watanabe. A Simple, Low-Cost Non-Dispersive Infrared CO2 Monitor. in Sensors for Industry Conference. Houston, Texas, USA. (2002). [25]. Y. Wang, M. Nakayama, M. Yagi, M. Nishikawa, M. Fukunaga, and K. Watanabe, The NDIR CO2 monitor with smart interface for global networking. Instrumentation and Measurement, IEEE Transactions on, 54(4): p. 1634-1639. (2005). [26]. K. Yoo, H. Hong, M. Lee, S. Min, C. Park, W. Choi, and N. Min, Fabrication, characterization and application of a microelectromechanical system (MEMS) thermopile for non-dispersive infrared gas sensors. Measurement Science and Technology, 22(11): p. 115206. (2011). [27]. C. Calaza, E. Meca, S. Marco, M. Moreno, J. Samitier, L. Fonseca, I. Gracia, and C. Cane, Assessment of the final metrological characteristics of a MOEMS-based NDIR spectrometer through system modeling and data processing. Sensors Journal, IEEE, 3(5): p. 587-594. (2003). [28]. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho, Quantum cascade laser. Science, 264(5158): p. 553-556. (1994) [29]. J. Faist, F. Capasso, D.L. Sivco, A.L. Hutchinson, S.N.G. Chu, and A.Y. Cho, Short wavelength (λ∼ 3.4 μm) quantum cascade laser based on strained compensated InGaAs/AlInAs. Applied Physics Letters, 72(6): p. 680-682. (1998). [30]. C. Faugeras, S. Forget, E. Boer-Duchemin, H. Page, J.-Y. Bengloan, O. Parillaud, M. Calligaro, C. Sirtori, M. Giovannini, and J. Faist, High-power room temperature emission quantum cascade lasers at λ= 9 μm. Quantum Electronics, IEEE Journal of, 41(12): p. 1430-1438. (2005). [31]. M.N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2. Applied Physics Letters, 98(12): p. 121116. (2011). [32]. G. Lévêque, and O.J. Martin, Tunable composite nanoparticle for plasmonics. Optics letters, 31(18): p. 2750-2752. (2006). [33]. M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, and I. El-Kady, Photonic crystal enhanced narrow-band infrared emitters. Applied Physics Letters, 81(25): p. 4685-4687. (2002). [34]. F. Li, H. San, M. Cheng, and X. Chen. Micro-machined infrared emitter with metallic photonic crystals structure. in 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro-and Nano-Optical devices and Systems. International Society for Optics and Photonics. (2009) [35]. S.-Y. Lin, J. Moreno, and J. Fleming, Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Applied physics letters, 83(2): p. 380-382. (2003). [36]. S. Lin, J. Fleming, and I. El-Kady, Highly efficient light emission at λ= 1.5 μm by a three-dimensional tungsten photonic crystal. Optics letters, 28(18): p. 1683-1685. (2003). [37]. Q. Chen and D.R. Cumming, High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Optics express, 18(13): p. 14056-14062. (2010). [38]. J. Homola, S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54(1): p. 3-15. (1999). [39]. W.L. Barnes, A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature, 424(6950): p. 824-830. (2003). [40]. M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, High performance midinfrared narrow-band plasmonic thermal emitter. Applied physics letters, 89(17): p. 173116-173116-3. (2006). [41]. C.-Y. Chen, M.-W. Tsai, Y.-W. Jiang, Y.-H. Ye, Y.-T. Chang, and S.-C. Lee, Coupling of surface plasmons between two silver films in a plasmonic thermal emitter. Applied Physics Letters, 91(24): p. 243111-243111-3. (2007). [42]. H.-K. Fu, Y.-W. Jiang, M.-W. Tsai, S.-C. Lee, and Y.-F. Chen, A thermal emitter with selective wavelength: Based on the coupling between photonic crystals and surface plasmon polaritons. Journal of Applied Physics, 105(3): p. 033505. (2009). [43]. J.A. Schuller, T. Taubner, and M.L. Brongersma, Optical antenna thermal emitters. Nature Photonics, 3(11): p. 658-661. (2009). [44]. S. Tay, A. Kropachev, I.E. Araci, T. Skotheim, R.A. Norwood, and N. Peyghambarian, Plasmonic thermal IR emitters based on nanoamorphous carbon. Applied Physics Letters, 94(7): p. 071113. (2009). [45]. P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L.D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances. Applied Physics Letters, 98(7): p. 073111-073111-3. (2011). [46]. C.-W. Cheng, M.N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. Optics express, 20(9): p. 10376-10381. (2012). [47]. J. Hao, J. Wang, X. Liu, W.J. Padilla, L. Zhou, and M. Qiu, High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 96(25): p. 251104. (2010). [48]. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Infrared perfect absorber and its application as plasmonic sensor. Nano letters, 10(7): p. 2342-2348. (2010). [49]. I. Puscasu and W.L. Schaich, Narrow-band, tunable infrared emission from arrays of microstrip patches. Applied Physics Letters, 92(23): p. 233102. (2008). [50]. Y. Todorov, L. Tosetto, J. Teissier, A.M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, Optical properties of metal-dielectric-metal microcavities in the THz frequency range. Optics express, 18(13): p. 13886-13907. (2010). [51]. Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, Coupling of surface plasmons between two silver films in a Ag/SiO 2/Ag plasmonic thermal emitter with grating structure. Applied Physics Letters, 93(26): p. 263106-263106-3. (2008). [52]. Y.-W. Jiang, Y.-T. Wu, M.-W. Tsai, P.-E. Chang, D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, Characteristics of a waveguide mode in a trilayer Ag/SiO2/Au plasmonic thermal emitter. Optics Letters, 34(20): p. 3089-3091. (2009). [53]. B. Lee and Z. Zhang, Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. Journal of Applied Physics, 100(6): p. 063529. (2006). [54]. Y.-T. Wu, Y.-T. Chang, H.-H. Chen, H.-F. Huang, D.-C. Tzuang, Y.-W. Jiang, P.-E. Chang, and S.-C. Lee, Narrow bandwidth midinfrared waveguide thermal emitters. Photonics Technology Letters, IEEE, 22(15): p. 1159-1161. (2010). [55]. H.-H. Chen, Y.-W. Jiang, Y.-T. Wu, P.-E. Chang, Y.-T. Chang, H.-F. Huang, and S.-C. Lee, Narrow bandwidth and highly polarized ratio infrared thermal emitter. Applied Physics Letters, 97(16): p. 163112. (2010). [56]. H.-H. Chen, H.-H. Hsiao, H.-C. Chang, W.-L. Huang, and S.-C. Lee, Double wavelength infrared emission by localized surface plasmonic thermal emitter. Applied Physics Letters, 104: p. 083113. (2014). [57]. H.-H. Chen, Y.-T. Chang, S.-Y. Huang, F.-T. Chuang, C.-W. Yu, and S.-C. Lee, Two infrared emission modes with different wavelengths and orthogonal polarization in a waveguide thermal emitter. Applied Physics Letters, 112: p. 074325. (2012). [58]. B. Cole, R. Higashi, and R. Wood, Monolithic two-dimensional arrays of micromachined microstructures for infrared applications. Proceedings of the IEEE, 86(8): p. 1679-1686. (1998). [59]. T. Maier and H. Brückl, Wavelength-tunable microbolometers with metamaterial absorbers. Optics letters, 34(19): p. 3012-3014. (2009). [60]. F. Niklaus, C. Vieider, and H. Jakobsen. MEMS-based uncooled infrared bolometer arrays: a review. in Photonics Asia 2007. International Society for Optics and Photonics. (2007). [61]. S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, Wavelength selective uncooled infrared sensor by plasmonics. Applied Physics Letters, 100(2): p. 021111. (2012). [62]. S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber. Optical Engineering, 52(12): p. 127104-127104. (2013). [63]. R. Ambrosio, M. Moreno, J. Mireles, A. Torres, A. Kosarev, and A. Heredia, An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys. physica status solidi (c), 7(3‐4): p. 1180-1183. (2010). [64]. V. Malyarov, I.A. Khrebtov, Y.V. Kulikov, I.I. Shaganov, V.Y. Zerov, and N.A. Feoktistov. Comparative investigations of the bolometric properties of thin film structures based on vanadium dioxide and amorphous hydrated silicon. in International Conference on Photoelectronics and Night Vision Devices. International Society for Optics and Photonics. (1999). [65]. H.-H. Chen, Y.-C. Su, W.-L. Huang, C.-Y. Kuo, W.-C. Tian, M.-J. Chen, and S.-C. Lee, A plasmonic infrared photodetector with narrow bandwidth absorption. Applied Physics Letters, 105: p. 023109. (2014). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18038 | - |
| dc.description.abstract | 本論文主要研究利用多波段窄頻紅外線發射器以及室溫可操作的窄頻紅外線偵測器來實現多波段的二氧化碳氣體偵測系統。主要構想為藉由偵測二氧化碳在中紅外光的兩個窄頻吸收以及一個不會受到二氧化碳影響的波段來當作參考的信號使得整個氣體偵測系統可靠度更高。
我們在表面為隨機孔洞的波導型窄頻紅外線發射器上方製作結構為 金/二氧化矽/金 的光柵,而且這個光柵具有兩種不同的線寬。利用下方的波導模態以及上方的侷域型還有非侷域型模態來實現三波段的窄頻紅外線發射器。藉由探討覆蓋於窄頻紅外線偵測器上的非晶矽薄膜厚度與波長紅位移的關係來微調所要的偵測波段以及製作不同的窄頻紅外線偵測器。除此之外也利用波導模態來實現中紅外波段中波長較短的窄頻偵測器。 我們設計一個偵測系統來量測不同二氧化碳濃度,包含發射器腔體、氣體腔體、偵測器的載具以及上述的窄頻紅外線發射器與偵測器。藉由改變氣體腔體的長度以及窄頻紅外線發射器的發光強度,我們順利地偵測到人體吐出的二氧化碳濃度。利用不受二氧化碳影響的特性,當作參考信號用的偵測器也可以用來偵測窄頻紅外線發射器的發光強度,以監控光源的變化。 | zh_TW |
| dc.description.abstract | In this thesis, the CO2 gas sensing system with multi-wavelength detection is demonstrated by means of narrow bandwidth triple-wavelength thermal emitter and corresponding narrow bandwidth plasmonic photodetectors. In addition to detecting the two absorption of CO2 in mid-infrared spectrum, a reference signal which would not be absorbed by CO2 makes the whole system more reliable and can be used to calibrate the variation of the emitter.
Firstly, an Au/SiO2/Au grating structure with two widths is fabricated on top of a waveguide mode thermal emitter with random-hole patterned. With one waveguide mode generated from the bottom and a localized surface plasmon (LSP) mode and a propagating surface plasmon (SP) mode generated from the top, the triple-wavelength thermal emitter can be realized. By controlling the thickness of a-Si:H film on top of the plasmonic photodetector, the specific wavelength detection can be carried out. With waveguide mode photodetector, the short wavelength detection can be achieved. By designing an emitter chamber, a gas chamber, a detector holder and the devices discussed above, a CO2 gas sensing system with multi-wavelength detection is carried out. The CO2 concentration which is exhaled from a healthy human is successfully detected by varying the length of the gas chamber and the emission intensity of the thermal emitter. Besides, the reference detector can be used to detect the emission intensity from the triple-wavelength thermal emitter for monitoring the degeneration of the light source and make the whole system more reliable. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:49:14Z (GMT). No. of bitstreams: 1 ntu-104-R02941022-1.pdf: 4360001 bytes, checksum: df16f548e999d861a1420c9b2afeeb00 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III CONTENTS V LIST OF FIGURES VII LIST OF TABLES XII Chapter 1 1 Introduction 1 Chapter 2 10 Fundamentals of Surface Plasmons and the Fabrication Processes 10 2.1 The fundamentals of surface plasmons 10 2.2 Basic Process Flow 21 2.3 Measuring Systems 27 Chapter 3 30 Triple-Wavelength Thermal Emitter and the corresponding plasmonic photodetectors 30 3.1 Triple-Wavelength Thermal Emitter 33 3.2 Plasmonic Infrared Photodetector 44 3.3 Summary 52 Chapter 4 56 CO2 Gas Sensing System 56 4.1 Design of the CO2 Gas Sensing System 57 4.2 Operation mechanism 62 4.3 Detection with different CO2 concentration 64 4.4 Summary 67 Chapter 5 78 Conclusion and Future work 78 Bibliography 80 | |
| dc.language.iso | en | |
| dc.title | 多波段二氧化碳氣體偵測系統 | zh_TW |
| dc.title | CO2 Gas Sensing System with Multi-wavelength Detection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林浩雄,林清富,呂學士 | |
| dc.subject.keyword | 表面電漿子,二氧化碳偵測,紅外線發光元件,紅外線光偵測器, | zh_TW |
| dc.subject.keyword | Surface plasmon,CO2 detection,infrared thermal emitter,infrared photodetector, | en |
| dc.relation.page | 90 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-07-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
