Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18033
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭彥甫(Yan-Fu Kuo)
dc.contributor.authorKai-Jyun Huangen
dc.contributor.author黃凱均zh_TW
dc.date.accessioned2021-06-08T00:49:06Z-
dc.date.copyright2015-10-12
dc.date.issued2015
dc.date.submitted2015-07-15
dc.identifier.citation[1] Nirenberg, H., Neuerscheinung. Untersuchungen über die morphologische und biologische differenzierung in der Fusarium-sektion liseola, von dr. Helgard nirenberg (inst. F. Mykologie). Zeitschrift für Pflanzenernährung und Bodenkunde, 1977. 140(2): p. 243-243.
[2] Fischer, A.J., et al., Herbicide-resistant Echinochloa oryzoides and E. phyllopogon in California Oryza sativa fields. Weed Science, 2000. 48(2): p. 225-230.
[3] Hossain, K.S., Miah, M.A.T., and Bashar, M.A., Preferred rice varieties, seed source, disease incidence and loss assessment in bakanae disease. J. Agrofor. Environ, 2011. 5(2): p. 125-128.
[4] Ou, S.H., Rice diseases (2nd Edition). 1985: Commonwealth Mycological Institute. p. 262-272.
[5] Zainudin, N., Razak, A., and Salleh, B., Bakanae disease of rice in Malaysia and Indonesia: Etiology of the causal agent based on morphological, physiological and pathogenicity characteristics. Journal of Plant Protection Research, 2008. 48(4): p. 475-485.
[6] Yamanaka, S. and Honkura, R., Symptoms on rice seedlings inoculated with 'Bakanae' disease fungus, Fusarium moniliforme sheldon. Japanese Journal of Phytopathology, 1978. 44(1): p. 57-58.
[7] Desjardins, A.E., et al., Fusarium species from nepalese rice and production of mycotoxins and gibberellic acid by selected species. Applied and Environmental Microbiology, 2000. 66(3): p. 1020-1025.
[8] Carter, L.L.A., Leslie, J.F., and Webster, R.K., Population structure of Fusarium fujikuroi from California rice and water grass. Phytopathology, 2008. 98(9): p. 992-998.
[9] Amatulli, M.T., et al., Molecular identification of Fusarium spp. associated with Bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathology, 2010. 59(5): p. 839-844.
[10] Wulff, E.G., et al., Fusarium spp. associated with rice Bakanae: Ecology, genetic diversity, pathogenicity and toxigenicity. Environmental Microbiology, 2010. 12(3): p. 649-657.
[11] Jeon, Y.A., et al., Incidence, molecular characteristics and pathogenicity of Gibberella fujikuroi species complex associated with rice seeds from Asian countries. Mycobiology, 2013. 41(4): p. 225-233.
[12] Bashyal, B.M., et al., Pathogenicity, ecology and genetic diversity of the Fusarium spp. associated with an emerging Bakanae disease of rice (Oryza sativa L.) in India, in Microbial Diversity and Biotechnology in Food Security, R.N. Kharwar, et al., Editors. 2014, Springer India. p. 307-314.
[13] HoaiXuan, T. and Evelyn, B.G., Current research on fungal pathogens associated with rice, in Fungi From Different Substrates. 2014, CRC Press. p. 283.
[14] Leslie, J.F. and Summerell, B.A., The Fusarium Laboratory Manual. 2007: Blackwell Publishing.
[15] Hwang, I.S., et al., Evaluation of Bakanae disease progression caused by Fusarium fujikuroi in Oryza sativa L. Journal of Microbiology, 2013. 51(6): p. 858-865.
[16] Arnal Barbedo, J.G., Digital image processing techniques for detecting, quantifying and classifying plant diseases. SpringerPlus, 2013. 2(1): p. 1-12.
[17] Shen, W., et al. Grading method of leaf spot disease based on image processing. in Proceedings - International Conference on Computer Science and Software Engineering, CSSE 2008. 2008.
[18] Camargo, A. and Smith, J.S., Image pattern classification for the identification of disease causing agents in plants. Computers and Electronics in Agriculture, 2009. 66(2): p. 121-125.
[19] Sanyal, P., et al. Color texture analysis of rice leaves to diagnose deficiency in the balance of mineral levels towards improvement of crop productivity. in Proceedings - 10th International Conference on Information Technology, ICIT 2007. 2007. Rourkela, India.
[20] Kurniawati, N.N., et al. Investigation on image processing techniques for diagnosing paddy diseases. in SoCPaR 2009 - Soft Computing and Pattern Recognition 2009.
[21] Yao, Q., et al. Application of support vector machine for detecting rice diseases using shape and color texture features. in 2009 International Conference on Engineering Computation, ICEC 2009. 2009.
[22] Zhou, Z., et al., Rice plant-hopper infestation detection and classification algorithms based on fractal dimension values and fuzzy C-means. Mathematical and Computer Modelling, 2013. 58(3-4): p. 701-709.
[23] Hsu, C.C., et al., Standardization of the protocol for evaluating susceptibility of rice to the pathogen of Bakanae disease. Plant Pathology Bulletin, 2013. 22(3): p. 291-299.
[24] Yoshida, S., Fundamentals of rice crop science. 1981: International Rice Research Institute.
[25] Pham, B. and Pringle, G., Color correction for an image sequence. IEEE Computer Graphics and Applications, 1995. 15(3): p. 38-42.
[26] Hanbury, A. and Serra, J., Mathematical morphology in the L* a* b* colour space. Perancis: Centre de Morphologie Mathématique Ecole des Mines de Paris, 2001.
[27] Gonzalez, R.C. and Woods, R.E., Digital image processing (3rd edition). 2006: Prentice-Hall, Inc.
[28] Hotelling, H., Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 1933. 24(6): p. 417-441.
[29] Huang, T.C. and Chu, S.C. The occurrence and control of rice Bakanae disease in Taiwan. in Proceedings of Symposium on Achievements and Perspectives of Rice Protection in Taiwan. 2009. Taitung District Agricultural Research and Extension Station, Taiwan, ROC.
[30] Karov, I.K., Mitrev, S.K., and Kostadinovska, E.D., Gibberella fujikuroi (Sawada) wollenweber, the new parasitical fungus on rice in the Republic of Macedonia. Matica Srpska Journal of Natural Sciences, 2009(116): p. 175-182.
[31] León, K., et al., Color measurement in L*a*b* units from RGB digital images. Food Research International, 2006. 39(10): p. 1084-1091.
[32] Imura, J., On the angles between blades and culms in the accelerated rice seedlings caused by Gibberella fujikuroi. Japanese Journal of Phytopathology, 1940. 10(1): p. 45-48.
[33] Hsu, C.W., Chang, C.C., and Lin, C.J., A practical guide to support vector classification. 2003, Department of Computer Science, National Taiwan University.
[34] Chang, C.C. and Lin, C.J., Libsvm: A Library for support vector machines. ACM Transactions on Intelligent System Technology, 2011. 2(3): p. 1-27.
[35] Arlot, S. and Celisse, A., A survey of cross-validation procedures for model selection. Statistics Surveys, 2009. 4: p. 40-79.
[36] Zweig, M. and Campbell, G., Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clinical Chemistry, 1993. 39(4): p. 561-577.
[37] Hawkins, D.M., The problem of overfitting. Journal of Chemical Information and Computer Sciences, 2004. 44(1): p. 1-12.
[38] Huang, C.L. and Wang, C.J., A GA-based feature selection and parameters optimization for support vector machines. Expert Systems with Applications, 2006. 31(2): p. 231-240.
[39] Holland, J.H., Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. 1975, Oxford, England: U Michigan Press. p. 183.
[40] Hossain, K.S., Mia, M.A.T., and Bashar, M.A., New method for screening rice varieties against Bakanae disease. Bangladesh Journal of Botany, 2013. 42(2): p. 315-320.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18033-
dc.description.abstract本研究旨在以量化病徵的方式,觀察受徒長病感染的水稻植株之病徵,並提出利用機器視覺檢測植物病害的方法,來辨別出水稻徒長病。水稻徒長病是臺灣水稻古老病害之一,主要由病原真菌Fusarium fujikuroi所引起,水稻受感染後不易結穗,甚至在插秧前植株便已凋萎枯死,嚴重影響了水稻的收成。主要的傳播途徑是藉由帶菌的種子,播種後會成為二次感染源,在土壤中的感染源可感染插秧後的健康植株,因此必須在水稻生長早期進行檢測。然而,罹病植株其病徵變化複雜,不同的品種其變化也有所不同,所以本研究在建立檢測模型前,先對不同的水稻品種,作病徵觀察,以定義的量化特徵觀察染病與健康植株間的差異,這可以避免肉眼觀察的主觀性,且能以較精確的數值記錄;之後,以這些特徵,建立分類染病與健康植株之檢測模型。本研究所使用的水稻植株,皆在經過接種F. fujikuroi過程後種植3週,然後將健康與接種的植株取像,並得到量化的形狀與顏色特徵。在病徵觀察中,量化具不同感病性的品種之形狀特徵,從觀察的結果顯示,對於不同的水稻品種,接種的植株其植株寬、植株高寬比、第二莖節長及葉間夾角,與健康植株間的差異有較大的變化;而在徒長病檢測中,使用支持向量機,對臺南11號與豐錦二品種,進行分辨植株的健康狀況,也使用了基因演算法選出重要的特徵及最佳的分類器訓練參數,結果顯示平均準確度為87.92%,而染病植株平均正確預測度為91.77%。zh_TW
dc.description.abstractThis work aims to observe symptoms of Bakanae disease using quantified traits and propose an approach to detect Bakanae disease using machine vision. Bakanae disease, or “foolish seedling,” is a seed-borne disease of rice (Oryza sativa L.). Infected plants can yield empty panicles or perish, resulting in a loss of grain yield. The disease occurs most frequently when contaminated seeds are used. Once the seeds are contaminated, the pathogen Fusarium fujikuroi spreads in the field, and provides an initial site for secondary infection. Therefore, early detection of Bakanae disease is essential for disease control. Also, the symptoms of the disease are complex, and can vary with cultivars. Hence, morphological symptoms in rice of different cultivars were first observed and analyzed before developing models for distinguishing infected and healthy seedlings. In this study, rice seeds were inoculated with a conidial suspension of F. fujikuroi, and then cultivated in an incubator for 3 weeks. The inoculated and control seedlings were photographed for quantifying morphological and color traits. In symptom observation, the morphological traits of eight cultivars of different disease severity (DS) levels were quantified. The results indicated that large variation between the healthy and inoculated seedlings were observed in seedling width, aspect ratio, second-internode length and leaf angle. In disease detection, support vector machine (SVM) classifiers were developed for distinguishing the inoculated and healthy seedlings for the cultivars, Tainan 11 and Toyonishiki. A genetic algorithm was used for selecting essential traits and optimal model parameters for the SVM classifiers. The proposed approach distinguished inoculated and healthy seedlings with an accuracy of 87.92% and a negative predictive value of 91.77%.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:49:06Z (GMT). No. of bitstreams: 1
ntu-104-R02631020-1.pdf: 2596369 bytes, checksum: c100713de219f1ba47fb03fea096d7bb (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsACKNOWLEDGEMENTS i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF TABLES vii
LIST OF FIGURES viii
CHAPTER 1. INTRODUCTION 1
1.1 Bakanae disease 1
1.2 Symptoms on rice seedlings 1
1.3 Objectives 2
1.4 Organization 2
CHAPTER 2. LITERATURE REVIEW 4
2.1 Biological method to detect Bakanae disease 4
2.2 Nondestructive method to identify the plant disease 4
CHAPTER 3. EXPERIMENTAL MATERIALS AND METHODS FOR QUANTIFYING TRAITS OF RICE SEEDLINGS 6
3.1 Sample preparation 6
3.2 Anatomical description of rice seedlings 7
3.3 Image acquisition 8
3.4 Identifying anatomical points of the seedlings 8
3.5 Trait quantification 9
CHAPTER 4. MORPHOLOGICAL SYMPTOM OBSERVATIONS IN RICE INFECTED WITH BAKANAE DISEASE 11
4.1 Rice seedling samples 11
4.2 Trait analysis 13
4.2.1 Morphological traits of entire seedlings 13
4.2.2 Morphological traits of the seedling parts 15
4.2.3 Symptom of Bakanae for each cultivar 17
4.3 Concluding remarks 18
CHAPTER 5. DETECTING RICE SEEDLING INFECTED WITH BAKANAE DISEASE USING MACHINE VISION 20
5.1 Materials and methods 20
5.1.1 Rice seedling samples 20
5.1.2 Classifier development 21
5.1.3 Trait selection 22
5.2 Experiment 22
5.2.1 Trait analysis 22
5.2.2 Statistical analysis of the traits 29
5.2.3 Model performance evaluation 30
5.3 Concluding remarks 32
CHAPTER 6. DISCUSSION AND CONCLUSION 33
REFERENCES 34
dc.language.isoen
dc.title利用機器視覺技術檢測水稻徒長病zh_TW
dc.titleDetecting Bakanae Disease in Rice Seedlings by Using Machine Visionen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾嘉綾(Chia-Lin Chung),黃膺任(Ying-Jen Huang)
dc.subject.keyword水稻徒長病,Fusarium fujikuroi,病害篩檢,早期檢測,影像處理,機器學習,zh_TW
dc.subject.keywordFoolish seedling,Fusarium fujikuroi,disease screening,early detection,image processing,machine learning,en
dc.relation.page39
dc.rights.note未授權
dc.date.accepted2015-07-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved