Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18028
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊東漢(Tung-Han Chuang)
dc.contributor.authorHsin-Jung Linen
dc.contributor.author林欣蓉zh_TW
dc.date.accessioned2021-06-08T00:48:57Z-
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-07-15
dc.identifier.citation1. Giffels, C.A., et al., Interconnection Media. AT&T Technical Journal, 1987. 66(4): p. 31-44.
2. Harper, C., Electronic Packaging and Interconnection Handbook 4/E 2004: McGraw-Hill Professional; 4 edition (September 28, 2004).
3. Grone, A.R., Current-induced marker motion in copper. Journal of Physics and Chemistry of Solids, 1961. 20(1–2): p. 88-93.
4. Hsueh, H.-W., et al., Intermetallic Phase on the Interface of Ag-Au-Pd/Al Structure. Advances in Materials Science and Engineering, 2014. 2014: p. 6.
5. Wei, T.C. and A.R. Daud, Mechanical and Electrical Properties of Au-Al and Cu-Al Intermetallics Layer at Wire Bonding Interface. Journal of Electronic Packaging, 2003. 125(4): p. 617-620.
6. Harman, G. and J. Albers, The Ultrasonic Welding Mechanism as Applied to Aluminum-and Gold-Wire Bonding in Microelectronics. Parts, Hybrids, and Packaging, IEEE Transactions on, 1977. 13(4): p. 406-412.
7. Ramminger, S., N. Seliger, and G. Wachutka, Reliability model for Al wire bonds subjected to heel crack failures. Microelectronics Reliability, 2000. 40(8–10): p. 1521-1525.
8. Hamidi, A., et al., Reliability and lifetime evaluation of different wire bonding technologies for high power IGBT modules. Microelectronics Reliability, 1999. 39(6–7): p. 1153-1158.
9. Ratchev, P., S. Stoukatch, and B. Swinnen, Mechanical reliability of Au and Cu wire bonds to Al, Ni/Au and Ni/Pd/Au capped Cu bond pads. Microelectronics Reliability, 2006. 46(8): p. 1315-1325.
10. Fickett, D.R.S.a.F.R., Low-Temperature Properties of Silver. Journal of Research of the National Institute of Standards and Technology, 1995. 100: p. 53.
11. Fan, H.J., U. Gösele, and M. Zacharias, Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes: A Review. Small, 2007. 3(10): p. 1660-1671.
12. Black, J.R., Electromigration failure models in aluminium metallization for semiconductor devices. Proc. of the IEEE, 1969. 57: p. 1587-1594.
13. Krumbein, S.J., Metallic electromigration phenomena. Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, 1988. 11(1): p. 5-15.
14. Chaikin, S., et al., Silver Migration and Printed Wiring. Industrial & Engineering Chemistry, 1959. 51(3): p. 299-304.
15. Mandal, S., A.K. Bhaduri, and V.S. Sarma, Studies on twinning and grain boundary character distribution during anomalous grain growth in a Ti-modified austenitic stainless steel. Materials Science and Engineering: A, 2009. 515(1–2): p. 134-140.
16. Yang, D., Chen, Y. C., Progress in Mater. Sci., 2010. 55: p. 428-475.
17. Schwarz, K.E., Elektrolytische wanderung in flüssigen und festen metallen. 1940.
18. Wang, H. C., Electromigration and Annealing Grain Structure of Ag Alloy Wires for Electronic Packaging. 2013, National Taiwan University. p. 134.
19. Lee, J. D., Tsai, H. H., and Chuang, T. H., Alloy wire and methods for manufacturing the same. 2013.
20. Tsai, H. H., et al. High performance Ag-Pd alloy wires for high frequency IC packages. in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2013 8th International. 2013.
21. Lee, J. D., Chung, T. H., and Tsai, H. H., Electronic package alloy wire and methods for manufacturing the same. Taiwan patent I 396756, (2013).
22. Lee, S.Y., et al., Effect of thermomechanical processing on grain boundary characteristics in two-phase brass. Materials Science and Engineering: A, 2003. 363(1–2): p. 307-315.
23. Liu, C.Y., C.C., and Tu, K.N., J. Appl. Phys., 2000: p. 5703-5709.
24. Lau, J.H., Ball Grid Array Technology. 1 ed. Electronic Packaging & Interconnection Series. 1994: McGraw-Hill Professional.
25. Tummala, S.M.K.a.R.R., Chapter 7: Fundamentals of Single Chip Packaging. 2001.
26. Chuang, T.H., Electronic Packaging. 2012.
27. Cho, J. H., et al., Recrystallization and grain growth of cold-drawn gold bonding wire. Metallurgical and Materials Transactions A, 2003. 34(5): p. 1113-1125.
28. Lichtenberger, H., G. Toea, and M. Zasowski. Development of low loop, long length, hydrostatically extruded bonding wire. in Advanced Packaging Materials. Proceedings., 3rd International Symposium on. 1997.
29. Chuang, T. H., et al., Durability to Electromigration of an Annealing-Twinned Ag-4Pd Alloy Wire Under Current Stressing. Metallurgical and Materials Transactions A, 2014. 45(12): p. 5574-5583.
30. Chang, C. C., Interfacial reactions of Ag alloy wires with wire bonded pads for IC and LED packages. 2013, National Taiwan University p. 123.
31. Xu, H., et al., Intermetallic phase transformations in Au–Al wire bonds. Intermetallics, 2011. 19(12): p. 1808-1816.
32. Kim, H.J., et al., Effects of Pd addition on Au stud bumps/Al pads interfacial reactions and bond reliability. Journal of Electronic Materials, 2004. 33(10): p. 1210-1218.
33. Elliott, R. and F. Shunk, The Al−Au (Aluminum-Gold) system. Bulletin of Alloy Phase Diagrams, 1981. 2(1): p. 70-75.
34. Chuang, T. H., et al., Mechanism of Electromigration in Ag-Alloy Bonding Wires with Different Pd and Au Content. Journal of Electronic Materials, 2015. 44(2): p. 623-629.
35. Chauhan, P., Z.W. Zhong, and M. Pecht, Copper Wire Bonding Concerns and Best Practices. Journal of Electronic Materials, 2013. 42(8): p. 2415-2434.
36. Xu, H., et al., A re-examination of the mechanism of thermosonic copper ball bonding on aluminium metallization pads. Scripta Materialia, 2009. 61(2): p. 165-168.
37. Shah, A., et al., In situ ultrasonic force signals during low-temperature thermosonic copper wire bonding. Microelectronic Engineering, 2008. 85(9): p. 1851-1857.
38. Appelt, B.K., et al., Fine pitch copper wire bonding in high volume production. Microelectronics Reliability, 2011. 51(1): p. 13-20.
39. In-Tae, B., J. Dae Young, and D. Yong. Electron microscopy study on intermetallic compound formation in Cu-Al bond interface. in Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd. 2012.
40. Schneider-Ramelow, M., et al., Development and Status of Cu Ball/Wedge Bonding in 2012. Journal of Electronic Materials, 2013. 42(3): p. 558-595.
41. Uno, T. and T. Yamada. Improving humidity bond reliability of copper bonding wires. in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th. 2010.
42. Stephan, D., et al. Impact of palladium to the interfacial behavior of palladium coated copper wire on aluminium pad metallization during high temperature storage. in Electronics Packaging Technology Conference (EPTC), 2011 IEEE 13th. 2011.
43. Qin, I., et al. Wire bonding of Cu and Pd coated Cu wire: Bondability, reliability, and IMC formation. in Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st. 2011.
44. Lin, Y.W., et al., The Pd distribution and Cu flow pattern of the Pd-plated Cu wire bond and their effect on the nanoindentation. Materials Science and Engineering: A, 2012. 543(0): p. 152-157.
45. Clauberg, H., et al. Wire bonding with Pd-coated copper wire. in CPMT Symposium Japan, 2010 IEEE. 2010.
46. McAlister, A.J., The Ag−Al (Silver-Aluminum) system. Bulletin of Alloy Phase Diagrams, 1987. 8(6): p. 526-533.
47. Zarkevich, N.A. and D.D. Johnson, Predicted hcp Ag-Al metastable phase diagram, equilibrium ground states, and precipitate structure. Physical Review B, 2003. 67(6): p. 064104.
48. Kyung-Ah, Y., et al. Reliability study of low cost alternative Ag bonding wire with various bond pad materials. in Electronics Packaging Technology Conference, 2009. EPTC '09. 11th. 2009.
49. Gam, S.-A., et al., Effects of Cu and Pd addition on Au bonding wire/Al pad interfacial reactions and bond reliability. Journal of Electronic Materials, 2006. 35(11): p. 2048-2055.
50. Karakaya, I. and W.T. Thompson, The Ag−Pd (Silver-Palladium) system. Bulletin of Alloy Phase Diagrams, 1988. 9(3): p. 237-243.
51. Jong-Soo, C., et al. Pd effects on the reliability in the low cost Ag bonding wire. in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th. 2010.
52. Reza Abbaschian, R.E.R.-H., Physical Metallurgy Principles. 4th ed. 2008: Cengage Learning; 4 edition (December 11, 2008). 768.
53. Blewitt, T.H., J. Appl., 1957. 28: p. 651-660.
54. GrayIII, G.T., Acta Metall., 1988. 36: p. 1745-1754.
55. Dillamore, I.L., Philo. Mag., 1964. 9: p. 517-526.
56. Murr, L.E., Addison Wesley, reading MA, 1975.
57. Johari, O., Acta Metall., 1964. 12: p. 1153-1159.
58. Lu, L., Science, 2004. 304: p. 422-426.
59. Mahajan, S., et al., Formation of annealing twins in f.c.c. crystals. Acta Materialia, 1997. 45(6): p. 2633-2638.
60. Randle, V., The coincidence site lattice and the ‘sigma enigma’. Materials Characterization, 2001. 47(5): p. 411-416.
61. Kumar, M., W.E. King, and A.J. Schwartz, Modifications to the microstructural topology in f.c.c. materials through thermomechanical processing. Acta Materialia, 2000. 48(9): p. 2081-2091.
62. Greer, J.R., NANOTWINNED METALS-It’s all about imperfections. NATURE MATERIALS, 2013. 12.
63. K. C. Chen, W.W.W., C. N. Liao, L. J. Chen and K. N. Tu, Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper. Science, 2008. 321: p. 1066-1069.
64. Bauccio, M.L., ASM Metals Reference Book. 3 ed. 1993: ASM International.
65. Reed-Hill, R.E., Physical Metallurgy Principles (The Pws-Kent Series in Engineering). 3 ed. 1991: CL-Engineering.
66. Machlin, E., Materials Science in Microelectronics II. 2nd Edition ed. The effects of structure on properties in thin films. 2005: Elsevier Science.
67. 吳文發, 電遷移效應對銅導線可靠度之影響, NDL 奈米通訊, 第六卷第一期, Editor. 1999. p. 17.
68. SCHOONMAN, J., The Ionic Conductivity of Pure and Doped Lead Bromide Single Crystals JOURNAL OF SOLD STATE CHEMISTRY, 1972. 4: p. 466-474.
69. R. van Gastel, J.W.M.F., B.S. Swartzentruber and E.S.a.W.v.S. , Diffusion of vacancies in metal surfaces: theory and experiment. Elsevier Science 2003: p. 351-370.
70. Souaï, N., et al., About the possibility of grain boundary engineering via hot-working in a nickel-base superalloy. Scripta Materialia, 2010. 62(11): p. 851-854.
71. Zhao, J.H., Electromigration and Electronic Device Degradation. Wiley, 1994: p. 171.
72. Hsu, H. H., The Study of microstructure in Microbumps and the Application of In Situ Synchrotron Radiation X-ray on Advanced Electronic Packaging, National Central University, 2014.
73. Patil, H.R. and H.B. Huntington, Electromigration and associated void formation in silver. Journal of Physics and Chemistry of Solids, 1970. 31(3): p. 463-474.
74. Lloyd, J.R., J. Clemens, and R. Snede, Copper metallization reliability. Microelectronics Reliability, 1999. 39(11): p. 1595-1602.
75. Grone, H.B.H.a.A.R., Current-induced marker motion in gold wires. J. Phys. Chem. Solids 1961. 20: p. 76-87.
76. Blech, I.A., Electromigration in thin aluminum films on titanium nitride. Journal of Applied Physics, 1976. 47(4): p. 1203-1208.
77. Saraswat, K., Interconnections: Aluminum Metallization. 2003.
78. Balasinski, A., Semiconductors: Integrated Circuit Design for Manufacturability. Devices, Circuits, and Systems. 2011.
79. Ames, I., F.M. d'Heurle, and R.E. Horstmann, Reduction of Electromigration in Aluminum Films by Copper Doping. IBM Journal of Research and Development, 1970. 14(4): p. 461-463.
80. D'Heurle, F.M., The effect of copper additions on electromigration in aluminum thin films. Metallurgical Transactions, 1971. 2(3): p. 683-689.
81. Cho, J. and C.V. Thompson, Grain size dependence of electromigration‐induced failures in narrow interconnects. Applied Physics Letters, 1989. 54(25): p. 2577-2579.
82. Wu, K., W. Baerg, and P. Jupiter, Effects of aluminum microstructure on electromigration using a new reactive ion etching and scanning electron microscopy technique. Applied Physics Letters, 1991. 58(12): p. 1299-1301.
83. Austin, A.E. and N.A. Richard, Grain‐Boundary Diffusion. Journal of Applied Physics, 1961. 32(8): p. 1462-1471.
84. Schreiber, H.U. and B. Grabe, Electromigration measuring techniques for grain boundary diffusion activation energy in aluminum. Solid-State Electronics, 1981. 24(12): p. 1135-1146.
85. Lu, L., et al., Ultrahigh Strength and High Electrical Conductivity in Copper. Science, 2004. 304(5669): p. 422-426.
86. Tse, P.K. and T.M. Lach. Aluminum electromigration of 1-mil bond wire in octal inverter integrated circuits. in Electronic Components and Technology Conference, 1995. Proceedings., 45th. 1995.
87. Hillert, M., Diffusion and interface control of reactions in alloys. Metallurgical Transactions A, 1975. 6(1): p. 5-19.
88. Philofsky, E., Intermetallic formation in gold-aluminum systems. Solid-State Electronics, 1970. 13(10): p. 1391-1394.
89. Kidson, G.V., Some aspects of the growth of diffusion layers in binary systems. Journal of Nuclear Materials, 1961. 3(1): p. 21-29.
90. Rossler, U., phys. Rev., 1969. 184(733).
91. Venkannah, S., Materials Science, (MECH2121).
92. Li, Q., J.R. Cahoon, and N.L. Richards, On the calculation of annealing twin density. Scripta Materialia, 2006. 55(12): p. 1155-1158.
93. Meier, A.v., Electric Power Systems:A Conceptual Introduction. 2006: John Wiley & Sons
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18028-
dc.description.abstract因應封裝打線接合使用金線與銅線的缺點,銀合金線的性質與金線相似,但不會因此不會有像銅線會損傷晶片亦或是接合強度不佳的問題發生,本論文將探討對二元銀鈀合金線材之熱穩定性、打線接合與鋁墊之界面反應以及其電遷移性,針對高頻積體電路(IC)產品的低電阻率要求,經合金設計之改良並改善抽線及退火製程開發出具有大量退火孿晶之二元銀鈀合金線材及三元銀金鈀線材。含大量退火孿晶與傳統製程之二元Ag-Pd合金線材比較,在經由600ºC時效後,退火孿晶之銀合金線材其晶粒幾乎保持不變,晶粒結構維持高熱穩定性,可導致在放電結球時形成更小的熱影響區,材料內部之退火孿晶可以提高抗拉強度及延伸率,亦影響時效的時間變化,這是有利於打線製程及接合封裝可靠度的雙重優點。
其後再觀察不同合金比例之二元合金線材與鋁墊之界面反應,高溫儲存試驗之溫度100ºC至200ºC,高溫儲存時間從0小時到1000小時,樣品進行接合強度測試及界面反應觀察,發現銀合金線材與鋁墊的接合非常緊密,添加元素的多寡也會影響接合強度及界面反應,而過厚的介金屬化合物(IMC)會造成接點的脆化及大量孔洞的產生,實驗發現在二元銀鈀合金線材在200 ºC、1000小時之熱時效作用下,其接合強度仍維持一定的強度值,介金屬化合物層的生成可分為兩階段式成長,第一階段為銀合金線材在打線過程中先與鋁墊發生的界面反應,迅速產生介金屬化合物層,第二階段為銀合金線材與鋁墊間發生擴散反應而形成富鈀層(Pd-rich layer),鈀的擴散係數較慢,因此在此階段介金屬化合物層生長較慢。
研究中發現線材的導電性好壞及平均使用壽命長短可以經由增加亦或是減少金(Au)或鈀(Pd)元素的含量來達成,退火孿晶之Ag-Pd線材其平均使用壽命皆高於退火孿晶之Ag-8Au-3Pd線材,其原因在於銀具有高導電性及導熱性,在通電時可降低焦耳熱及溫度的影響,延緩電遷移效應,退火孿晶之二元Ag-4Pd合金線材之電阻率約為2.5μΩ•cm,傳統製程之二元Ag-4Pd合金線材之電阻率約為3.7μΩ•cm,接近傳統金線(約3.5μΩ•cm),略高於鍍鈀銅線(1.8μΩ•cm),低於三元Ag-8Au-3Pd之線材(約5μΩ•cm) ,退火孿晶之二元銀鈀合金線材已經成為三元Ag-8Au-3Pd之線材之替代材料,滿足高可靠度、低電阻及低成本,在電流密度為1.23x105 A/cm2下,與傳統二元合金線材相比,在通電情況時,晶粒成長較為緩慢,具有大量退火孿晶之二元銀合金線材其抗拉強度和延伸率也比傳統的二元銀合金線材高,因此,證實退火孿晶可提高抗電遷移性。
zh_TW
dc.description.abstractIn response to the shortcomings of electronic package wire bonding with gold wire and copper wire and the requirement of low resistivity in high-frequency IC products, Ag alloy wires, which have physical properties similar to those of Au wire, are being developed. Unlike Cu wire, which has a high hardness, Ag alloy wire will not damage an IC chip or result in poor bonding strength. Improvements to the alloy design and the drawing and annealing processes have allowed the development of binary Ag-Pd alloy wire and ternary Ag-Au-Pd alloy wire containing a large number of annealing twins. In contrast to the apparent grain growth in a conventional Ag-4Pd wire during aging at 600ºC, the grains of this annealing-twinned Ag alloy wire remain almost unchanged. The high thermal stability of the grain structure leads to a smaller heat-affected zone near the free air ball of this twinned wire. The annealing twins in this material also confer the merits of increased tensile strength and elongation with aging time, which increase the reliability of wire-bonded packages.
The bonding interface of the Ag-alloy wires and Al pad containing various Pd elements was also studied. Thermal aging temperatures of 100ºC to 200ºC and aging times of 0hr to 1,000hr were used for bond strength testing, and interface reactions were observed. The bonding interface of the Ag alloy wire and Al pad was quite complete. The amounts of the added elements also affected the bonding strength and interfacial reaction. The thickness of the intermetallic compounds (IMC) caused embrittlement and produced large amounts of contact holes due to the decrease in the contact strength. After 1,000 hours of thermal aging at 200ºC, bonding strength was still very high. The growth of the IMC layer was observed to occur in two stages. The first stage of the reaction takes place with the aluminum pad for the silver alloy wire, quickly generating an IMC layer. In the second stage, a Pd-rich layer forms between the silver wire and the aluminum pad. Since the diffusion coefficient of palladium is slow, the IMC layer grows slowly in this stage.
In this study, the conductivity and lifetime during current stressing were increased by reducing the addition of Au or Pd. The annealing-twinned Ag-Pd wire has a much higher lifetime than annealing-twinned Ag-8Au-3Pd because silver has high electrical and thermal conductivity. As a result of these characteristics, the Joule heating and temperature during current stressing are lowered, thereby retarding the electromigration. The electrical resistivity of this Ag-4Pd bonding wire, manufactured with a conventional method, is 3.7 μΩ.cm, which is close to the values of traditional 3N Au wire (3.5μΩ.cm), Pd coated Cu wire (1.8μΩ.cm), and Ag-8Au-3Pd ternary alloy wire (5μΩ.cm). The electrical resistivity of the annealing twinned Ag-4Pd wire is 3.5μΩ.cm. An annealing twinned Ag-4Pu wire has been produced as an alternate material for a previously developed Ag-8Au-3Pd ternary alloy wire to meet requirements for high reliability, low electrical resistivity and low cost. Under electrical stressing with a current density of 1.23x105 A/cm2 for various times, the grains in this annealing twinned wire grow much more slowly than the grains in the conventional Ag-4Pd wire. The breaking load and elongation of this annealing twinned Ag-4Pd wire are also higher than those of conventional wire. Furthermore, the annealing twins increase the durability to electromigration of this Ag-4Pd wire under electrical stressing with various current densities.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:48:57Z (GMT). No. of bitstreams: 1
ntu-104-D01527011-1.pdf: 9948406 bytes, checksum: fe605b052cc45cdb65ac64020cbbd30b (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 III
中文摘要 V
Abstract VII
圖目錄 XI
表目錄 XVII
第一章 序論 1
1.1 前言 1
1.2 研究動機 5
1.3 研究目的 7
第二章 文獻回顧與原理 8
2.1 電子封裝製造技術 8
2.2 積體電路(IC)構裝的種類 9
2.3 打線接合技術(wire bonding) 12
2.4 打線接合的線材選用 16
2.4.1 金線 16
2.4.2 銅線及鍍鈀銅線 21
2.4.3 銀線與銀合金線 27
2.5 孿晶(Twin) 33
2.5.1 孿晶的形成 35
2.5.2 孿晶界 38
2.5.3 孿晶性質 38
2.6 時效及退火 40
2.7 電遷移(Electromigration)理論及效應 40
2.7.1 線材摻雜不同元素對電遷移之影響 48
2.7.2 材料微觀結構與機械性質受電遷移的影響 50
2.7.3 電遷移對銲線接合與界面之影響 53
2.8 Ag-Al 界面反應之擴散係數分析 54
第三章 實驗方法 55
3.1 實驗流程 55
3.2 線材的製備 56
3.2.1 合金設計與鑄造 56
3.2.2 打線接合 56
3.3 高溫時效 57
3.4 電遷移試驗 59
3.5 線材之電性量測及機械性質分析 60
3.5.1電阻量測 60
3.5.2 拉伸試驗 61
3.6 高溫時效之可靠度測試 61
3.6.1 線材之抗拉強度及接合強度測試 61
3.6.2 接合界面之觀察與分析 62
3.7 線材微觀結構分析 62
3.7.1電子顯微鏡觀察 62
3.7.2 聚焦離子束與電子顯微系統觀察 64
3.7.3 電子微探分析儀 66
第四章 結果與討論 67
4.1 銀合金線材之電遷移現象觀察 67
4.1.1 不同合金組成之線材經電遷移後之平均失效時間比較 67
4.1.2退火孿晶之銀合金線與傳統銀合金線材之電遷移影響 68
4.1.4 電遷移現象對線材表面及微觀結構的影響 72
4.1.5 電遷移現象對線材機械性質之影響 79
4.1.5電遷移之穿透式電子顯微鏡分析 81
4.2 銀鈀二元合金線材之高溫時效實驗 87
4.2.1線材表面及內部晶粒微觀結構觀察 87
4.2.2機械性質及電性之比較 97
4.2.3 銀合金線材/鋁墊之接合強度測試 99
4.2.4 銀合金線材/鋁墊之界面反應觀察 106
第五章 結論 117
第6章 參考文獻 118
dc.language.isozh-TW
dc.title退火孿晶銀鈀合金線之熱穩定性及電遷移現象研究zh_TW
dc.titleThermal Stability and Electromigration Durability of Annealing Twinned Ag-Pd alloy Wiresen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee林招松,高振宏,陳信文,陳勝吉,李俊德
dc.subject.keyword封裝打線,銀鈀線,退火孿晶,熱穩定性,電遷移性,介金屬化合物,zh_TW
dc.subject.keywordelectronic package,Ag-Pd alloy wire,annealing twins,aging,electromigration,intermetallic compound (IMC),en
dc.relation.page126
dc.rights.note未授權
dc.date.accepted2015-07-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
9.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved