Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18021
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳恩賜(Joshua Oon Soo Goh)
dc.contributor.authorWan-Rue Linen
dc.contributor.author林宛儒zh_TW
dc.date.accessioned2021-06-08T00:48:45Z-
dc.date.copyright2020-08-26
dc.date.issued2020
dc.date.submitted2020-08-16
dc.identifier.citationAndrews-Hanna, J. R. (2012). The brain’s default network and its adaptive role in internal mentation. The Neuroscientist, 18(3), 251-270.
Badre, D., Kayser, A. S., D'Esposito, M. (2010). Frontal cortex and the discovery of abstract action rules. Neuron, 66(2), 315–326. https://doi.org/10.1016/j.neuron.2010.03.025
Held, R., Hein, A. V. (1958). Adaptation of disarranged hand-eye coordination contingent upon re-afferent stimulation. Perceptual and Motor Skills, 8(3), 87-90.
Friston, K. (2009). The free-energy principle: a rough guide to the brain? Trends in cognitive sciences, 13(7), 293-301.
Friston, K. (2010). The free-energy principle: a unified brain theory? Nature reviews neuroscience, 11(2), 127-138.
Friston, K. J., Daunizeau, J., Kiebel, S. J. (2009). Reinforcement learning or active inference? PloS one, 4(7).
Friston, K. J., Lin, M., Frith, C. D., Pezzulo, G., Hobson, J. A., Ondobaka, S. (2017). Active inference, curiosity and insight. Neural computation, 29(10), 2633-2683.
Goh, Joshua Oon Soo, Hung, H.-Y., Su, Y.-S. (2018). A conceptual consideration of the free energy principle in cognitive maps: How cognitive maps help reduce surprise. Psychology of learning and motivation (Vol. 69, pp. 205–240). Elsevier.
Jeneson, A., Wixted, J. T., Hopkins, R. O., Squire, L. R. (2012). Visual working memory capacity and the medial temporal lobe. Journal of Neuroscience, 32(10), 3584-3589.
Just, M. A., Carpenter, P. A., Keller, T. A., Eddy, W. F., Thulborn, K. R. (1996). Brain activation modulated by sentence comprehension. Science, 274(5284), 114-116.
Kwon, Y. J., Lee, J. K., Shin, D. H., Jeong, J. S. (2009). Changes in brain activation induced by the training of hypothesis generation skills: An fMRI study. Brain and Cognition, 69(2), 391-397.
Liang, P., Jia, X., Taatgen, N. A., Borst, J. P., Li, K. (2016). Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model. Scientific reports, 6(1), 1-10.
MathWorks. (2017). MATLAB (Version R2017b). Natick, Massachusetts: The MathWorks Inc.
Mirza, M. B., Adams, R. A., Mathys, C., Friston, K. J. (2018). Human visual exploration reduces uncertainty about the sensed world. PloS one, 13(1).
Palombo, D. J., Hayes, S. M., Peterson, K. M., Keane, M. M., Verfaellie, M. (2018). Medial temporal lobe contributions to episodic future thinking: Scene construction or future projection? Cerebral Cortex, 28(2), 447-458.
Park, D. C., Goh, J. (2009). Successful aging. Handbook of neuroscience for the behavioral sciences.
Peirce, J. W., MacAskill, M. R. (2018). Building Experiments in PsychoPy. London: Sage.
R Core Team. (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
Race, E., Keane, M. M., Verfaellie, M. (2011). Medial temporal lobe damage causes deficits in episodic memory and episodic future thinking not attributable to deficits in narrative construction. Journal of Neuroscience, 31(28), 10262-10269.
Reverberi, C., D’Agostini, S., Skrap, M., Shallice, T. (2005). Generation and recognition of abstract rules in different frontal lobe subgroups. Neuropsychologia, 43(13), 1924-1937.
Samanez-Larkin, G. R., Knutson, B. (2015). Decision making in the ageing brain: changes in affective and motivational circuits. Nature Reviews. Neuroscience, 16(5), 278–289.
Wolpert, D. M., Goodbody, S. J., Husain, M. (1998). Maintaining internal representations: the role of the human superior parietal lobe. Nature neuroscience, 1(6), 529-533.
Xu, X., Yuan, H., Lei, X. (2016). Activation and connectivity within the default mode network contribute independently to future-oriented thought. Scientific reports, 6, 21001.
Yan, C.G., Wang, X.D., Zuo, X.N., Zang, Y.F., (2016). Alphasim DPABI: Data Processing Analysis for (Resting-State) Brain Imaging. Neuroinformatics 14, 339-351. doi: 10.1007/s12021-016-9299-4
Yassa, M. A., Stark, C. E. (2011). Pattern separation in the hippocampus. Trends in neurosciences, 34(10), 515-525.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18021-
dc.description.abstract在更新對於外在環境理解的信念時,推理是對於像人類這種智能系統非常重要的程序。信念的更新能經由被動推理,也就是透過單純觀察產生的歸納,先驗信念與後驗信念不一定有因果關係。然而從概念上來說,推理也可以是主動的,也就是經由假設驅使的行動來操縱外在環境,把信念與外在環境結果形成因果連結。於本研究中,我們檢驗了主動推理與被動推理的信念更新程序是否在神經機制上有差異,以及差異為何。實驗共有二十位參與者在功能性磁振造影(fMRI)下進行規則推理的任務,當中,每個顏色組合皆根據隱含規則被歸納至所屬類別,參與者須分別以主動及被動推理的方式習得背後隱含的規則。在主動推理的情況下,參與者能選擇顏色組合來測試他們對規則的信念是否正確。在被動推理的情況下,顏色組合則為預設。兩種推理方式在行為上的結果大致相似。然而在神經活動方面,處理顏色組合時,左角回在主動時的活動相較之下高於被動,而視覺運動區則在被動時高於主動。另外,有些腦區隨著連續答對而有更高或降低的活動,其中在主動的情況下,處理顏色組合時的丘腦、作答時的兩側角回皆升高,而回饋階段的兩側角回降低;在被動的情況下,視覺、頂葉、紋狀區域皆在處理顏色時升高,而回饋階段上枕葉區域則降低。本研究提議角回在形成假設驅使的行動過程中扮演模擬抽象景況的角色。至關重要的是,大腦中的推理可以透過主動或被動途徑進行,而這對智能系統如何理解環境具有影響。zh_TW
dc.description.abstractInferencing is a key process in intelligent systems like the human brain when updating beliefs about environmental causes and future states. Belief updating might proceed via passive inference in which prior beliefs and outcomes have no necessary causal links and posterior beliefs primarily stem from observations of associations. Conceptually, however, inference might also be active, in which hypothesis-driven actions manipulate contexts and link beliefs to environmental outcomes. In this study, we evaluated whether and how neural processing during posterior belief integration would show distinction between passive and active inferencing. 20 participants underwent a rule-inference task (RIT) functional magnetic resonance imaging (fMRI) experiment involving inferring underlying rules that map color configuration cues to target categories. In the Active condition, participants chose color cues to test their inference. In the Passive condition, color cues were predetermined. Behavioral performances were similar for both inference conditions. Nevertheless, neural responses during cue processing were higher for Active than Passive conditions in the left angular gyrus, but higher for Passive than Active conditions in visuomotor areas. Also, Active condition neural responses increased with incremental successively correct trials in the thalamus during cue processing and bilateral angular gyri during answering with feedback-related activity decreasing in the angular gyri. By contrast, Passive condition neural responses increased in visuoparietal and striatal areas during cue processing and decreased for feedback in the superior occipital areas. Our findings suggest a novel role of the angular gyri in the internal simulation of abstract contexts during generation of hypothesis-driven actions. Critically, inferencing in the brain can occur via active or passive routes which has implications for how intelligent systems represent environmental causes.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:48:45Z (GMT). No. of bitstreams: 1
U0001-1308202016163700.pdf: 1873200 bytes, checksum: 969369c6849a7a7996a72ed381234b8d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
Content IV
List of Figures VI
List of Tables VII
Introduction 1
Methods 6
Participants 6
Stimuli: Rule Inference Task 6
Task Procedure 7
Behavioral Analysis 8
Brain Imaging Protocol 8
fMRI Data Processing and Analysis 9
Region of Interest (ROI) Definition and Analysis 10
Results 11
Behavioral Results 11
Similar Overall Behavioral Performances Across Active vs Passive 11
Brain Imaging Results 11
Active and Passive Inferencing Engages Many Similar Brain Regions 11
Visuomotor Responses in Passive and Angular Gyrus Involvement in Active During Cue Processing 12
Higher Visuomotor and Putamen Activity in Active During Answer Selection 12
Bilateral Angular Gyrus Involvement Over Cumulative Confirmation in Active 12
Discussion 13
References 20
Figures 22
Tables 28
dc.language.isoen
dc.title探討主動與被動推理學習規則之神經機制zh_TW
dc.titleNeural Correlates Underlying Active and Passive Abstract Rule Inferencingen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張玉玲(Yu-Ling Chang),黃植懋(Chih-Mao Huang)
dc.subject.keyword主動推理,被動推理,規則推理,角回,功能性磁振造影,zh_TW
dc.subject.keywordactive inference,passive inference,rule inference,angular gyrus,fMRI,en
dc.relation.page34
dc.identifier.doi10.6342/NTU202003286
dc.rights.note未授權
dc.date.accepted2020-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept腦與心智科學研究所zh_TW
Appears in Collections:腦與心智科學研究所

Files in This Item:
File SizeFormat 
U0001-1308202016163700.pdf
  Restricted Access
1.83 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved