請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18010
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐源泰(Yuan-Tay Shyu) | |
dc.contributor.author | Chiao-Ti Lin | en |
dc.contributor.author | 林巧娣 | zh_TW |
dc.date.accessioned | 2021-06-08T00:48:26Z | - |
dc.date.copyright | 2020-09-17 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-18 | |
dc.identifier.citation | 1. 台灣營養成分資料庫. 2020. <https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178> 2. 農業知識入口網. 2011.<https://kmweb.coa.gov.tw/knowledgebase.php?id=156641> 3. 行政院農業委員會農糧署. 2020. <https://www.afa.gov.tw/cht/index.php> 4. 台南區農業改良場技術專刊. 2000. <https://book.tndais.gov.tw/Brochure/tech100.htm> 5. 衛生福利部食品藥物管理署 食品藥物消費者專區<https://consumer.fda.gov.tw/Food/TestingDetail.aspx?nodeID=1037 id=7975> 6. 西九州大學. 2018.<http://www.xn--dckxd8db4cd3409epi5c9sb.tokyo/article/456728315.html> 7. 于堯、康廷國、王冰、韓榮春、李慧婷. 2008. 牛蒡根粉減肥降血脂功效實驗研究. 山西中醫學院學報 9(2):24-25 8. 馬經明、趙吉平. 2016. 柱前衍生化HPLC法测定维U顛茄鋁膠囊中维生素U的含量. 藥物分析雜誌 36:1293-1298 9. 馮啟艷、盧連華、于红霞、馮啟芹、許美艷. 2012. 牛蒡茶輔助降血脂功能研究. 食品與藥品 11:399-400 10. 馮玲玲、岳淑梅、萬绍暉、康廷國. 2006. 反相高效液相色譜-柱前衍生化法测定大青葉中氨基酸的含量. 中國藥房 17:694-695 11. 劉丹赤、尹玲、邵長明. 2007. 牛蒡的研究與開發進展. 北方園藝 8:41-42 12. 張宇. 2016. 酶催化浸提金銀花葉中綠原酸及其轉化利用. 重慶工商大學碩士論文. 重慶 13. 李赫、陳敏、朱蕾、劉麗娟、王静鈺. 2006. 反相高效液相色譜法同时测定保健品中的四种類胡蘿蔔素. 中國農業大學食品科學與營養工程學院. 24 (5) :475-478 14. 邢成玉. 1998. 牛蒡茶研製工藝探討. 食品工業 2:28-29 15. 陳秀枝、沈辰婷、曹未音、王繼宏、李燕. 2013. 菊芋中菊糖提取方法的比較. 江蘇農業科學 41:312-314 16. 高祀亮、混旭、袁瑾. 2009. 菊科植物牛蒡營養成分分析. 氨基酸和生物資源 31:23-24 17. 曹劍鋒、張鵬英、王超英、候東、陳靠山. 2013. 牛蒡根水提物擴血管作用及機制研究. 中國實驗方劑學雜誌 19:258-261 18. 楊琇涵. 2011. 加熱對牛蒡根化學成份的影響之研究. 嘉南藥理科技大學保健營養學系碩士論文. 臺南 19. 蔡馥亘. 2012. 牛蒡葉萃取液機能晶球製備及其體外模擬釋放評估. 國立中興大學食品暨應用生物科技學系碩士論文. 臺中 20. 魏東. 2008. 牛蒡抗氧化降血脂保健功能研究. 食品科學 2:380-382 21. 孫健、張愛君、朱紅. 2007. 牛蒡的應用價值及開發前景. 當代生態農業 1:36-38 22. Abid, M., S. Jabbar, B. Hu, M.M. Hashim, T. Wu, Z. Wu, M.A. Khan, and X. Zeng. 2014. Synergistic impact of sonication and high hydrostatic pressure on microbial and enzymatic inactivation of apple juice. LWT-Food Sci. Technol. 59:70-76. 23. Adams, B. and W. Kirk. 1991. Process for enzyme peeling of fresh citrus fruit. U.S. Patent 5,000:967 24. Armstrong, G. and J. Hearst. 1996. Carotenoids 2: Genetics and molecular biology of carotenoid pigment biosynthesis. J. Faseb 10:228-237. 25. Andreasen, M.F, A.K. Landbo, L.P. Christensen, Õ. Hansen, and A.S. Meyer. 2001. Antioxidant effects of phenolic rye (secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. J. Agric. Food. Chem. 49:4090-4096. 26. Araya, X.I.T., M. Hendrickx, B.E. Verlinden, S. Van Buggenhout, N.J. Smale, C. Stewart, and A.J. Mawson. 2007. Understanding texture changes of high pressure processed fresh carrots: A microstructural and biochemical approach. J. Food Eng. 80:873-884. 27. Astill, C., M.R. Birch, C. Dacombe, P.G. Humphrey, and P.T. Martin. 2001. Factors affecting the caffeine and polyphenol contents of black and green tea infusions. J. Agric. Food. Chem. 49:5340-5347. 28. Baker, R.A. and L. Wicker. 1996. Current and potential applications of enzyme infusion in the food industry. Trends Food Sci. Technol.7:279-284. 29. Barbul, A., S.A. Lazarou, D.T. Efron, H.L. Wasserkrug, and G. Efron. 1990. Arginine enhances wound healing and lymphocyte immune responses in humans. Surgery 108:331-336. 30. Becker, R.M., G. Wu, J.A. Galanko, W. Chen, A.R. Maynor, C.L. Bose, and J.M. Rhoads. 2000. Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J. Pediatr. 137:785-793. 31. Béguin, P., N.R. Gilkes, D.G. Kilburn, R.C. Miller, G.P. O'neill, and R.a.J. Warren. 1987. Cloning of cellulase genes. Crit. Rev. Biotechnol. 6:129-162. 32. Benzie, I.F. and J.J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem.239:70-76. 33. Beyer, P., S. Al-Babili, X. Ye, P. Lucca, P. Schaub, R. Welsch, and I. Potrykus. 2002. Golden rice: Introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin a deficiency. Br. J. Nutr. 132:506S-510S. 34. Bhat, M. and S. Bhat. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 15:583-620. 35. Bischoff, H. 1995. The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin. Invest. Med 18:303-311. 36. Block, G., B. Patterson, and A. Subar. 1992. Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence. Nutr. Cancer 18:1-29. 37. Böhm, A., I. Kaiser, A. Trebstein, and T. Henle. 2005. Heat-induced degradation of inulin. Eur. Food Res. Technol. 220:466-471. 38. Butel, M., N. Roland, A. Hibert, F. Popot, A. Favre, A. Tessedre, M. Bensaada, A. Rimbault, and O. Szylit. 1998. Clostridial pathogenicity in experimental necrotising enterocolitis in gnotobiotic quails and protective role of bifidobacteria. J. Med. Microbiol. 47:391-399. 39. Carlotto, J., L.M. De Souza, C.H. Baggio, M.F.D.P. Werner, D. Maria-Ferreira, G.L. Sassaki, M. Iacomini, and T.R. Cipriani. 2016. Polysaccharides from arctium lappa L.: Chemical structure and biological activity. Int. J. Biol. Macromol. 91:954-960. 40. Causey, J.L., J.M. Feirtag, D.D. Gallaher, B.C. Tungland, and J.L. Slavin. 2000. Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men. Nutr. Res. 20:191-201. 41. Cao, J., C. Li, P. Zhang, X. Cao, T. Huang, Y. Bai, and K. Chen. 2012. Antidiabetic effect of burdock (arctium lappa L.) root ethanolic extract on streptozotocin-induced diabetic rats. Afr. J. Biotechnol. 11:9079-9085. 42. Chan, Y.S., L.N. Cheng, J.H. Wu, E. Chan, Y.W. Kwan, S.M.Y. Lee, G.P.H. Leung, P.H.F. Yu, and S.W. Chan. 2011. A review of the pharmacological effects of arctium lappa (burdock). Inflammopharmacology 19:245-254. 43. Chang, C.C., M.H. Yang, H.M. Wen, and J.C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10(3). 44. Chen, F.A., A.B. Wu, and C.Y. Chen. 2004. The influence of different treatments on the free radical scavenging activity of burdock and variations of its active components. Food Chem. 86:479-484. 45. Chen, J.H. and Ho, C.T. 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food. Chem. 45(7):2374-2378. 46. Cho, E.J., X.L. Piao, M.H. Jang, S.H. Baek, H.Y. Kim, K.S. Kang, S.W. Kwon, and J.H. Park. 2008. The effect of steaming on the free amino acid contents and antioxidant activity of panax ginseng. Food Chem. 107:876-882. 47. Chung, H.S., J.H. Seong, and K.D. Moon. 2012. Effects of processing temperature and browning inhibitor on quality properties of fresh-cut burdock roots. Korean J. Food Preserv. 19:31-36. 48. Church, I.J. and A.L. Parsons. 1995. Modified atmosphere packaging technology: A review. J. Sci. Food Agric. 67:143-152. 49. Da Silva, L.M., A. Allemand, D.a.G. Mendes, A.C. Dos Santos, E. André, L.M. De Souza, T.R. Cipriani, N. Dartora, M.C.A. Marques, and C.H. Baggio. 2013. Ethanolic extract of roots from arctium lappa L. Accelerates the healing of acetic acid-induced gastric ulcer in rats: Involvement of the antioxidant system. Food Chem. Toxicol. 51:179-187. 50. Dallabona, B.R., L.B. Karam, R. Wagner, D.a.F.S. Bartolomeu, J.D. Mikos, J.G.P. Francisco, R.E.F.D. Macedo, and P.G. Kirschnik. 2013. Effect of heat treatment and packaging systems on the stability of fish sausage. Rev. Bras. Zootecn. 42:835-843. 51. Daly, J.M., J. Reynolds, A. Thom, L. Kinsley, M. Dietrick-Gallagher, J. Shou, and B. Ruggieri. 1988. Immune and metabolic effects of arginine in the surgical patient. Ann. Surg. 208:512. 52. Dao, L. and M. Friedman. 1992. Chlorogenic acid content of fresh and processed potatoes determined by ultraviolet spectrophotometry. J. Agric. Food. Chem. 40:2152-2156. 53. Dawidowicz, A.L., D. Wianowska, and M. Olszowy. 2012. On practical problems in estimation of antioxidant activity of compounds by DPPH method (problems in estimation of antioxidant activity). Food Chem. 131:1037-1043. 54. Dehghan, P., B.P. Gargari, M.A. Jafar-Abadi, and A. Aliasgharzadeh. 2014. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: A randomized-controlled clinical trial. Int. J. Food Sci. Nutr. 65:117-123. 55. Deng, Q., M.H. Penner, and Y. Zhao. 2011. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res. Int. 44:2712-2720. 56. Dewanto, V., X. Wu, and R.H. Liu. 2002. Processed sweet corn has higher antioxidant activity. J. Agric. Food. Chem. 50:4959-4964. 57. Dong, T., J. Shi, C.Z. Jiang, Y. Feng, Y. Cao, and Q. Wang. 2015. A short-term carbon dioxide treatment inhibits the browning of fresh-cut burdock. Postharvest Biol. Tec. 110:96-102. 58. Duh, P.D. 1998. Antioxidant activity of burdock (arctium lappa linne): Its scavenging effect on free‐radical and active oxygen. J. Am. Oil Chem.' Soc. 75:455-461. 59. Duvetter, T., I. Fraeye, T.V. Hoang, S.V. Buggenhout, I. Verlent, C. Smout, A.V. Loey, and M. Hendrickx. 2005. Effect of pectinmethylesterase infusion methods and processing techniques on strawberry firmness. J. Food Sci. 70: s383-s388. 60. Eisenmenger, M.J. and J.I. Reyes-De-Corcuera. 2009. High pressure enhancement of enzymes: A review. Enzyme Microb. Tech. 45:331-347. 61. Elliott, R. 2005. Mechanisms of genomic and non-genomic actions of carotenoids. Biochim. Biophys. Acta. 1740:147-154. 62. Evoy, D., M.D. Lieberman, T.J. Fahey Iii, and J.M. Daly. 1998. Immunonutrition: The role of arginine. J. Nutr. 14:611-617. 63. Ferracane, R., G. Graziani, M. Gallo, V. Fogliano, and A. Ritieni. 2010. Metabolic profile of the bioactive compounds of burdock (arctium lappa) seeds, roots and leaves. J. Pharm. Biomed. Anal. 51:399-404. 64. Flamm, G., W. Glinsmann, D. Kritchevsky, L. Prosky, and M. Roberfroid. 2001. Inulin and oligofructose as dietary fiber: A review of the evidence. Crit. Rev. Food Sci. Nutr. 41:353-362. 65. Franck, A. and D. Bosscher. 2009. Inulin. In: Cho SS and Samuel P (eds.) Fiber ingredients: Food Applications and Health Benefits. CRC Press, Boca Raton, FL 55-74. 66. Galeazzi, M.A., V.C. Sgarbieri, and S.M. Constantinides. 1981. Isolation, purification and physicochemical characterization of polyphenoloxidases (PPO) from a dwarf variety of banana (musa cavendishii L). J. Food Sci. 46:150-155. 67. Garewal, H.S. and S. Schantz. 1995. Emerging role of β-carotene and antioxidant nutrients in prevention of oral cancer. Arch. Otolaryngol. Head Neck Surg. 121:141-144. 68. Goralczyk, R. 2009. β-carotene and lung cancer in smokers: Review of hypotheses and status of research. Nutr. Cancer 61:767-774. 69. Gómez, F., R.T. Toledo, L. Wadsö, V. Gekas, and I. Sjöholm. 2004. Isothermal calorimetry approach to evaluate tissue damage in carrot slices upon thermal processing. J. Food Eng. 65:165-173. 70. Guillemin, A., F. Guillon, P. Degraeve, C. Rondeau, M.F. Devaux, F. Huber, E. Badel, R. Saurel, and M. Lahaye. 2008. Firming of fruit tissues by vacuum-infusion of pectin methylesterase: Visualisation of enzyme action. Food Chem. 109:368-378. 71. Gul, K., A. Tak, A. Singh, P. Singh, B. Yousuf, and A.A. Wani. 2015. Chemistry, encapsulation, and health benefits of β-carotene-a review. Cogent Food Agric. 1:1018696. 72. Hemmerle, H., H.J. Burger, P. Below, G. Schubert, R. Rippel, P.W. Schindler, E. Paulus, and A.W. Herling. 1997. Chlorogenic acid and synthetic chlorogenic acid derivatives: Novel inhibitors of hepatic glucose-6-phosphate translocase. J. Med. Chem. 40:137-145. 73. Hertog, M.G., D. Kromhout, C. Aravanis, H. Blackburn, R. Buzina, F. Fidanza, S. Giampaoli, A. Jansen, A. Menotti, and S. Nedeljkovic. 1995. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med. 155:381-386. 74. Hester, J.E. and W.E. Fee. 1995. Effect of arginine on growth of squamous cell carcinoma in the C3H/KM mouse. Arch. Otolaryngol. Head Neck Surg. 121:193-196. 75. Jiménez‐Monreal, A., L. García‐Diz, M. Martínez‐Tomé, M. Mariscal, and M. Murcia. 2009. Influence of cooking methods on antioxidant activity of vegetables. J. Food Sci. 74:H97-H103. 76. Jolie, R.P., S. Christiaens, A. De Roeck, I. Fraeye, K. Houben, S. Van Buggenhout, A.M. Van Loey, and M.E. Hendrickx. 2012. Pectin conversions under high pressure: Implications for the structure-related quality characteristics of plant-based foods. Trends Food Sci. Technol.24:103-118. 77. Juániz, I., I.A. Ludwig, E. Huarte, G. Pereira-Caro, J.M. Moreno-Rojas, C. Cid, and M.P. De Peña. 2016. Influence of heat treatment on antioxidant capacity and (poly) phenolic compounds of selected vegetables. Food Chem. 197:466-473. 78. Jung, U.J., M.K. Lee, Y.B. Park, S.M. Jeon, and M.S. Choi. 2006. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J. Pharmacol. Exp. Ther. 318:476-483. 79. Kim, B.H., S.S. Hong, S.W. Kwon, H.Y. Lee, H. Sung, I.J. Lee, B.Y. Hwang, S. Song, C.K. Lee, and D. Chung. 2008. Diarctigenin, a lignan constituent from arctium lappa, down-regulated zymosan-induced transcription of inflammatory genes through suppression of DNA binding ability of nuclear factor-κB in macrophages. J. Pharmacol. Exp. Ther. 327:393-401. 80. Knipping, K., E.C. Van Esch, S.C. Wijering, S. Van Der Heide, A.E. Dubois, and J. Garssen. 2008. In vitro and in vivo anti-allergic effects of arctium lappa L. Exp. Biol .Med. 233:1469-1477. 81. Kwon, Y.R. and K.S. Youn. 2014. Physicochemical of burdock (Arctium lappa L) tea depending on steaming and roasting treatment. Korean J. Food Preserv. 21:646-651. 82. Li, D., J.M. Kim, Z. Jin, and J. Zhou. 2008. Prebiotic effectiveness of inulin extracted from edible burdock. Anaerobe 14:29-34. 83. Li, K., L. Zhu, H. Li, Y. Zhu, C. Pan, X. Gao, and W. Liu. 2019. Structural characterization and rheological properties of a pectin with anti-constipation activity from the roots of arctium lappa L. Carbohydr. Polym. 215:119-129. 84. Lieberman, M.D., K. Nishioka, H.P. Redmond, and J.M. Daly. 1992. Enhancement of interleukin-2 immunotherapy with L-arginine. Ann. Surge. 215:157. 85. Lin, S.C., C.H. Lin, C.C. Lin, Y.H. Lin, C.F. Chen, I.C. Chen, and L.Y. Wang. 2002. Hepatoprotective effects of arctium lappa linne on liver injuries induced by chronic ethanol consumption and potentiated by carbon tetrachloride. J. Biomed. Sci. 9:401-409. 86. Lou, Z., Y. Hong, Y. Liu, X. Song, L. Ai, H. Wang, A. Jiao, and Y. Tang. 2014. Effect of ethanol fraction of burdock leaf on biofilm formation and bacteria growth. Eur. Food Res. Technol. 239:305-311. 87. Lou, Z., H. Wang, J. Li, S. Chen, S. Zhu, C. Ma, and Z. Wang. 2010a. Antioxidant activity and chemical composition of the fractions from burdock leaves. J. Food Sci. 75:C413-C419. 88. Lou, Z., H. Wang, W. Lv, C. Ma, Z. Wang, and S. Chen. 2010b. Assessment of antibacterial activity of fractions from burdock leaf against food-related bacteria. Food Control 21:1272-1278. 89. Maeda, H., T. Katsuki, T. Akaike, and R. Yasutake. 1992. High correlation between lipid peroxide radical and tumor‐promoter effect: Suppression of tumor promotion in the epstein‐barr virus/b‐lymphocyte system and scavenging of alkyl peroxide radicals by various vegetable extracts. Jpn. J. Cancer Res. 83:923-928. 90. Maruta, Y., J. Kawabata, and R. Niki. 1995. Antioxidative caffeoylquinic acid derivatives in the roots of burdock (arctium lappa L.). J. Agric. Food. Chem. 43:2592-2595. 91. Mcdougall, B., P.J. King, B.W. Wu, Z. Hostomsky, M.G. Reinecke, and W.E. Robinson. 1998. Dicaffeoylquinic and dicaffeoyltartaric acids are selective inhibitors of human immunodeficiency virus type 1 integrase. Antimicrob. Agents Chemother. 42:140-146. 92. Meyer, A.S., M. Heinonen, and E.N. Frankel. 1998. Antioxidant interactions of catechin, cyanidin, caffeic acid, quercetin, and ellagic acid on human LDL oxidation. Food Chem. 61:71-75. 93. Miglio, C., E. Chiavaro, A. Visconti, V. Fogliano, and N. Pellegrini. 2008. Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J. Agric. Food. Chem. 56:139-147. 94. Miyamoto, K.I., M. Nomura, M. Sasakura, E. Matsui, R. Koshiura, T. Murayama, T. Furukawa, T. Hatano, T. Yoshida, and T. Okuda. 1993. Antitumor activity of oenothein b, a unique macrocyclic ellagitannin. Jpn. J. Cancer Res. 84:99-103. 95. Miyazawa, M., N. Yagi, and K. Taguchi. 2005. Inhibitory compounds of α-glucosidase activity from arctium lappa L. J. Oleo Sci. 54:589-594. 96. Morales, F.J. and M.B. Babbel. 2002. Antiradical efficiency of maillard reaction mixtures in a hydrophilic media. J. Agric. Food. Chem. 50:2788-2792. 97. Morris Jr, S.M. 2012. Arginases and arginine deficiency syndromes. Curr. Opin. Clin. Nutr. 15:64. 98. Nardini, M., M. D'aquino, G. Tomassi, V. Gentili, M. Di Felice, and C. Scaccini. 1995. Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radical Biol. Med. 19:541-552. 99. Naveed, M., V. Hejazi, M. Abbas, A.A. Kamboh, G.J. Khan, M. Shumzaid, F. Ahmad, D. Babazadeh, X. Fangfang, and F. Modarresi-Ghazani. 2018. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother.97:67-74. 100. Naves, M.M.V. and F.S. Moreno. 1998. β-carotene and cancer chemoprevention: From epidemiological associations to cellular mechanisms of action. Nutr. Res. 18:1807-1824. 101. Oey, I., I. Van Der Plancken, A. Van Loey, and M. Hendrickx. 2008. Does high pressure processing influence nutritional aspects of plant based food systems? Trends Food Sci. Technol.19:300-308. 102. Omenn, G.S., G.E. Goodman, M.D. Thornquist, J. Balmes, M.R. Cullen, A. Glass, J.P. Keogh, F.L. Meyskens Jr, B. Valanis, and J.H. Williams Jr. 1996. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 334:1150-1155. 103. Palozza, P., S. Serini, A. Torsello, F. Di Nicuolo, E. Piccioni, V. Ubaldi, C. Pioli, F.I. Wolf, and G. Calviello. 2003. β-carotene regulates NF-κB DNA-binding activity by a redox mechanism in human leukemia and colon adenocarcinoma cells. J. Nutr. 133:381-388. 104. Park, S.Y., S.S. Hong, X.H. Han, J.S. Hwang, D. Lee, J.S. Ro, and B.Y. Hwang. 2007. Lignans from arctium lappa and their inhibition of LPS-induced nitric oxide production. Chem. Pharm. Bull.55:150-152. 105. Pool-Zobel, B.L. 2005. Inulin-type fructans and reduction in colon cancer risk: Review of experimental and human data. Br. J. Nutr. 93:S73-S90. 106. Praznik, W., E. Cieślik, and A. Filipiak‐Florkiewicz. 2002. Soluble dietary fibres in jerusalem artichoke powders: Composition and application in bread. Food/Nahrung 46:151-157. 107. Prestamo, G. and G. Arroyo. 1998. High hydrostatic pressure effects on vegetable structure. J. Food Sci. 63:878-881. 108. Queiroz, C., A.J.R. Da Silva, M.L.M. Lopes, E. Fialho, and V.L. Valente-Mesquita. 2011. Polyphenol oxidase activity, phenolic acid composition and browning in cashew apple (anacardium occidentale, L.) after processing. Food Chem. 125:128-132. 109. Rao, A.V. and L.G. Rao. 2007. Carotenoids and human health. Pharmacol. Res. 55:207-216. 110. Richard-Forget, F.C. and F.A. Gauillard. 1997. Oxidation of chlorogenic acid, catechins, and 4-methylcatechol in model solutions by combinations of pear (pyrus communis cv. Williams) polyphenol oxidase and peroxidase: A possible involvement of peroxidase in enzymatic browning. J. Agr. Food Chem. 45:2472-2476. 111. Rivelli, D.P., V.V.D. Silva, C.D. Ropke, D.V. Miranda, R.L. Almeida, T.C.H. Sawada, and S.B.D.M. Barros. 2007. Simultaneous determination of chlorogenic acid, caffeic acid and caffeine in hydroalcoholic and aqueous extracts of Ilex paraguariensis by HPLC and correlation with antioxidant capacity of the extracts by DPPH reduction. Rev. Bras. Cienc. Farm. 43:215-222. 112. Roberfroid, M. 1993. Dietary fiber, inulin, and oligofructose: A review comparing their physiological effects. Crit. Rev. Food Sci. Nutr. 33:103-148. 113. Roberfroid, M.B. 2005. Introducing inulin-type fructans. Br. J. Nutr. 93:S13-S25. 114. Roberfroid, M.B. 2007. Inulin-type fructans: Functional food ingredients. J. Nutr. 137:2493S-2502S. 115. Rodeberg, D.A., M.S. Chaet, R.C. Bass, M.S. Arkovitz, and V.F. Garcia. 1995. Nitric oxide: An overview. Am. J. Surg. 170:292-303. 116. Roodenburg, A.J., R. Leenen, K.H. Van Het Hof, J.A. Weststrate, and L.B. Tijburg. 2000. Amount of fat in the diet affects bioavailability of lutein esters but not of α-carotene, β-carotene, and vitamin E in humans. Am. J. Clin. Nutr. 71:1187-1193. 117. Sancho, F., Y. Lambert, G. Demazeau, A. Largeteau, J.M. Bouvier, and J.F. Narbonne. 1999. Effect of ultra-high hydrostatic pressure on hydrosoluble vitamins. J. Food Eng. 39:247-253. 118. Sang, S., J.D. Lambert, C.-T. Ho, and C.S. Yang. 2011. The chemistry and biotransformation of tea constituents. Pharmacol. Res. 64:87-99. 119. Scalbert, A. and G. Williamson. 2000. Dietary intake and bioavailability of polyphenols. J. Nutr. 130:2073S-2085S. 120. Shahidi, F. and A. Chandrasekara. 2010. Hydroxycinnamates and their in vitro and In vivo antioxidant activities. Phytochem. Rev. 9:147-170. 121. Shi, H., L. Dong, J. Jiang, J. Zhao, G. Zhao, X. Dang, X. Lu, and M. Jia. 2013. Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway. Toxicology 303:107-114. 122. Sila, D.N., T. Duvetter, A. De Roeck, I. Verlent, C. Smout, G.K. Moates, B.P. Hills, K.K. Waldron, M. Hendrickx, and A. Van Loey. 2008. Texture changes of processed fruits and vegetables: Potential use of high-pressure processing. Trends Food Sci. Technol.19:309-319. 123. Sohn, E.H., S.A. Jang, H. Joo, S. Park, S.C. Kang, C.H. Lee, and S.Y. Kim. 2011. Anti-allergic and anti-inflammatory effects of butanol extract from arctium lappa L. Clin. Mol. Allergy 9:4. 124. Sulaiman, A., M.J. Soo, M.M. Yoon, M. Farid, and F.V. Silva. 2015. Modeling the polyphenoloxidase inactivation kinetics in pear, apple and strawberry purees after high pressure processing. J. Food Eng. 147:89-94. 125. Sun, Y. 1990. Free radicals, antioxidant enzymes, and carcinogenesis. Free Radical Biol. Med. 8:583-599. 126. Sun, Y., X. Kang, F. Chen, X. Liao, and X. Hu. 2019. Mechanisms of carrot texture alteration induced by pure effect of high pressure processing. Innovative Food Sci. Emerg. Technol. 54:260-269. 127. Takeda, H., M. Tsuji, J. Miyamoto, and T. Matsumiya. 2002. Rosmarinic acid and caffeic acid reduce the defensive freezing behavior of mice exposed to conditioned fear stress. J. Psychopharmacol. 164:233-235. 128. Tanimura, J. 1967. Studies on arginine in human semen. Ii. The effects of medication with L-arginine-HCl on male infertility. Bull. Osaka Med. Sch. 13:84. 129. Teixeira, B.P.B. 2013. Natural substances and high pressure processing to preserve sea bass. Universidade de Aveiro (Portugal). 130. Terefe, N.S., Y.H. Yang, K. Knoerzer, R. Buckow, and C. Versteeg. 2010. High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innovative Food Sci. Emerg. Technol. 11:52-60. 131. Ting, E. 2010. High-pressure processing equipment fundamentals. Nonthermal Process. Technol. Food 45:18. 132. Tousch, D., L.P. Bidel, G. Cazals, K. Ferrare, J. Leroy, M. Faucanie, H. Chevassus, M. Tournier, A.D. Lajoix, and J. Azay-Milhau. 2014. Chemical analysis and antihyperglycemic activity of an original extract from burdock root (Arctium lappa). J. Agric. Food Chem. 62:7738-7745. 133. Torres, J.A. and G. Velazquez. 2005. Commercial opportunities and research challenges in the high pressure processing of foods. J. Food Eng. 67:95-112. 134. Van Poppel, G. and R.A. Goldbohm. 1995. Epidemiologic evidence for beta-carotene and cancer prevention. Am. J. Clin. Nutr. 62:1393S-1402S. 135. Vuong, Q.V., J.B. Golding, M. Nguyen, and P.D. Roach. 2010. Extraction and isolation of catechins from tea. J. Sep. Sci. 33:3415-3428. 136. Vuong, Q.V., J.B. Golding, C.E. Stathopoulos, M.H. Nguyen, and P.D. Roach. 2011. Optimizing conditions for the extraction of catechins from green tea using hot water. J. Sep. Sci. 34:3099-3106. 137. Wach, A., K. Pyrzyńska, and M. Biesaga. 2007. Quercetin content in some food and herbal samples. Food Chem. 100:699-704. 138. Wang, B.S., G.C. Yen, L.W. Chang, W.J. Yen, and P.D. Duh. 2007. Protective effects of burdock (arctium lappa linne) on oxidation of low-density lipoprotein and oxidative stress in raw 264.7 macrophages. Food Chem. 101:729-738. 139. Wang, G.F., L.P. Shi, Y.D. Ren, Q.F. Liu, H.F. Liu, R.J. Zhang, Z. Li, F.H. Zhu, P.L. He, and W. Tang. 2009. Anti-hepatitis b virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antivir. Res. 83:186-190. 140. Wang, R., H. Ayano, T. Furumoto, A. Kondo, and H. Fukui. 2001. Variation of the content of chlorogenic acid derivatives among cultivars and market items of burdock (arctium lappa L.). J. Jpn. Soc. Food Sci. 48:857-862. 141. Weemaes, C., L. Ludikhuyze, I. Van Den Broeck, and M. Hendrickx. 1998. High pressure inactivation of polyphenoloxidases. J. Food Sci. 63:873-877. 142. Wen, H., T. Guo, W. J. Jiang, G. L. Dong, D. W. Chen, S. L. Yang, and H. R. Li. 2015. Effects of ultrahigh pressure extraction on yield and antioxidant activity of chlorogenic acid and cynaroside extracted from flower buds of Lonicera japonica. Chin. J. Nat. Medicines 13:445-453. 143. Wu, G., F. W Bazer, T.A. Davis, S.W. Kim, P. Li, J.M. Rhoads, M.C. Satterfield, S.B. Smith, T.E. Spencer, and Y. Yin. 2009. Arginine metabolism and nutrition in growth, health and disease. Amino acids 37:153-168. 144. Yamaguchi, T., M. Katsuda, Y. Oda, J. Terao, K. Kanazawa, S. Oshima, T. Inakuma, Y. Ishiguro, H. Takamura, and T. Matoba. 2003. Influence of polyphenol and ascorbate oxidases during cooking process on the radical-scavenging activity of vegetables. Food Sci. Technol. Res. 9:79-83. 145. Yamaguchi, T., T. Mizobuchi, R. Kajikawa, H. Kawashima, F. Miyabe, J. Terao, H. Takamura, and T. Matoba. 2001. Radical-scavenging activity of vegetables and the effect of cooking on their activity. Food Sci. Technol. Res. 7:250-257. 146. Yilmaz, Y. and R. Toledo. 2005. Antioxidant activity of water-soluble maillard reaction products. Food Chem. 93:273-278. 147. Yu, G., J. Bei, J. Zhao, Q. Li, and C. Cheng. 2018. Modification of carrot (Daucus carota Linn. Var. Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure. Food Chem. 257:333-340. 148. Yun, N., J.W. Kang, and S.M. Lee. 2012a. Protective effects of chlorogenic acid against ischemia/reperfusion injury in rat liver: Molecular evidence of its antioxidant and anti-inflammatory properties. J. Nutr. Biochem. 23:1249-1255. 149. Zhang, L., C. Chang, Y. Liu, and Z. Chen. 2011. Effect of chlorogenic acid on disordered glucose and lipid metabolism in db/db mice and its mechanism. Acta Academiae Medicinae Sinicae 33:281-286. 150. Zhang, M.Y., A.M. Liao, K. Thakur, J.H. Huang, J.G. Zhang, and Z.J. Wei. 2019a. Modification of wheat bran insoluble dietary fiber with carboxymethylation, complex enzymatic hydrolysis and ultrafine comminution. Food Chem. 297:124983. 151. Zhang, N., Y. Wang, J. Kan, X. Wu, X. Zhang, S. Tang, R. Sun, J. Liu, C. Qian, and C. Jin. 2019b. In vivo and in vitro anti-inflammatory effects of water-soluble polysaccharide from arctium lappa. Int. J. Biol. Macromol. 135:717-724. 152. Zhao, F., L. Wang, and K. Liu. 2009. In vitro anti-inflammatory effects of arctigenin, a lignan from arctium lappa L., through inhibition on iNOS pathway. J. Ethnopharmacol. 122:457-462. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18010 | - |
dc.description.abstract | 牛蒡 (Arctium lappa L.) 是菊科牛蒡屬的肉質根蔬菜,含有豐富的綠原酸、咖啡酸、菊糖、β-胡蘿蔔素、精胺酸與抗氧化物質,具有降血脂與血糖、保肝、壯陽及改善腸胃道等機能性功效。牛蒡較常被製作成加工產品,如牛蒡茶、醃漬牛蒡、牛蒡脆片與牛蒡膠囊等,研究表明,牛蒡茶具有降血脂與抗氧化等功效。茶是世界三大飲品之一,但卻未見牛蒡茶被大力推廣飲用。因此,本研究欲利用非熱加工與熱加工探討何種加工方法可增加牛蒡中綠原酸的釋出,再以不同烘乾溫度與不同牛蒡尺寸探討機能性成分溶出的情形與抗氧化活性。 牛蒡經過高壓與酵素滲透處理後與未處理相比,綠原酸的含量皆降低了50%,可能是由於非熱處理無法完全滅活牛蒡中的多酚氧化酶 (PPO) 與過氧化酶 (POD)。經過熱處理後,PPO與POD的活性可降至9%與15%,綠原酸的含量於處理3分鐘時相較於未處理增加20%,可見適當的熱處理可透過滅活PPO與POD且破壞牛蒡組織使綠原酸釋出,且以100℃浸泡市售牛蒡茶20分鐘可溶出最多的綠原酸。牛蒡切丁較切片可溶出較多的綠原酸,而將片狀烘乾的牛蒡切成丁狀則可增加溶出量,但磨粉後則會降低。進一步探討其餘成分的溶出情形,發現以40℃烘乾可保留較多的菊糖與精胺酸且有較高的DPPH自由基清除能力,而180℃下則是保留較多的酚類化合物,例如:咖啡酸、總酚與類黃酮,且有較高的ABTS自由基清除能力、還原力與亞鐵離子螯合力,不論何種乾燥溫度的牛蒡茶皆有媲美對照組 (維生素C或EDTA) 優秀的抗氧化能力。總結而言,以短時間熱處理可滅活牛蒡中的PPO與POD,相較於非熱加工更有優勢。若能以較適合的條件製作牛蒡茶,再以最適合的浸泡條件浸泡飲用可提升牛蒡的營養利用效率,其優秀的抗氧化活性使牛蒡茶成為保健養生的飲品,期望透過本研究達到推廣飲用牛蒡茶的效果。 | zh_TW |
dc.description.abstract | Burdock (Arctium lappa L.) is a fleshy root vegetable belonging to Arctium in the family of Asteraceae. It is rich in chlorogenic acid (CGA), caffeic acid (CA), inulin, β-carotene and L-arginine (L-Arg) and antioxidants. It is also known for being hypolipidemic, antidiabetics, hepatoprotective, aphrodisiac, and maintaining gastrointestinal health. Burdock is more commonly consumed as processing products, such as burdock tea, pickled burdock, burdock crisps, and burdock capsules. Studies have shown that burdock tea has hypolipidemic and antioxidative effects. Tea is one of the world's most popular beverages; however, burdock tea has not yet been promoted for drinking. This study aims to explore processing methods that increase the release of CGA in burdock by using non-thermal processing and thermal processing. We used different drying temperatures and cutting sizes to analyze the dissolution of functional ingredients and their antioxidant activities. The content of CGA after high pressure and enzyme penetration treatment reduced by 50% compared with the untreated control. This may be due to incomplete inactivation of polyphenol oxidase (PPO) and peroxidase (POD) during non-thermal processing. After heat treatment, the residual activities of PPO and POD in burdock reduced to 9% and 15%, respectively. The content of CGA after heat treatment for 3 min increased by 20% compared with the untreated control. The appropriate heat treatment released CGA by inactivating PPO and POD and destroying burdock tissue. Brewing commercial burdock tea at 100°C for 20 min dissolved most of the CGA. Dried burdock released more CGA diced than sliced. Chopping sliced burdock released more CGA, but grinding into powder reduced the dissolution of CGA. Then, we discussed the dissolution of the remaining ingredients. Drying burdock at low temperatures retained more inulin and L-Arginine, whereas at high temperatures it retained more phenolic compounds (CA), the total phenolic and flavonoid content. The low drying temperature increased 1, 1-Diphenyl-2-Picrylhydrazyl (DPPH) free radical scavenging ability of the burdock tea, while at high temperatures, it showed higher 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging ability, reducing power, and ferrous ion chelating power. Regardless of the drying temperature, the burdock tea has an excellent antioxidant efficiency, which is comparable to that of the positive control (vitamin C or Ethylenediaminetetraacetic acid (EDTA)). Drinking burdock tea may be better than eating some fruits and vegetables. In summary, short durations of heat treatment can inactivate PPO and POD in burdock, and therefore this method is more advantageous than non-thermal processing. If the burdock tea is prepared under conditions, such as dried in dices, dried at high temperature to retain the phenolic compounds, dried at low temperature to retain the functional ingredients, and then brewed in the most suitable conditions for drinking, the nutrition of burdock could be absorbed more efficiently. Its excellent antioxidant activity makes burdock tea a health drink. This study shows the potential benefits of drinking burdock tea. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:48:26Z (GMT). No. of bitstreams: 1 U0001-1308202017094700.pdf: 3268147 bytes, checksum: 0417355ed2a8da576fdc44b4a87cfaac (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 I 中文摘要 II Abstract III 目錄 V 圖目錄 IX 表目錄 XI 第一章、前言 1 第二章、文獻回顧 2 第一節、牛蒡 2 1. 介紹 2 2. 牛蒡植株 2 3. 牛蒡根的農業現況應用 7 4. 牛蒡根的營養成分 9 5. 牛蒡根的生理活性與功效 11 6. 牛蒡根中的多酚氧化酶與過氧化酶 13 第二節、牛蒡根主要的機能性成分 14 1. 綠原酸 (Chlorogenic acid, CGA) 14 2. 咖啡酸 (Caffeic acid, CA) 16 3. 菊糖 (Inulin) 17 4. β-胡蘿蔔素 (β-carotene) 19 5. L-精胺酸 (L-arginine, L-Arg) 22 第三節、牛蒡現有加工產品 24 1. 牛蒡茶 24 2. 醃漬牛蒡 26 3. 牛蒡脆片 26 4. 牛蒡膠囊 26 第四節、高靜水壓處理技術 27 1. 介紹與原理 27 2. 對植物的作用機制與影響 29 第五節、酵素處理技術 30 1. 處理方法 30 2. 對植物的作用機制與影響 31 第六節、熱處理 34 1. 介紹 34 2. 對植物的作用機制與影響 34 第七節、研究動機與目的 35 第八節、研究架構 36 第三章、材料方法 38 第一節、試驗材料 38 第二節、試驗藥品 38 第三節、儀器與設備 40 第四節、加工處理與牛蒡茶沖泡方法 41 第五節、多酚氧化酶與過氧化酶活性測定方法 42 第六節、綠原酸、咖啡酸測定方法 43 第七節、β-胡蘿蔔素測定方法 45 第八節、菊糖測定方法 47 第九節、精胺酸測定方法 48 第十節、抗氧化分析 50 第十一節、統計分析 53 第四章、結果與討論 54 第一節、不同加工處理對牛蒡中綠原酸與咖啡酸含量之影響 54 1. 高壓處理法 54 2. 酵素處理法 56 3. 真空包裝熱處理法 58 4. 熱處理法 60 第二節、市售牛蒡茶最佳浸泡條件 64 第三節、不同烘乾溫度與尺寸對牛蒡茶中綠原酸溶出量之影響 66 1. 烘乾牛蒡之外觀 66 2. 以40℃與180℃烘乾後改變牛蒡尺寸對綠原酸溶出量之影響 67 第四節、不同烘乾條件的牛蒡茶之機能性成分溶出量 70 1. 咖啡酸 (Caffeic acid, CA) 之溶出量 70 2. 菊糖 (Inulin) 與總醣 (Total sugar) 之溶出量 73 3. β-胡蘿蔔素 (β-carotene) 之溶出量 75 4. 精胺酸 (L-arginine, L-Arg) 之溶出量 76 第五節、不同烘乾條件的牛蒡茶之抗氧化性能 79 1. 總酚含量 (Total phenolic content, TPC) 79 2. 總類黃酮含量 (Total flavonoid content, TFC) 82 3. 抗自由基分析 85 4. 抗氧化分析 91 第五章、結論 93 參考資料 94 | |
dc.language.iso | zh-TW | |
dc.title | 加工處理對牛蒡茶泡飲機能成分溶出之影響 | zh_TW |
dc.title | Effect of Processing on the Dissolution of Functional Components in Burdock Tea | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳思節(Sz-Jie Wu),王鐘毅(Chung-Yi Wang),曾文聖(Wen-Sheng Zeng),劉育姍(Yu-Shan Liu) | |
dc.subject.keyword | 牛蒡,牛蒡茶,熱處理,抗氧化,清除自由基,綠原酸, | zh_TW |
dc.subject.keyword | burdock,burdock tea,heat treatment,chlorogenic acid,antioxidant,free radical scavenging, | en |
dc.relation.page | 110 | |
dc.identifier.doi | 10.6342/NTU202003297 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1308202017094700.pdf 目前未授權公開取用 | 3.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。