Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18005
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建煒(K. Arnold Chan),賴美淑(Mei-Shu Lai)
dc.contributor.authorPei-Chun Chiangen
dc.contributor.author江佩純zh_TW
dc.date.accessioned2021-06-08T00:48:18Z-
dc.date.copyright2015-09-14
dc.date.issued2015
dc.date.submitted2015-07-21
dc.identifier.citation1. Messina JP, Humphreys I, Flaxman A, Brown A, Cooke GS, Pybus OG, Barnes E. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology 2015;61:77-87.
2. Lee MH, Yang HI, Yuan Y, L'Italien G, Chen CJ. Epidemiology and natural history of hepatitis C virus infection. World J Gastroenterol 2014;20:9270-9280.
3. Lee MH, Yang HI, Jen CL, Lu SN, Yeh SH, Liu CJ, You SL, et al. Community and personal risk factors for hepatitis C virus infection: a survey of 23,820 residents in Taiwan in 1991-2. Gut 2011;60:688-694.
4. Yang JF, Lin CI, Huang JF, Dai CY, Lin WY, Ho CK, Hsieh MY, et al. Viral hepatitis infections in southern Taiwan: a multicenter community-based study. Kaohsiung J Med Sci 2010;26:461-469.
5. Chen CH, Yang PM, Huang GT, Lee HS, Sung JL, Sheu JC. Estimation of seroprevalence of hepatitis B virus and hepatitis C virus in Taiwan from a large-scale survey of free hepatitis screening participants. J Formos Med Assoc 2007;106:148-155.
6. Yeung CY, Lee HC, Chan WT, Jiang CB, Chang SW, Chuang CK. Vertical transmission of hepatitis C virus: Current knowledge and perspectives. World J Hepatol 2014;6:643-651.
7. Sun CA, Chen HC, Lu CF, You SL, Mau YC, Ho MS, Lin SH, et al. Transmission of hepatitis C virus in Taiwan: prevalence and risk factors based on a nationwide survey. J Med Virol 1999;59:290-296.
8. Sievert W, Altraif I, Razavi HA, Abdo A, Ahmed EA, Alomair A, Amarapurkar D, et al. A systematic review of hepatitis C virus epidemiology in Asia, Australia and Egypt. Liver Int 2011;31 Suppl 2:61-80.
9. Hajarizadeh B, Grebely J, Dore GJ. Epidemiology and natural history of HCV infection. Nat Rev Gastroenterol Hepatol 2013;10:553-562.
10. Yu ML, Chuang WL. Treatment of chronic hepatitis C in Asia: when East meets West. J Gastroenterol Hepatol 2009;24:336-345.
11. Lee MH, Yang HI, Lu SN, Jen CL, You SL, Wang LY, L'Italien G, et al. Hepatitis C virus genotype 1b increases cumulative lifetime risk of hepatocellular carcinoma. Int J Cancer 2014;135:1119-1126.
12. Survival rate in new cases of top 10 cancer in taiwan In: Taiwan cancer registry.
13. Drug information. In: UpToDate. Waltham, MA.: UpToDate, 2015.
14. McHutchison JG, Lawitz EJ, Shiffman ML, Muir AJ, Galler GW, McCone J, Nyberg LM, et al. Peginterferon alfa-2b or alfa-2a with ribavirin for treatment of hepatitis C infection. N Engl J Med 2009;361:580-593.
15. Laguno M, Cifuentes C, Murillas J, Veloso S, Larrousse M, Payeras A, Bonet L, et al. Randomized trial comparing pegylated interferon alpha-2b versus pegylated interferon alpha-2a, both plus ribavirin, to treat chronic hepatitis C in human immunodeficiency virus patients. Hepatology 2009;49:22-31.
16. Awad T, Thorlund K, Hauser G, Stimac D, Mabrouk M, Gluud C. Peginterferon alpha-2a is associated with higher sustained virological response than peginterferon alfa-2b in chronic hepatitis C: systematic review of randomized trials. Hepatology 2010;51:1176-1184.
17. Omata M, Kanda T, Yu M-L, Yokosuka O, Lim S-G, Jafri W, Tateishi R, et al. APASL consensus statements and management algorithms for hepatitis C virus infection. Hepatology International 2012;6:409-435.
18. Hung CH, Lee CM, Lu SN, Wang JH, Chen CH, Hu TH, Kee KM, et al. Anemia associated with antiviral therapy in chronic hepatitis C: incidence, risk factors, and impact on treatment response. Liver Int 2006;26:1079-1086.
19. Yu ML, Yeh ML, Tsai PC, Huang CI, Huang JF, Huang CF, Hsieh MH, et al. Huge gap between clinical efficacy and community effectiveness in the treatment of chronic hepatitis C: a nationwide survey in Taiwan. Medicine (Baltimore) 2015;94:e690.
20. Bacon BR, Gordon SC, Lawitz E, Marcellin P, Vierling JM, Zeuzem S, Poordad F, et al. Boceprevir for previously treated chronic HCV genotype 1 infection. N Engl J Med 2011;364:1207-1217.
21. Vierling JM, Davis M, Flamm S, Gordon SC, Lawitz E, Yoshida EM, Galati J, et al. Boceprevir for chronic HCV genotype 1 infection in patients with prior treatment failure to peginterferon/ribavirin, including prior null response. J Hepatol 2014;60:748-756.
22. Drug Query Search Engine in Department of Pharmacy, National Taiwan University Hospital In.
23. Afdhal N, Reddy KR, Nelson DR, Lawitz E, Gordon SC, Schiff E, Nahass R, et al. Ledipasvir and sofosbuvir for previously treated HCV genotype 1 infection. N Engl J Med 2014;370:1483-1493.
24. Drug Pricing Policy. In. South San Francisco: First Databank; 2015.
25. Spach D. hepatits C online. In: David H. Spach HNK, editor. Medications to Treat HCV: University of Washington; 2015.
26. Recommendations for Testing, Managing, and Treating Hepatitis C. In. USA: AASLD/IDSA/IAS; 2014.
27. Martinot-Peignoux M, Stern C, Maylin S, Ripault MP, Boyer N, Leclere L, Castelnau C, et al. Twelve weeks posttreatment follow-up is as relevant as 24 weeks to determine the sustained virologic response in patients with hepatitis C virus receiving pegylated interferon and ribavirin. Hepatology 2010;51:1122-1126.
28. Rivero-Juarez A, Mira JA, Perez-Camacho I, Macias J, Camacho A, Neukam K, Torre-Cisneros J, et al. Twelve week post-treatment follow-up predicts sustained virological response to pegylated interferon and ribavirin therapy in HIV/hepatitis C virus co-infected patients. J Antimicrob Chemother 2011;66:1351-1353.
29. Huang CF, Yeh ML, Hsieh MH, Hsieh MY, Lin ZY, Chen SC, Wang LY, et al. Clinical utility of host genetic IL-28B variants in hepatitis C virus genotype 1 Asian patients retreated with pegylated interferon plus ribavirin. J Gastroenterol Hepatol 2013;28:1515-1520.
30. Chen MY, Liu CH, Chen TC, Su TH, Chen PJ, Chen DS, Kao JH, et al. Value of interleukin-28B genetic polymorphism on retreatment outcomes of chronic hepatitis C genotype 1 relapsers by peginterferon alfa plus ribavirin. J Gastroenterol Hepatol 2014;29:102-109.
31. Lawitz E, Sulkowski MS, Ghalib R, Rodriguez-Torres M, Younossi ZM, Corregidor A, DeJesus E, et al. Simeprevir plus sofosbuvir, with or without ribavirin, to treat chronic infection with hepatitis C virus genotype 1 in non-responders to pegylated interferon and ribavirin and treatment-naive patients: the COSMOS randomised study. Lancet 2014.
32. Zeuzem S, Jacobson IM, Baykal T, Marinho RT, Poordad F, Bourliere M, Sulkowski MS, et al. Retreatment of HCV with ABT-450/r-ombitasvir and dasabuvir with ribavirin. N Engl J Med 2014;370:1604-1614.
33. San Miguel R, Gimeno-Ballester V, Mar J. Cost-effectiveness of protease inhibitor based regimens for chronic hepatitis C: a systematic review of published literature. Expert Rev Pharmacoecon Outcomes Res 2014;14:387-402.
34. Saab S, Gordon SC, Park H, Sulkowski M, Ahmed A, Younossi Z. Cost-effectiveness analysis of sofosbuvir plus peginterferon/ribavirin in the treatment of chronic hepatitis C virus genotype 1 infection. Aliment Pharmacol Ther 2014;40:657-675.
35. Chhatwal J, Kanwal F, Roberts MS, Dunn MA. Cost-Effectiveness and Budget Impact of Hepatitis C Virus Treatment With Sofosbuvir and Ledipasvir in the United StatesCost-Effectiveness of HCV Treatment With Sofosbuvir and Ledipasvir. Annals of Internal Medicine 2015;162:397-406.
36. Younossi ZM, Park H, Saab S, Ahmed A, Dieterich D, Gordon SC. Cost-effectiveness of all-oral ledipasvir/sofosbuvir regimens in patients with chronic hepatitis C virus genotype 1 infection. Aliment Pharmacol Ther 2015;41:544-563.
37. Elbasha EH, Chhatwal J, Ferrante SA, El Khoury AC, Laires PA. Cost-effectiveness analysis of boceprevir for the treatment of chronic hepatitis C virus genotype 1 infection in Portugal. Appl Health Econ Health Policy 2013;11:65-78.
38. Dan YY, Ferrante SA, Elbasha EH, Hsu TY. Cost-effectiveness of boceprevir co-administration versus peginterferon alpha-2b and ribavirin only for patients with hepatitis C genotype 1 in Singapore. Antivir Ther 2014.
39. Chhatwal J, Ferrante SA, Brass C, El Khoury AC, Burroughs M, Bacon B, Esteban-Mur R, et al. Cost-effectiveness of boceprevir in patients previously treated for chronic hepatitis C genotype 1 infection in the United States. Value Health 2013;16:973-986.
40. Alastair M. Gary PMC, Jane L. Wolstenholme, Sarah Wordsworth. Applied methods of cost-effectiveness analysis in health care. United kingdom: Oxford university press, 2011.
41. Karl Claxton SM, Marta Soares, Nigel Rice, Eldon Spackman, Sebastian Hinde, Nancy Devlin, Peter C Smith, Mark Sculpher. Methods for the estimation of the NICE cost effectiveness threshold; 2013. Report No.: Working Papers 081cherp.
42. Cost-effectiveness thresholds. In: WHO; 2015.
43. Liu CH, Liu CJ, Lin CL, Liang CC, Hsu SJ, Yang SS, Hsu CS, et al. Pegylated interferon-alpha-2a plus ribavirin for treatment-naive Asian patients with hepatitis C virus genotype 1 infection: a multicenter, randomized controlled trial. Clin Infect Dis 2008;47:1260-1269.
44. Hsu SJ, Hsu CS, Liu CH, Liu CJ, Chen CL, Chen PJ, Chen DS, et al. HCV core gene polymorphisms correlate with liver fibrosis but not sustained virological response in patients with genotype 1 infection. Antivir Ther 2011;16:227-235.
45. Yu ML, Dai CY, Huang JF, Chiu CF, Yang YH, Hou NJ, Lee LP, et al. Rapid virological response and treatment duration for chronic hepatitis C genotype 1 patients: a randomized trial. Hepatology 2008;47:1884-1893.
46. Thein HH, Yi Q, Dore GJ, Krahn MD. Estimation of stage-specific fibrosis progression rates in chronic hepatitis C virus infection: a meta-analysis and meta-regression. Hepatology 2008;48:418-431.
47. Bruno S, Zuin M, Crosignani A, Rossi S, Zadra F, Roffi L, Borzio M, et al. Predicting Mortality Risk in Patients With Compensated HCV-Induced Cirrhosis: A Long-Term Prospective Study. Am J Gastroenterol 2009;104:1147-1158.
48. Andrew Briggs MS, Karl Claxton. Decision Modelling for Health Economic Evaluation: Oxford University Press, 2006.
49. Morgan RL, Baack B, Smith BD, Yartel A, Pitasi M, Falck-Ytter Y. Eradication of hepatitis C virus infection and the development of hepatocellular carcinoma: a meta-analysis of observational studies. Ann Intern Med 2013;158:329-337.
50. Planas R, Balleste B, Alvarez MA, Rivera M, Montoliu S, Galeras JA, Santos J, et al. Natural history of decompensated hepatitis C virus-related cirrhosis. A study of 200 patients. J Hepatol 2004;40:823-830.
51. Lin WA, Tarn YH, Tang SL. Cost-utility analysis of different peg-interferon alpha-2b plus ribavirin treatment strategies as initial therapy for naive Chinese patients with chronic hepatitis C. Aliment Pharmacol Ther 2006;24:1483-1493.
52. Liu S, Cipriano LE, Holodniy M, Owens DK, Goldhaber-Fiebert JD. New protease inhibitors for the treatment of chronic hepatitis C: a cost-effectiveness analysis. Ann Intern Med 2012;156:279-290.
53. Ho MC, Huang GT, Tsang YM, Lee PH, Chen DS, Sheu JC, Chen CH. Liver resection improves the survival of patients with multiple hepatocellular carcinomas. Ann Surg Oncol 2009;16:848-855.
54. Lin NC, Hsia CY, Loong CC, Liu CS, Tsai HL, Lui WY, Wu CW. Liver transplantation at a small-volume procedure center--preliminary results from Taipei Veterans General Hospital. J Chin Med Assoc 2008;71:186-190.
55. Chen CL, Concejero AM. Liver transplantation for hepatocellular carcinoma in the world: the Taiwan experience. J Hepatobiliary Pancreat Sci 2010;17:555-558.
56. Ho MC, Wu YM, Hu RH, Ko WJ, Yang PM, Lai MY, Lin MH, et al. Liver transplantation for patients with hepatocellular carcinoma. Transplantation Proceedings 2004;36:2291-2292.
57. 臺灣地區簡易生命表. In: 內政部統計處, editor.; 2013.
58. Lee MH, Yang HI, Lu SN, Jen CL, Yeh SH, Liu CJ, Chen PJ, et al. Hepatitis C virus seromarkers and subsequent risk of hepatocellular carcinoma: long-term predictors from a community-based cohort study. J Clin Oncol 2010;28:4587-4593.
59. 賴明陽;高嘉宏. 全民健康保險加強慢性B型及C型肝炎治療試辦計畫」之總療效及成本效益評估 In: 衛生福利部疾病管制署; 2006.
60. Chao-Hsiun Tang K-CH, Siao-Yuan Huang, Yu-Ting Wu, Kuen-Dong Lin. Mortality and Medical Costs Associated with Liver-Related Diseases among Patients with Hepatitis C Virus (HCV) Infection in Taiwan. In: ISPOR; 2013.
61. Pwu RF, Chan KA. Cost-effectiveness analysis of interferon-alpha therapy in the treatment of chronic hepatitis B in Taiwan. J Formos Med Assoc 2002;101:632-641.
62. Taiwan Statistical Data Book. In: National development council; 2014.
63. Eddy DM, Hollingworth W, Caro JJ, Tsevat J, McDonald KM, Wong JB. Model transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-7. Med Decis Making 2012;32:733-743.
64. Gomez EV, Rodriguez YS, Bertot LC, Gonzalez AT, Perez YM, Soler EA, Garcia AY, et al. The natural history of compensated HCV-related cirrhosis: A prospective long-term study. Journal of Hepatology 2013;58:434-444.
65. Chhatwal J, Chen Q, Kanwal F. Why We Should Be Willing to Pay for Hepatitis C Treatment. Clin Gastroenterol Hepatol 2015.
66. Hagan LM, Wolpe PR, Schinazi RF. Treatment as prevention and cure towards global eradication of hepatitis C virus. Trends Microbiol 2013;21:625-633.
67. Conjeevaram H. Continued progress against hepatitis C infection. Jama 2015;313:1716-1717.
68. Brown RS, Jr. Universal Hepatitis C Eradication Prior to Liver Transplantation: We Can Do It, but Should We? Am J Transplant 2015;15:1741-1742.
69. Barth H. Hepatitis C virus: Is it time to say goodbye yet? Perspectives and challenges for the next decade. World J Hepatol 2015;7:725-737.
70. DRUGDEX® System (electronic version). In. Greenwood Village, Colorado, USA: Truven Health Analytics; 2015.
71. Hsu PC, Federico CA, Krajden M, Yoshida EM, Bremner KE, Anderson FH, Weiss AA, et al. Health utilities and psychometric quality of life in patients with early- and late-stage hepatitis C virus infection. J Gastroenterol Hepatol 2012;27:149-157.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18005-
dc.description.abstract研究背景:
2011 年起,美國食品藥物管理局(U.S. Food and Drug Administration, FDA) 開始核准了一系列直接抗病毒藥物,用於治療C 型肝炎。在國外臨床試驗的數據顯示,此類藥物比上目前的C 型肝炎標準療法-聚乙二醇干擾素加上雷巴威林(peginterferon plus ribavirin, PR) 對於C 型肝炎的療效較佳。目前直接抗病毒藥物皆尚未納入健保給付,而直接抗病毒藥物們高昂的藥價,需要再更多的研究評估是否它們值得納入健保給付。
研究目的:
此研究評估以下四種含直接抗病毒藥物的療法用於臺灣地區之前治療失敗的C型肝炎第一型病人,比上目前的標準C 型肝炎療法(PR)是否具有成本效益:博賽波維加上聚乙二醇干擾素和雷巴威林(boceprevir and peginterferon plus ribavirin, BOC+ PR)、思美匹維加上索非布維(simeprevir+ sofosbuvir, SMV+SOF)、索非布維加上雷迪帕維(sofosbuvir/ledipasvir, SOF+LDV)以及歐比它維、佩利它匹維、利托納維此三種藥物組成的複方錠劑加上達沙逼維和雷巴威林(ombitasvir/paritaprevir/ritonavir+ dasabuvir and ribavirin, AOD+RBV)
方法:
本研究為成本效果分析(cost-effectiveness analysis),採用健保署觀點及折現率為3%,使用馬可夫模型 (Markov model)來模擬C 型肝炎之肝病病程,以推估符合治療條件之五十歲病人的終身醫療成本與效果。由於直接抗病毒藥物大部分尚未獲得健保給付,無法取得台灣市場價格的藥品由美國藥價估計之,並進行單維及機率性敏感度分析評估結果之不確定性。
結果:
模型模擬之結果顯示,各組治療臺灣C 型肝炎第一型且曾治療失敗病人每人平均存活人年數(life-years)及品質校正生活年(QALYs)如下: BOC+ PR: 18.16 life-years/ 16.67 QALYs; AOD+RBV: 19.72 life-years/ 18.41 QALYs; SOF+LDV: 19.73 life-years/ 18.43 QALYs; SMV+SOF: 19.53 life-years/ 18.22 QALYs。而相較於目前C型肝炎標準療法(PR)的遞增成本效益比值(ICER)如下: BOC+ PR, 324,416 NTD/QALY; AOD+RBV, 721,381 NTD/QALY; SOF+LDV, 803,281 NTD/QALY, SMV+SOF 1,571,000 NTD/QALY。
結論:
在本研究中的基礎方案中,假設遞增成本效益比值之閾值為臺灣之一倍人均GDP(NT$62, 3871)時,可稱BOC+PR 此療法具有成本效益。而在無干擾素療法(peginterferon free therapies)中, 此三種療法比上目前標準療法的遞增成本效益比值皆超過臺灣之一倍人均GDP。但目前台灣尚未對遞增成本效益比值之閾值有所共識,故含直接抗病毒藥物的療法是否具有成本效益尚待討論。此外,未來還需更多財務衝擊等研究,以便
政策制定者參考。
zh_TW
dc.description.abstractBackground
A new era in hepatitis C treatment has emerged since the approval of some direct acting antivirals (DAAs) in the U.S. from 2011. Evidence from randomized controlled
trials of DAA-based therapies shows higher efficacy than current standard of care(peginterferon plus ribavirin). DAAs are not reimbursed by National Health Insurance
(NHI) in Taiwan yet. Despite of high efficacy of DAAs, their high acquisition costs may cause concerns for reimbursement in Taiwan.
Objective
This study aims to evaluate the cost-effectiveness of four kinds of DAAs-containing regimens (BOC+ PR, boceprevir and peginterferon plus ribavirin; SMV+SOF,
simeprevir+ sofosbuvir; SOF+LDV, sofosbuvir/ledipasvir; AOD+RBV, ombitasvir/paritaprevir/ritonavir+ dasabuvir and ribavirin) by comparing with current standard of care (PR) for previous treatment-failure HCV genotype 1 patients in Taiwan.
Methods
A Markov model was developed to simulate progression of hepatitis C infection and to estimate the long-term health outcomes, quality-adjusted-life-years (QALYs), life-time costs of per HCV patient. Age of the treatment eligible hypothetical cohort was 50 years old. Due to lack of the NHI-reimbursed price of the four DAAs, drug costs were estimated by current market prices in Taiwan or wholesale acquisition costs in America. Time horizon was set to be life-time. We adopted the payer’s perspective and considered only direct medical costs. One-way sensitivity analysis and probabilistic sensitivity analysis were also carried out to account for uncertainty.
Results
In the treatment-failure HCV genotype 1 patients in Taiwan, the DAAs therapies increased the total long-term health outcomes and QALYs compared with PR. (BOC+ PR:
18.16 life-years/ 16.67 QALYs; AOD+RBV: 19.72 life-years/ 18.41 QALYs; SOF+LDV: 19.73 life-years/ 18.43 QALYs; SMV+SOF: 19.53 life-years/ 18.22 QALYs). The respective incremental cost effectiveness ratio compared to PR: BOC+ PR, 324,416 NTD/QALY; AOD+RBV, 721,381 NTD/QALY; SOF+LDV, 803,281 NTD/QALY, SMV+SOF 1,571,000 NTD/QALY.
Conclusions
In this study, the BOC+PR therapy is cost-effective compared to PR in the base case under the threshold of 1 GDP per capita in Taiwan (1 GDP per capita =NT$623,871). The ICERs of interferon free regimens are higher than 1 GDP per capita. There is no consensus of ICER threshold in Taiwan yet, whether the DAAs therapies are cost-effective or not still waits for consensus. In addition, we recommend that more research like budget impact are needed for policy makers.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:48:18Z (GMT). No. of bitstreams: 1
ntu-104-R02849037-1.pdf: 6920003 bytes, checksum: 33f0eb82d16c454e2392eaf3de86b0d7 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要 ii
Abstract iv
List of Abbreviations vii
I. Introduction 1
I.1 Epidemiology of hepatitis C 1
I.2 HCV treatment evolution 3
I.3 Motivation of study 7
II. Literature review 9
II.1 Efficacy 9
II.1.1 Clinical indicator 9
II.1.2 Peginterferon plus ribavirin (PR) 10
II.1.3 Boceprevir plus peginterferon and ribavirin (BOC+PR) 12
II.1.3.1 RESPOND-2 13
II.1.3.2 PROVIDE 13
II.1.3.3 NCT01390844 14
II.1.4 Simeprevir plus sofosbuvir (SMV+SOF) 15
II.1.4.1 COSMOS 15
II.1.5 Sofosbuvir plus ledipasvir (SOF+LDV) 15
II.1.5.1 ION-2 16
II.1.6 Ombitasvir+ paritaprevir+ ritonavir+ dasabuvir +ribavirin(AOD+RBV) 16
II.1.6.1 SAPPHIRE-II 17
II.2 Health economic analysis 18
II.2.1 Modeling approach 18
II.2.2 Utility and cost during treatment 18
II.2.3 Health economic results 20
II.3 ICER threshold 21
II.4 Research gaps and study aim 23
III. Materials and methods 24
III.1 One year decision tree 24
III.2 Markov model 24
III.3 Study assumptions 25
III.4 Data sources 27
III.4.1 Transition probabilities 27
III.4.1.1 Disease transition probability 27
III.4.1.1.1 Transition probabilities of fibrosis stage in F0-F3 to the next stage 28
III.4.1.1.2 F4 to DCC, HCC or liver related death 28
III.4.1.1.3 F4 with SVR to DCC, HCC and liver related death 30
III.4.1.1.4 Decompensated cirrhosis to HCC, liver transplantation, and liver related death 31
III.4.1.1.5 HCC to liver transplant and liver related death 31
III.4.1.1.6 Liver transplant to liver related death in first year and after the first year 32
III.4.1.2 Mortality 34
III.4.2 Cost 34
III.4.2.1 Drug cost 35
III.4.2.1.1 PR 35
III.4.2.1.2 BOC+PR 36
III.4.2.1.3 SOF+LDV 37
III.4.2.1.4 SOF+SMV 37
III.4.2.1.5 AOD+RBV 38
III.4.2.2 Follow-up costs in the first year 40
III.4.2.3 Disease cost 40
III.4.3 Utility 40
III.5 Model analysis 42
III.5.1 Model validation 42
III.5.1.1 External validation 43
III.5.1.2 Face validity 43
III.5.1.3 Verification 43
III.5.2 Sensitivity analysis 44
III.5.2.1 One way sensitivity analysis 44
III.5.2.2 Probabilistic sensitivity analysis 44
III.5.2.3 Scenario analysis 45
IV. Results 47
IV.1 Model validation 47
IV.1.1 External validation 47
IV.1.2 Face validity 47
IV.2 Results of health economic analysis 48
IV.2.1 Health outcomes 48
IV.2.2 Health economic outcomes 48
IV.2.3 Life-time cost 50
IV.2.4 Sensitivity analysis 50
IV.2.4.1 One-way sensitivity analysis 50
IV.2.4.2 Probabilistic sensitivity analysis 51
IV.2.4.3 Scenario analysis 52
IV.2.4.3.1 Taiwanese scenario 52
IV.2.4.3.2 Scenarios of relapser and non-relpaser 53
V. Discussion 54
V.1 Statement of principal findings 54
V.2 General discussion 54
V.2.1 Comparing to previous study 54
V.2.2 Assumptions in model and uncertainty in parameters 55
V.2.3 Comparing to the cost-effectiveness analysis of PR in Taiwan. 56
V.2.4 Clinical implications 57
V.3 Strengths and limitations of the assessment 57
VI. Conclusions 58
Figures
Figure 1 Conceptual model-treatment phase 60
Figure 2 One year decision tree 61
Figure 3 Conceptual model- post treatment phase: health-state transitions after hepatitis C infection. 62
Figure 4 HCC cumulative incidence of compensated cirrhosis patients predicted by model compared to Gomez et al (F4 stage 1 and F4 stage 2) 63
Figure 5 Mortality predicted by model compared to the mortality from life table in Taiwan 63
Figure 6 HCC cumulative incidence with years after observation in model prediction by METAVIR score F0-F4 64
Figure 7 Cumulative liver related death percentage by model prediction by METAVIR score 64
Figure 8 Cost-effectiveness plane for all treatments in base case 65
Figure 9 Cost-effectiveness plane for all treatments in Taiwanese scenario 65
Figure 10 Cost-effectiveness plane for all treatments in relapser scenario 66
Figure 11 Cost-effectiveness plane for all treatments in non-relapser scenario 66
Figure 12 Percentage of first year cost in life-time cost among treatments 67
Figure 13 Tornado diagram- all strategies 67
Figure 14 One way sensitivity analysis of BOC+PR compared to PR in base case 68
Figure 15 Top 10 parameters in one way sensitivity analysis of BOC+PR compared to PR in base case 68
Figure 16 One way sensitivity analysis of AOD+RBV compared to PR in base case 69
Figure 17 Top 10 parameters in one way sensitivity analysis of AOD+RBV compared to PR in base case 69
Figure 18 One way sensitivity analysis of SMV+SOF compared to PR in base case 70
Figure 19 Top 10 parameters in one way sensitivity analysis of SMV+SOF compared to PR in base case 70
Figure 20 One way sensitivity analysis of SOF+LDV compared to PR in base case 71
Figure 21 Top 10 parameters in one way sensitivity analysis of SOF+LDV compared to PR in base case 71
Figure 22 Cost-effectiveness scatter plots in all treatments 72
Figure 23 Incremental cost-effectiveness plane of BOC+PR compared to PR with willingness to pay of 1-3 GDP in Taiwan 73
Figure 24 Incremental cost-effectiveness plane of AOD+RBV compared to PR with willingness to pay of 1-3 GDP in Taiwan 73
Figure 25 Incremental cost-effectiveness plane of SMV+SOF compared to PR with willingness to pay of 1-3 GDP in Taiwan 74
Figure 26 Incremental cost-effectiveness plane of SOF+LDV compared to PR with willingness to pay of 1-3 GDP in Taiwan 74
Figure 27 Cost-effectiveness acceptability curve of all strategies 75
Figure 28 Cost-effectiveness acceptability curve of BOC+PR compared with PR 76
Figure 29 Cost-effectiveness acceptability curve of AOD+RBV compared with PR 76
Figure 30 Cost-effectiveness acceptability curve of SMV+SOF compared with PR 77
Figure 31 Cost-effectiveness acceptability curve of SOF+LDV compared with PR 77
Tables
Table 1 Charcteristics, dosage and indication of DAAs 78
Table 2 Clinical trials of PR treatment in Taiwan 79
Table 3 Clinical trials of BOC+PR treatment 80
Table 4 Clinical trials of interferon-free regimens 81
Table 5 Clinical trials of interferon-free regimens-2 82
Table 6 Review of cost effective analysis in DAAs therapies in treatment experienced patients 83
Table 7 Review of cost effective analysis in DAAs therapies in treatment experienced patients-2 84
Table 8 Annual transition probabilities 85
Table 9 Age-specific mortality derived from life table 86
Table 10 Drug cost 87
Table 11 Cost of each therapy 88
Table 12 follow-up cost of each therapy in the first year 89
Table 13 Health state cost 90
Table 14 Utility inputs 91
Table 15 Efficacy data (SVR rates) used for the analysis 92
Table 16 Health outcomes for a cohort of 10,000 persons by patient receiving treatments or no treatment in base case 93
Table 17 Reduction percentage of liver related disease in DAAs therapy compared to PR in base case 93
Table 18 Life-time health economic outcomes and cost in base case 94
Table 19 Subgroup analysis by METAVIR score in base case 95
Table 20 Subgroup analysis by METAVIR score in base case-2 96
Table 21 Subgroup analysis by METAVIR score in base case-3 97
Table 22 Life-time health economic outcomes and cost in Taiwanese scenario 98
Table 23 Subgroup analysis by METAVIR score in Taiwanese scenario 99
Table 24 Subgroup analysis by METAVIR score in Taiwanese scenario-2 100
Table 25 Subgroup analysis by METAVIR score in Taiwanese scenario-3 101
Table 26 Life-time health economic outcomes and cost in scenario of prior response 102
Table 27 Acceptability of each strategy compared with PR under the willingness to pay of 1-3 GDP in Taiwan 103
Appendix Code book in TreeAge 104
References 107
dc.language.isoen
dc.title直接抗病毒藥物用於臺灣C型肝炎第一型且曾治療失敗病人
之成本效益分析
zh_TW
dc.titleCost effectiveness analysis of direct acting antivirals therapies
in treatment-failure HCV genotype 1 patients in Taiwan
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蒲若芳(Raoh-Fang Pwu),劉俊人(Chun-Jen Liu),楊銘欽(Ming-Chin Yang)
dc.subject.keyword成本效益分析,C 型肝炎,直接抗病毒藥物,干擾素,雷巴威林,zh_TW
dc.subject.keywordCost effectiveness analysis,hepatitis C,direct acting antiviral,peginterferon,ribavirin,en
dc.relation.page112
dc.rights.note未授權
dc.date.accepted2015-07-21
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
6.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved