Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17967
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉
dc.contributor.authorYueh-Feng Lien
dc.contributor.author李岳峰zh_TW
dc.date.accessioned2021-06-08T00:47:18Z-
dc.date.copyright2015-07-30
dc.date.issued2015
dc.date.submitted2015-07-24
dc.identifier.citation1. Ali, I. and P.A. Schneider, An approach of estimating struvite growth kinetic incorporating thermodynamic and solution chemistry, kinetic and process description. Chemical Engineering Science, 63(13), 3514-3525 (2008).
2. Aurbach, D. and Y. Gofer, A. Schechter, O. Chusid, H. Gizbar, Y. Cohen, M. Moshkovich, R. Turgeman, A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes. Journal of Power Sources, 97-98, 269-273 (2001).
3. Ben Moussa, S. and G. Maurin, C. Garielli, M. Ben Amor, Electrochemical Precipitation of Struvite. Electrochemical and Solid-State Letters, 9(6), C97-C101 (2006).
4. Connell, J., Nauru: the first failed pacific state. The Round Table: The Commonwealth Journal of International Affairs, 95(383), 47-63 (2006).
5. Cordell, D. and J.-O. Drangert, S. White, The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292-305 (2009).
6. Cordell, D. and S. White, Peak Phosphorus: Clarifying the Key Issues of a Vigorous Debate about Long-Term Phosphorus Security. Sustainability, 3(12), 2027-2049 (2011).
7. Dai, J. and W.T. Tang, Y.S. Zheng, H.R. Mackey, H.K. Chui, M.C. Van Loosdrecht, G.H. Chen, An exploratory study on seawater-catalysed urine phosphorus recovery (SUPR). Water Res., 66, 75-84 (2014).
8. Déry, P. and B. Anderson, Peak phosphorus. Resilience, http://www.resilience.org/stories/2007-08-13/peak-phosphorus (Jun. 2015).
9. Doyle, J. D. and R. Philp, J. Churchley, S.A. Parsons, Analysis of Struvite Precipitation in Real and Synthetic Liquors. Process Safety and Environmental Protection, 78(6), 480-488 (2000).
10. Fischer, F. and C. Bastian, M. Happe, E. Mabillard, N. Schmidt, Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresour Technol, 102(10), 5824-5830 (2011).
11. Hellström, D. and E. Johansson, K. Grennberg, Storage of human urine: acidification as a method to inhibit decomposition of urea. Ecological Engineering, 12(3-4), 253-269 (1999).
12. Huang, H. and D. Xiao, Q. Zhang, L. Ding, Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources. Journal of Environmental Management, 145, 191-198 (2014).
13. Hug, A. and K. M. Udert, Struvite precipitation from urine with electrochemical magnesium dosage. Water Res., 47(1), 289-299 (2013).
14. Jaffer, Y. and T.A. Clark, P. Pearce, S.A. Parsons, Potential phosphorus recovery by struvite formation. Water Res., 36(7), 1834-1842 (2002).
15. Koppelaar, R.H.E.M. and H.P. Weikard, Assessing phosphate rock depletion and phosphorus recycling options. Global Environmental Change, 23(6), 1454-1466 (2013).
16. Kruk, D.J. and M. Elektorowicz, J.A. Oleszkiewicz, Struvite precipitation and phosphorus removal using magnesium sacrificial anode. Chemosphere, 101, 28-33 (2014).
17. Le Corre, K. S., E. Valsami-Jones, P. Hobbs, S. A. Parsons, Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477 (2009).
18. Likosova, E.M. and J. Keller, R.A. Rozendal, Y. Poussade, S. Freguia, Understanding colloidal FeSx formation from iron phosphate precipitation sludge for optimal phosphorus recovery. Journal of Colloid and Interface Science, 403, 16-21 (2013).
19. Liu, X. and G. Wen, H. Wang, X. Zhu, Z. Hu, Fate of phosphorus in diluted urine with tap water. Chemosphere, 113, 146-150 (2014).
20. Liu, Y. and J. Chen, Phosphorus Cycle. Encyclopedia of Ecology. Elsevier Publishing, Amsterdam, Nederland, pp. 2715-2724 (2008).
21. Liu, Z. and Q. Zhao, K. Wang, D. Lee, W. Qiu, J. Wang, Urea hydrolysis and recovery of nitrogen and phosphorous as MAP from stale human urine. Journal of Environmental Sciences, 20(8), 1018-1024 (2008).
22. Mihelcic, J. R. and L.M. Fry, R. Shaw, Global potential of phosphorus recovery from human urine and feces. Chemosphere, 84(6), 832-839 (2011).
23. Morse, G.K. and S.W. Brett, J.A. Guy, J.N. Lester, Review: Phosphorous removal and recovery technologies. The Science of the Total Environment, 212, 69-81 (1998).
24. O'Neal, J. A. and T. H. Boyer, Phosphate recovery using hybrid anion exchange: applications to source-separated urine and combined wastewater streams. Water Res., 47(14), 5003-5017 (2013).
25. Petzet, S. and B. Peplinski, P. Cornel, On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res., 46(12), 3769-3780 (2012).
26. Rahman, M. and M.A.M. Salleh, U. Rashid, A. Ahsan, M.M. Hossain, C.S. Ra, Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arabian Journal of Chemistry, 7(1), 139-155 (2014).
27. Reijnders, L., Phosphorus resources, their depletion and conservation, a review. Resources, Conservation and Recycling, 93, 32-49 (2014).
28. Ronteltap, M., Phosphorus recovery from source‐separated urine through the precipitation of struvite. PhD dissertation. Swiss Federal Institute of Technology Zurich, Swiss (2009).
29. Rubio-Rincón, F.J. and C.M. Lopez-Vazquez, M. Ronteltap, D. Brdjanovic, Seawater for phosphorus recovery from urine. Desalination, 348, 49-56 (2014).
30. Sakthivel, S. R. and E. Tilley, K.M. Udert, Wood ash as a magnesium source for phosphorus recovery from source-separated urine. Science of the Total Environ, 419, 68-75 (2012).
31. Sano, A. and M. Kanomata, H. Inoue, N. Suqiura, K.Q. Xu, Y. Inamori, Extraction of raw sewage sludge containing iron phosphate for phosphorus recovery. Chemosphere, 89(10), 1243-1247 (2012).
32. Scholz, R. W. and A.E. Ulrich, M. Eilittä, A. Roy, Sustainable use of phosphorus: a finite resource. Science of the Total Environ, 461-462, 799-803 (2013).
33. Seyhan, D., Country-scale phosphorus balancing as a base for resources conservation. Resource, Conservation and Recycling, 53(12), 698-709 (2009).
34. Shu, L. and P. Schneider, V. Jegatheesan, J. Johnson, An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource Technology, 97(17), 2211-2216 (2006).
35. Steen, I., Phosphorus availability in the 21st Century: management of a nonrenewable resource. Phosphorus and Potassium, 217, 25-31 (1998).
36. Su, C.C. and R.R.M. Abarca, M.D.G. de Luna, M.C. Lu, Phosphate recovery from fluidized-bed wastewater by struvite crystallization technology. Journal of the Taiwan of Chemical Engineers, 45(5), 2395-2402 (2014).
37. U.S. Geological Survey (USGS), Mineral Commodity Summaries 2015. http://minerals.usgs.gov/minerals/pubs/mcs/2015/mcs2015.pdf (Jun. 2015)
38. Wang, C.C. and X.D. Hao, G.S. Guo, M.C.M van Loosdrecht, Formation of pure struvite at neutral pH by electrochemical deposition. Chemical Engineering Journal, 159(1-3), 280-283 (2010).
39. Wang, N.G. and R.C. Wang, C.Q. Peng, C.W. Hu, Y. Feng, B. Peng, Research progress of magnesium anodes and their applications in chemical power sources. Trans. Nonferrous Met. Soc. China, 24(8), 2427-2439 (2014).
40. White, S. and D. Cordell, Peak Phosphorus: the sequel to Peak Oil. Sustainable Phosphorus Futures, http://phosphorusfutures.net/peak-phosphorus.html (Jun. 2015).
41. Xu, H. and P. He, W. Gu, G. Wang, L. Shao, Recovery of phosphorus as struvite from sewage sludge ash. Journal of Environmental Sciences, 24(8), 1533-1538 (2012).
42. Xu, K. and C. Wang, X. Wang, Y. Qian, Laboratory experiments on simultaneous removal of K and P from synthetic and real urine for nutrient recycle by crystallization of magnesium-potassium-phosphate-hexahydrate in a draft tube and baffle reactor. Chemosphere, 88(2), 219-223 (2012).
43. Ye, Z. and Y. Shen, X. Ye, Z. Zhang, S. Chen, J. Shi, Phosphorus recovery from wastewater by struvite crystallization: Property of aggregates. Journal of Environmental Sciences, 26(5), 991-1000 (2014).
44. Yu, R. and H. Ren, Y. Wang, L. Ding, J. Geng, K. Xu, Y. Zhang, A kinetic study of struvite precipitation technology with NaOH/Mg(OH)2 addition. Bioresource Technology, 143, 519-524 (2013).
45. Yuan, Z. and S. Pratt, D.J. Batstone, Phosphorus recovery from wastewater through microbial processes. Current Opinion in Biotechnology, 23(6), 878-883 (2012).
46. 王崇臣、郝晓地,鸟粪石分析与表征技术综述。环境科学与管理,34(12), 88-91 (2009)。
47. 郝晓地、王崇臣、兰荔,一种测定鸟粪石沉淀法目标产物纯度的方法。中华人民共和国国家知识产权局-公开号:CN 101587059A (2008)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17967-
dc.description.abstract由於人類活動的介入,使得磷循環無法平衡磷礦資源的消耗,所以磷可視為一種有限資源,因此取代開採磷礦石,使用替代性磷源例如廢水、尿液,就顯得極為重要。為了加速磷資源的循環,我們以化學沉澱法將廢水中的磷回收為可直接再利用鳥糞石,當鎂添加到尿液中,便會和尿液中的磷酸根及銨根反應,形成
鸟粪石沉澱。電化學沉澱法是利用電解鎂電極,使其釋出鎂離子,取代傳統的加藥的方式,其操作較傳統方法簡便。
本研究利用鎂合金製程的廢棄物作為鎂源,以電化學沉澱法回收合成尿液中之磷,研究反應過程中pH、去除效率以及產物純度的隨時間的變化,實驗結果表明,高攪拌速度有利於磷酸根的去除,但如果攪拌速度不夠快,則會造成層流效應,其去除率反而比不攪拌來的低。在初始pH 8時具有最佳的最終去除率,pH 8-10之間具有最佳的去除效率,但由於鎂電極腐蝕剝落物的影響,在最佳去除條件下,產物的最終純度只有30%~40%。為提高產物純度本研究設計一反應裝置,利用電極剝落物和鳥糞石重量的差別,有效分離電極剝落物和鳥糞石,使最終產物純度提升至70%~80%,換算為P2O5含量超過23%,代表回收的鳥糞石不須經過其他的處理過程,可直接作為肥料使用。電化學沉澱法由於成本較低、產生具有經濟價值的產物,且其反應過程中pH隨沉澱物的產生而提升,這個特性有利於工程應用中監控處理的效果,所以電化學沉澱法處理尿液,是一種具有經濟價值和工程潛力的方法。
zh_TW
dc.description.abstractAs mineral resources of phosphorus are limited, the use of alternative phosphorus sources such as wastewater becomes an increasingly important option. In order to reuse the phosphorus as recycled sources and accelerate the small-scale cycle of phosphorus geochemical circulation efficiently, some studies pursued the chemical precipitation to recover the phosphorus. However, electro-chemical sedimentation is an economical and novel method which could release the target metal element from electrode aggregating with alternative phosphate compounds to form a reusable crystal of struvite and easy to operate comparing with other traditional methods. In general, magnesium added to source-separated urine, then struvite precipitate and phosphorus recovered. Magnesium ions were electrochemically dissolved from a sacrificial magnesium electrode which was used as the source of magnesium. In this study, tailings of magnesium alloy was used as the sacrificial electrode. Experimental results showed that the purity of struvite was strongly dependent on the pH and the electric current density. For the optimum controlling condition, the purity of struvite exceeded above 80%, and the phosphorus content was more than 23% as P2O5. It means that the struvite which recovery from urine can be used as fertilizer without any process. Due to the low cost and the capability of generating useful product, recovering phosphorus with sacrificial magnesium electrode is a worthwhile approach for urine treatment.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:47:18Z (GMT). No. of bitstreams: 1
ntu-104-R02541129-1.pdf: 3446266 bytes, checksum: 4599b4d38109f2af3b76329d665a5f9c (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
英文摘要 IV
第一章 緒論 1
1.1 引言 1
1.2 研究目的與內容 3
第二章 文獻回顧 4
2.1 磷 4
2.1.1 磷的重要性 4
2.1.2 磷礦資源 4
2.1.3 磷循環 7
2.2 磷的回收技術 8
2.2.1 吸附法 8
2.2.2 沉澱法 9
2.2.3 生物法 10
2.2.4 結晶法 11
2.3 MAP結晶法 11
2.3.1 MAP結晶法原理 12
2.3.2 鳥糞石(Struvite)性質 12
2.4 鎂電極 13
2.5 尿液 17
2.5.1 尿液成分 17
2.5.2 尿液水解 18
第三章 材料與方法 20
3.1 試劑 20
3.2 儀器設備 20
3.3 材料與方法 23
3.3.1 尿液水解 23
3.3.2 單槽反應試驗 23
3.3.3 雙槽反應試驗 24
3.4 儀器與分析方法 24
3.4.1 離子層析儀(Ion-Chromatography, IC) 24
3.4.2 X射線繞射儀(X-ray Diffraction, XRD) 25
3.4.3場發射掃描式電子顯微鏡 26
3.4.4傅利葉變換紅外線光譜儀 27
3.4.5鳥糞石純度 29
第四章 結果與討論 30
4.1 單槽反應實驗結果 30
4.1.1 攪拌速度 30
4.1.2 電流密度 32
4.1.3初始pH 33
4.1.4小結 36
4.2 雙槽反應試驗結果 37
4.2.1 單槽與雙槽之比較 37
4.2.2 電極外槽攪拌速度 39
4.2.3 pH與去除效率的關係 40
4.3 產物分析 42
4.3.1 IC分析結果 42
4.3.2 SEM分析結果 43
4.3.3 XRD分析結果 44
4.3.4 FTIR分析結果 46
第五章 結論與建議 48
5.1 結論 48
5.2 建議 49
參考文獻 50
dc.language.isozh-TW
dc.title以鎂合金廢棄物回收尿液中磷之研究zh_TW
dc.titleStruvite precipitation from urine by using tailings of magnesium alloy as sacrificial anodeen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林正芳,張慶源
dc.subject.keyword磷酸銨鎂,鳥糞石,磷回收,犧牲陽極,尿液回收,zh_TW
dc.subject.keywordMagnesium ammonium phosphate,phosphorus recovery,sacrificial anode,struvite,urine recovery,en
dc.relation.page62
dc.rights.note未授權
dc.date.accepted2015-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved