Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17959
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志成(Chih-Cheng Chen)
dc.contributor.authorI-Ching Wangen
dc.contributor.author王意清zh_TW
dc.date.accessioned2021-06-08T00:47:07Z-
dc.date.copyright2015-09-02
dc.date.issued2015
dc.date.submitted2015-07-27
dc.identifier.citation1. Kalman S, Osterberg A, Sorensen J, Boivie J, Bertler A (2002) Morphine responsiveness in a group of well-defined multiple sclerosis patients: a study with i.v. morphine. Eur J Pain 6: 69-80.
2. Gonsette RE (2012) Self-tolerance in multiple sclerosis. Acta Neurol Belg 112: 133-140.
3. Alvarez JI, Saint-Laurent O, Godschalk A, Terouz S, Briels C, et al. (2015) Focal disturbances in the blood-brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol Dis 74: 14-24.
4. Larochelle C, Alvarez JI, Prat A (2011) How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 585: 3770-3780.
5. Yadav SK, Mindur JE, Ito K, Dhib-Jalbut S (2015) Advances in the immunopathogenesis of multiple sclerosis. Curr Opin Neurol.
6. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, et al. (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10: 514-523.
7. Bogie JF, Stinissen P, Hendriks JJ (2014) Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 128: 191-213.
8. Molnarfi N, Schulze-Topphoff U, Weber MS, Patarroyo JC, Prod'homme T, et al. (2013) MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J Exp Med 210: 2921-2937.
9. Fischer MT, Sharma R, Lim JL, Haider L, Frischer JM, et al. (2012) NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 135: 886-899.
10. Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S (2014) Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141: 302-313.
11. Saxena A, Martin-Blondel G, Mars LT, Liblau RS (2011) Role of CD8 T cell subsets in the pathogenesis of multiple sclerosis. FEBS Lett 585: 3758-3763.
12. Lassmann H, van Horssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 8: 647-656.
13. Haugen M, Frederiksen JL, Degn M (2014) B cell follicle-like structures in multiple sclerosis-with focus on the role of B cell activating factor. J Neuroimmunol 273: 1-7.
14. Bogie JF, Jorissen W, Mailleux J, Nijland PG, Zelcer N, et al. (2013) Myelin alters the inflammatory phenotype of macrophages by activating PPARs. Acta Neuropathol Commun 1: 43.
15. Kotter MR, Li WW, Zhao C, Franklin RJ (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26: 328-332.
16. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, et al. (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16: 1211-1218.
17. Furlan R, Cuomo C, Martino G (2009) Animal models of multiple sclerosis. Methods Mol Biol 549: 157-173.
18. Kipp M, van der Star B, Vogel DY, Puentes F, van der Valk P, et al. (2012) Experimental in vivo and in vitro models of multiple sclerosis: EAE and beyond. Mult Scler Relat Disord 1: 15-28.
19. Mendel I, Kerlero de Rosbo N, Ben-Nun A (1995) A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur J Immunol 25: 1951-1959.
20. MacKenzie-Graham A, Tinsley MR, Shah KP, Aguilar C, Strickland LV, et al. (2006) Cerebellar cortical atrophy in experimental autoimmune encephalomyelitis. Neuroimage 32: 1016-1023.
21. Aicher SA, Silverman MB, Winkler CW, Bebo BF, Jr. (2004) Hyperalgesia in an animal model of multiple sclerosis. Pain 110: 560-570.
22. Olechowski CJ, Truong JJ, Kerr BJ (2009) Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE). Pain 141: 156-164.
23. Lu J, Kurejova M, Wirotanseng LN, Linker RA, Kuner R, et al. (2012) Pain in experimental autoimmune encephalitis: a comparative study between different mouse models. J Neuroinflammation 9: 233.
24. Rahn EJ, Iannitti T, Donahue RR, Taylor BK (2014) Sex differences in a mouse model of multiple sclerosis: neuropathic pain behavior in females but not males and protection from neurological deficits during proestrus. Biol Sex Differ 5: 4.
25. Begum F, Zhu W, Cortes C, MacNeil B, Namaka M (2013) Elevation of tumor necrosis factor alpha in dorsal root ganglia and spinal cord is associated with neuroimmune modulation of pain in an animal model of multiple sclerosis. J Neuroimmune Pharmacol 8: 677-690.
26. Zhu W, Acosta C, MacNeil B, Cortes C, Intrater H, et al. (2013) Elevated expression of fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) in the dorsal root ganglia and spinal cord in experimental autoimmune encephalomyelitis: implications in multiple sclerosis-induced neuropathic pain. Biomed Res Int 2013: 480702.
27. Dutra RC, Bento AF, Leite DF, Manjavachi MN, Marcon R, et al. (2013) The role of kinin B1 and B2 receptors in the persistent pain induced by experimental autoimmune encephalomyelitis (EAE) in mice: evidence for the involvement of astrocytes. Neurobiol Dis 54: 82-93.
28. Schmitz K, Pickert G, Wijnvoord N, Haussler A, Tegeder I (2013) Dichotomy of CCL21 and CXCR3 in nerve injury-evoked and autoimmunity-evoked hyperalgesia. Brain Behav Immun 32: 186-200.
29. Yuan S, Shi Y, Tang SJ (2012) Wnt signaling in the pathogenesis of multiple sclerosis-associated chronic pain. J Neuroimmune Pharmacol 7: 904-913.
30. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386: 173-177.
31. Wemmie JA, Price MP, Welsh MJ (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29: 578-586.
32. Chen C-C, England S, Akopian AN, Wood JN (1998) A sensory neuron-specific, proton-gated ion channel. Proceedings of the National Academy of Sciences 95: 10240-10245.
33. Chu XP, Xiong ZG (2013) Acid-sensing ion channels in pathological conditions. Adv Exp Med Biol 961: 419-431.
34. Deval E, Lingueglia E (2015) Acid-Sensing Ion Channels and nociception in the peripheral and central nervous systems. Neuropharmacology.
35. Kweon HJ, Suh BC (2013) Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation. BMB Rep 46: 295-304.
36. Deval E, Noel J, Lay N, Alloui A, Diochot S, et al. (2008) ASIC3, a sensor of acidic and primary inflammatory pain. Embo j 27: 3047-3055.
37. Yu Y, Chen Z, Li WG, Cao H, Feng EG, et al. (2010) A nonproton ligand sensor in the acid-sensing ion channel. Neuron 68: 61-72.
38. Mazzuca M, Heurteaux C, Alloui A, Diochot S, Baron A, et al. (2007) A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nat Neurosci 10: 943-945.
39. Bohlen CJ, Chesler AT, Sharif-Naeini R, Medzihradszky KF, Zhou S, et al. (2011) A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479: 410-414.
40. Diochot S, Baron A, Salinas M, Douguet D, Scarzello S, et al. (2012) Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 490: 552-555.
41. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, et al. (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118: 687-698.
42. Wong HK, Bauer PO, Kurosawa M, Goswami A, Washizu C, et al. (2008) Blocking acid-sensing ion channel 1 alleviates Huntington's disease pathology via an ubiquitin-proteasome system-dependent mechanism. Hum Mol Genet 17: 3223-3235.
43. Arias RL, Sung ML, Vasylyev D, Zhang MY, Albinson K, et al. (2008) Amiloride is neuroprotective in an MPTP model of Parkinson's disease. Neurobiol Dis 31: 334-341.
44. Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, et al. (2007) Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 13: 1483-1489.
45. Vergo S, Craner MJ, Etzensperger R, Attfield K, Friese MA, et al. (2011) Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain 134: 571-584.
46. Arun T, Tomassini V, Sbardella E, de Ruiter MB, Matthews L, et al. (2013) Targeting ASIC1 in primary progressive multiple sclerosis: evidence of neuroprotection with amiloride. Brain 136: 106-115.
47. Bernardinelli L, Murgia SB, Bitti PP, Foco L, Ferrai R, et al. (2007) Association between the ACCN1 gene and multiple sclerosis in Central East Sardinia. PLoS One 2: e480.
48. Chen C-C, Zimmer A, Sun W-H, Hall J, Brownstein MJ, et al. (2002) A role for ASIC3 in the modulation of high-intensity pain stimuli. Proceedings of the National Academy of Sciences 99: 8992-8997.
49. Lin SH, Chien YC, Chiang WW, Liu YZ, Lien CC, et al. (2015) Genetic mapping of ASIC4 and contrasting phenotype to ASIC1a in modulating innate fear and anxiety. Eur J Neurosci.
50. Wemmie JA, Taugher RJ, Kreple CJ (2013) Acid-sensing ion channels in pain and disease. Nat Rev Neurosci 14: 461-471.
51. Maria Paganya, Maja Jagodicb, Anna Schubarta, Danielle Pham-Dinhc, Corinne Bachelinc, Anne Baron van Evercoorenc, Franc ̧ois Lachapellec, Tomas Olssonb, Christopher Liningtona,d (2003) Myelin oligodendrocyte glycoprotein is expressed in the peripheral nervous system of rodents and primates. Neuroscience letter.
52. Warwick RA, Ledgerwood CJ, Brenner T, Hanani M (2014) Satellite glial cells in dorsal root ganglia are activated in experimental autoimmune encephalomyelitis. Neurosci Lett 569: 59-62.
53. Wenjun Zhu a EEFa, *, Farhana Begum b, Parvez Vora a, Kelvin Au a, Yuewen Gong a, Brian MacNeil c, Prakash Pillai a, b, Mike Namaka a, b (2012) The role of dorsal root ganglia activation and brain-derived neurotrophic factor in multiple sclerosis. J Cell Mol Med Vol 16: pp. 1856–1865.
54. Chen WN, Lee CH, Lin SH, Wong CW, Sun WH, et al. (2014) Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia. Mol Pain 10: 40.
55. Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, et al. (2000) Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci 15: 170-182.
56. Lin CC, Chen WN, Chen CJ, Lin YW, Zimmer A, et al. (2012) An antinociceptive role for substance P in acid-induced chronic muscle pain. Proc Natl Acad Sci U S A 109: E76-83.
57. Duan B, Wu LJ, Yu YQ, Ding Y, Jing L, et al. (2007) Upregulation of acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity. J Neurosci 27: 11139-11148.
58. Voilley N, de Weille J, Mamet J, Lazdunski M (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 21: 8026-8033.
59. Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, et al. (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407: 1007-1011.
60. Staniland AA, McMahon SB (2009) Mice lacking acid-sensing ion channels (ASIC) 1 or 2, but not ASIC3, show increased pain behaviour in the formalin test. Eur J Pain 13: 554-563.
61. Aoki Y, Takahashi Y, Ohtori S, Moriya H, Takahashi K (2004) Distribution and immunocytochemical characterization of dorsal root ganglion neurons innervating the lumbar intervertebral disc in rats: a review. Life Sci 74: 2627-2642.
62. Draxler P, Honsek SD, Forsthuber L, Hadschieff V, Sandkuhler J (2014) VGluT3(+) primary afferents play distinct roles in mechanical and cold hypersensitivity depending on pain etiology. J Neurosci 34: 12015-12028.
63. Yu L, Yang F, Luo H, Liu F-Y, Han J-S, et al. (2008) The role of TRPV1 in different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund's adjuvant. Molecular Pain 4: 61.
64. Barabas ME, Kossyreva EA, Stucky CL (2012) TRPA1 is functionally expressed primarily by IB4-binding, non-peptidergic mouse and rat sensory neurons. PLoS One 7: e47988.
65. Breese NM, George AC, Pauers LE, Stucky CL (2005) Peripheral inflammation selectively increases TRPV1 function in IB4-positive sensory neurons from adult mouse. Pain 115: 37-49.
66. Alvarez P, Chen X, Bogen O, Green PG, Levine JD (2012) IB4(+) nociceptors mediate persistent muscle pain induced by GDNF. J Neurophysiol 108: 2545-2553.
67. Ye Y, Bae SS, Viet CT, Troob S, Bernabe D, et al. (2014) IB4(+) and TRPV1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma. Behav Brain Funct 10: 5.
68. Walder RY, Rasmussen LA, Rainier JD, Light AR, Wemmie JA, et al. (2010) ASIC1 and ASIC3 play different roles in the development of Hyperalgesia after inflammatory muscle injury. J Pain 11: 210-218.
69. Huang NK, Lin JH, Lin JT, Lin CI, Liu EM, et al. (2011) A new drug design targeting the adenosinergic system for Huntington's disease. PLoS One 6: e20934.
70. Little JW, Ford A, Symons-Liguori AM, Chen Z, Janes K, et al. (2014) Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17959-
dc.description.abstract神經痛是多發性硬化症的主要症狀之一,然而其成因目前尚未清楚。由於發病過程中的發炎反應會引起組織局部酸化,進而活化與疼痛相關的酸敏性離子通道。所以我假設酸敏性離子通道可能會參與在多發性硬化症的疼痛機制,並利用其動物模式「實驗性自體免疫腦脊髓炎」(EAE)來評估在四種不同酸敏性離子通道基因剔除老鼠中,各自的病程和疼痛反應。結果顯示所有老鼠都會發病,而且在後期的疼痛反應都有增加。其中第一型酸敏性離子通道基因剔除老鼠在發病和疼痛反應都有比較減緩,而第二型酸敏性離子通道剔除老鼠則只有發病程度減緩。為了探討周邊神經在EAE中所受到的影響中所受到的影響,我將百日咳毒素(Pertusiss toxin)拿掉,使得活化的免疫細胞留在周邊,並將此方法命名為EAEnp。這些老鼠和EAE有相似程度的疼痛,但是卻沒有明顯的病兆。而進一步脊髓的染色顯示出EAE老鼠有大量免疫細胞的侵入,以及髓鞘細胞的損傷。
我接著以活化轉錄因子3 (ATF3)作為神經受損既暨神經性疼痛的分子標記,發現EAE和EAEnp老鼠的部分周邊神經都有受損。進一步分類受損的神經細胞後,發現這些受傷的神經細胞大多數為有髓鞘的以及非泌肽類神經元。這些結果顯示周邊神經可能有參與在EAE的疼痛機制中。最後,我們測試了實驗室研發中的止痛藥T1-11,發現不僅可以緩和EAE老鼠的疼痛,而且止痛的機制需要第三型酸敏性離子通道的參與。
zh_TW
dc.description.abstractNeuropathic pain is one of the major symptoms in Multiple Sclerosis (MS), but the underlying mechanisms remain a mystery. Since multiple sclerosis is reported to show tissue acidosis, I hypothesized that acid-sensing ion channels (ASICs), which are involved in acid-induced pain, may play a role in pain development in MS. I utilized experimental autoimmune encephalomyelitis (EAE), a well-established MS rodent model, to assess clinical deficits, mechanical hyperalgeisa, and pathological alterations in four different ASIC subtypes knockout mice. All of the mice showed clinical deficits and mechanical hypersensitivity after EAE induction. However, Asic1a-/- EAE mice showed ameliorated disease progression and mechanical hyperalgesia. Interestingly, Asic2-/- EAE mice showed alleviated disease score, but elicited similar levels of pain response as wildtype EAE mice. Furthermore, we removed Pertussis toxin from EAE induction, which named EAEnp, to identify the peripheral contribution to EAE-induced neuropathic pain. These mice showed comparable levels of pain response as EAE mice with little or no clinical signs. Also, pathological studies demonstrated that spinal cord infiltration and demyelination was severe in EAE but not in the EAEnp mice. Nonetheless, some dorsal root ganglion (DRG) neurons are injured in both EAE and EAEnp mice labeled by neuron injury/neuropathic pain marker, ATF3. Further characterization of injured DRG neurons revealed that most of the injury occurred in myelinated neurons as well as non-peptidergic neurons while absent in peptidergic neurons. These results suggested that peripheral sensory nerve might participate in the nociceptive hypersensitivity in EAE. Moreover, a new analgesic drug, T1-11, application indicated that T1-11 effectively modulate EAE-induced mechanical hyperalgesia through ASIC3-dependent mechanism.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:47:07Z (GMT). No. of bitstreams: 1
ntu-104-R02b21006-1.pdf: 2816067 bytes, checksum: 8ceab01e94e50abd1a4830bda3167f77 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract v
Contents vi
List of figure viii
Chapter 1. Introduction 1
1. Multiple sclerosis (MS) 1
1.1 Cause and symptom 1
1.1.1 Pathogenesis of multiple sclerosis 1
1.1.2 Symptoms and types of MS 3
1.2 Experimental autoimmune encephalomyelitis (EAE) 4
1.3 Neuropathic pain in MS 6
1.3.1 Research about MS neuropathic pain 6
1.3.2 Current treatment of neuropathic pain in MS patients 7
2. Acid-sensing ion channels (ASICs) 8
2.1 Basic properties 8
2.2 ASICs and pain 9
2.3 ASICs and neurological diseases 10
3. Previous studies of ASICs in multiple sclerosis or EAE 11
Chapter 2. Materials and Methods 14
1. Mice 14
2. Experimental autoimmune encephalomyelitis model 14
3. Mechanical response test 15
4. Rota-rod test 16
5. Open field test 17
6. Sciatic nerve transection 18
7. Immunohistochemistry 18
8. H E and LFB staining 20
9. Analgesic drug application 21
10. Statistical analysis 21
Chapter 3. Results 22
1. EAE disease progression 22
2. Mechanical hypersensitivity 22
3. EAE mice without PTX injection (EAEnp) 23
4. Spinal cord pathology 25
5. PNS injury and injured neuron characterization 26
6. Analgesic drug application 27
Chapter 4. Discussion 29
References 36
 
List of figures
Figure 1. Experimental design of mice induction. 42
Figure 2. All of the ASIC subtype-specific knockout mice showed EAE clinical deficits while Asic1a-/- showed shorter onset-peak latency and Asic2-/- mice showed mitigated severity. 43
Figure 3. Both WT and KO mice showed increased mechanical hypersensitivity during recovery phase after EAE induction. 45
Figure 4 47
Figure 5. Behavioral and clinical assessment of EAE mice without PTX injection indicated that these mice showed mechanical hyperalgesia with normal mobility. 49
Figure 6. H E staining of L4 spinal cord 15 days post immunization showed immune cell infiltration in EAE mice but not EAE mice without PTX injection. 51
Figure 7. LFB staining of L4 spinal cord 15 days post immunization showed demyelination in EAE mice but not EAE mice without PTX injection. 53
Figure 8. Elevated GFAP expression was detected in the gray matter of L4 spinal cord in EAE mice. 54
Figure 9. Elevated Iba-1 expression was detected in L4 spinal cord in EAE mice as well as EAEnp mice. 55
Figure 10. Quantification of immune cell immunostaining. 56
Figure 11. L5 DRG of EAE mice and showed ATF3 immunoreactive cells. 57
Figure 12. ATF3-postive L4 DRG neurons of EAE mice are co-localized with NF-200-positive neurons. 59
Figure 13. ATF3-positive L4 DRG neurons of EAE mice are partially co-localized with IB4. 61
Figure 14. ATF3-positive L4 DRG neurons were merely co-localized with substance P neuron marker. 63
Figure 15. ATF3-positive L4 neurons were not co-localized with neuron marker CGRP. 65
Figure 16. Quantification of immunostaining results. 66
Figure 17. A ASIC3-dependent anti-nociceptive pathway. 67
dc.language.isoen
dc.title酸敏性離子通道在實驗性自體免疫腦脊髓炎所引起之神經痛的角色zh_TW
dc.titleRoles of Acid-Sensing Ion Channels in neuropathic pain induced by experimental autoimmune encephalomyelitisen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee嚴震東(Chen-Tung Yen),閔明源(Ming-Yuan Min),廖楓(Liao Fang),江皓森(Hao-Sen Chiang)
dc.subject.keyword多發性硬化症,實驗性自體免疫腦脊髓炎,神經痛,酸敏性離子通道,活化轉錄因子3,T1-11,zh_TW
dc.subject.keywordmultiple sclerosis,EAE,neuropathic pain,Asics,ATF3,T1-11,en
dc.relation.page67
dc.rights.note未授權
dc.date.accepted2015-07-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved