請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17953
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張正琪(Cheng-Chi Chang) | |
dc.contributor.author | Jia-Ruei Fan | en |
dc.contributor.author | 范家睿 | zh_TW |
dc.date.accessioned | 2021-06-08T00:46:57Z | - |
dc.date.copyright | 2015-09-24 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-27 | |
dc.identifier.citation | 1. Alzheimer's Association. 2014 Alzheimer's disease facts and figures. Alzheimers Dement. 2014.
2. Wimo A, Prince M. World Alzheimer Report 2010: the global economic impact of dementia. Alzheimer's Disease International 2010. 3. Cummings JL, Isaacson RS, Schmitt FA, Velting DM. A practical algorithm for managing Alzheimer's disease: what, when, and why? Annals of clinical and translational neurology. 2015;2(3):307-23. 4. Blennow K, de Leon MJ, Zetterberg H. Alzheimer's disease. The Lancet. 2006;368(9533):387-403. 5. Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron. 2010;68(2):270-81. 6. Sherrington R, Rogaev EI, Liang Y, Rogaeve EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature. 1995;375:754 - 60. 7. Levy-Lahad E, Wasco W, Poorkaj P, Romano dM, Oshima J, Pettingell WH, et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science. 1995;269(5226):973 - 7. 8. Harvey RJ, Skelton-Robinson M, Rossor MN. The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry. 2003;74(9):1206 - 9. 9. Raber J, Huang Y, Ashford JW. ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiology of aging. 2004;25(5):641-50. 10. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168 - 74. 11. Sastre M, Richardson JC, Gentleman SM, D. J. Brooks DJ. Inflammatory Risk Factors and Pathologies Associated with Alzheimers Disease Current Alzheimer Research 2011;8(2):132 - 41. 12. Heneka MT, Carson MJ, Khoury JE, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer's disease. The Lancet Neurology. 2015;14(4):388-405. 13. Zhao Z, Ho L, Wang J, Qin W, Festa ED, Mobbs C, et al. Connective tissue growth factor (CTGF) expression in the brain is a downstream effector of insulin resistance- associated promotion of Alzheimer's disease beta-amyloid neuropathology. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2005;19(14):2081-2. 14. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci. 1985;82:4245 - 9. 15. Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120(885 - 890). 16. Selkoe DJ, Schenk D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annual review of pharmacology and toxicology. 2003;43:545-84. 17. Hasss C. Take five-BACE and the gammasecretase quartet conduct Alzheimer's amyloid beta-peptide generation. EMBO J. 2004;23(3):483 - 8. 18. Haass C, Hung AY, Schlossmacher MG, Teplow DB, Selkoe DJ. beta-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. The Journal of biological chemistry. 1993;268(5):3021- 4. 19. O'brien TP, Yang GP, Sanders L, Lau LF. Expression of cyr61, a growth factor-inducible immediate-early gene. Mol Cell Biol 1990;10(7):3569 - 77. 20. Bradham DM, Igarashi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol. 1991;114(6):1285 - 94. 21. Bork P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett. 1993;327(2):125 - 30. 22. Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol. 2001;54(2):57 - 79. 23. Joliot V, Martinerie C, Dambrine G, Plassiart G, Brisac M, Crochet J, et al. Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas. Mol Cell Biol. 1992;12(1):10 - 21. 24. Pennica D, Swanson TA, Welsh JW, Roy MA, Lawrence DA, Lee J, et al. WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci 1998;95(25):14717 - 22. 25. Twigg SM, Irvine S, Leask A, Perbal B. Report on the 6th international workshop of the CCN family of genes. Journal of cell communication and signaling. 2011;5(1):1-3. 26. Lau LF, Lam SC-T. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res 1999;248(1):44 - 57 27. Brigstock dR. The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev. 1999;20(2):189 - 206. 28. Jun JI, Lau LF. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nature reviews Drug discovery. 2011;10(12):945-63. 29. Hall-Glenn F, Lyons KM. Roles for CCN2 in normal physiological processes. Cellular and molecular life sciences : CMLS. 2011;68(19):3209-17. 30. Ueberham U, Ueberham E, Gruschka H, Arendt T. Connective tissue growth factor in Alzheimer’s disease. Neuroscience. 2003;116:1 - 6. 31. Khachaturian ZS. Diagnosis of Alzheimer's Disease. Arch Neurol. 1985;42(11):1097 -105. 32. Selkoe DJ. The molecular pathology of Alzheimer's disease. Neuron. 1991;6(4):487 - 98. 33. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacological Sci. 1991;12:383 - 8. 34. Goldgaber D, Lerman MI, McBride OW, Safeiotti U, Gajdusek C. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science. 1987;235(4791):877 -80. 35. Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987;325(6106):733 - 6. 36. Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer's disease. Alzheimer's research & therapy. 2014;6(9):89. 37. Barger SW, Harmon AD. Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature. 1997;388(6645):878 - 81. 38. Fahrenholz F, Postina R. α-Secretase Activation – An Approach to Alzheimer’s Disease Therapy. Neurodegenerative Dis 2006;3(255 - 261). 39. Hertel M, Tretter Y, Alzheimer C, Werner S. Connective tissue growth factor: a novel player in tissue reorganization after brain injury? Eur J Neurosci 2000;12(1). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17953 | - |
dc.description.abstract | 乙型類澱粉樣蛋白(amyloid-beta, Aβ)之累積為阿茲海默症(Alzheimer's Disease, AD)的病理機轉中重要的機制,Aβ是經由澱粉樣前驅蛋白(amyloid precursor protein, APP)經由β-secretase與γ-secretase所截切而導致的水解反應而產生;而α-secretase 之截切則會阻止Aβ的生成。近年研究指出,經由調控APP水解過程抑制Aβ生成在AD的致病機轉上扮演重要的角色。人類結締組織生長因子(Connective tissue growth factor, CTGF)是一種分泌型蛋白質,目前已知數種細胞活動與疾病機轉相關。過去的文獻在AD病理切片中發現澱粉樣斑塊(senile plagues)周圍的神經具有CTGF之高表現量,然而,在阿茲海默症中人類結締組織生長因子所扮演之角色仍尚未釐清。此篇論文中,於神經纖維母細胞瘤細胞株SH-SY5Y穩定表現APP瑞典型突變(Swedish mutant)APP中發現CTGF能夠調控APP水解反應。異位性表現CTGF與人類CTGF重組蛋白之處理能夠降低細胞外Aβ的累積並減少細胞內的APP-C端片段之表現,我們更進一步的證明在細胞中CTGF能夠抑制BACE1之表現;此外,CTGF能夠促進細胞外Aβ之分解,而其作用機制並不經由提高細胞對於Aβ之吸收能力所造成。總結以上結果,在本篇論文中證明CTGF能夠抑制β-secretase之表現並進一步降低Aβ的生成而促進Aβ之分解。依據本論文之研究,期待未來CTGF可能發展成為用於治療阿茲海默症之小分子蛋白藥物。 | zh_TW |
dc.description.abstract | The accumulation of amyloid-beta (Aβ) peptide plays a critical role in the pathogenesis of Alzheimer’s disease (AD). Aβ is derived from the cleavage of amyloid precursor protein (APP) though a proteolytic processing, which is executed sequentially by β- and γ-secretases, while α-secretase cleavage intercepts Aβ generation. Currently, inhibition of Aβ generation via regulation of APP processing has been highlighted in AD pathogenesis. Connective tissue growth factor (CTGF; also known as CCN2) is a matricellular protein, which physiologically and pathologically contributes to various cellular and molecular events. In the previous study, high expression level of CTGF in amyloid plague-associated neurons has been observed. However, the role of CTGF in AD is completely unknown. Herein, we found that CTGF modulates the APP processing process in human neuroblastoma cell SH-SY5Y stably expressed Swedish mutant APP (SH-SY5Y/APPSwe). Ectopic overexpression CTGF and recombinant CTGF treatment could significantly reduced extracellular Aβ 1-42 accumulation, and simultaneously decreased the expression of APP C-terminal fragment α and β. Moreover, we proved the evidence that CTGF decrease BACE1 expression resulted in Aβ diminish in vitro. Furthermore, CTGF could enhance Aβ degradation but showed no effect in Aβ uptake ratio in SH-SY5Y/APPSwe cells. Taken together, our results provide evidences that CTGF could reduce β-secretase expression to block Aβ generation and enhance Aβ degradation. CTGF may be developed as a small protein drug to treat AD in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:46:57Z (GMT). No. of bitstreams: 1 ntu-104-R01450003-1.pdf: 3395627 bytes, checksum: db5ba09a7504494a6c7c28aa9f6c51af (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………..……i
中文摘要………………………………………………………….…....ii Abstract……………………………………………………………… iii Introduction……………………………………………………….…. 1 Materials and Methods ………………………………...……….…… 4 Results…………………………………………………………….…. 9 Discussion…………………………………………………………… 13 References…………………………………………………………… 15 Figures…………………………………………………………….…. 21 Figure 1. CTGF decreased extracellular Ab42 level……………..…. 22 Figure 2. CTGF did not interrupt APP expression......……………... 23 Figure 3. CTGF significantly decreased APP-CTFs……….............. 24 Figure 4. BACE1 expression was reduced by CTGF……………… 26 Figure 5. CTGF enhanced extracellular Ab degradation.….............. 28 Figure 6. The schematic diagram of CTGF modulates the amyloidgenic processing and Ab clearance.………........... 30 Tables…………………………….………………………………….. 31 | |
dc.language.iso | en | |
dc.title | 結締組織生長因子於阿茲海默症乙型類澱粉質生成與降解之角色 | zh_TW |
dc.title | The Roles of Connective Tissue Growth Factor on Amyloid-beta Generation and Degradation in Alzheimer’s Disease | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 詹智強(Chih-Chiang Chan),李立仁(Li-Jen Lee),劉宏輝(Horng-Huei Liou) | |
dc.subject.keyword | 人類結締組織生長因子,阿茲海默症,澱粉樣蛋白生成與分解,Beta-secretase 1, | zh_TW |
dc.subject.keyword | Alzheimer's disease,Connective tissue growth factor,Aβ generation,Aβ degradation,beta-secretase 1, | en |
dc.relation.page | 31 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2015-07-28 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
顯示於系所單位: | 口腔生物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。