請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17873
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王培育(Pei-Yu Wang) | |
dc.contributor.author | Tai-En Hsueh | en |
dc.contributor.author | 薛岱恩 | zh_TW |
dc.date.accessioned | 2021-06-08T00:45:12Z | - |
dc.date.copyright | 2015-09-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-04 | |
dc.identifier.citation | Aimone, J. B., Li, Y., Lee, S. W., Clemenson, G. D., Deng, W., Gage, F. H. (2014). Regulation and Function of Adult Neurogenesis: From Genes to Cognition. Physiological Reviews, 94(4), 991-1026. Anderson, R. M., Shanmuganayagam, D., Weindruch, R. (2009). Caloric Restriction and Aging: Studies in Mice and Monkeys. Toxicologic Pathology, 37(1), 47-51. Andrade, J. P., Lukoyanov, N. V., Paula-Barbosa, M. M. (2002). Chronic food restriction is associated with subtle dendritic alterations in granule cells of the rat hippocampal formation. Hippocampus, 12(2), 149-164. Anson, R. M., Guo, Z., de Cabo, R., Iyun, T., Rios, M., Hagepanos, A., . . . Mattson, M. P. (2003). Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proceedings of the National Academy of Sciences, 100(10), 6216-6220. Anton, S., Leeuwenburgh, C. (2013). Fasting or caloric restriction for Healthy Aging. Experimental Gerontology, 48(10), 1003-1005. Becker, J. T., Walker, J. A., Olton, D. S. (1980). Neuroanatomical bases of spatial memory. Brain Research, 200(2), 307-320. Bellush, L. L., Wright, A. M., Walker, J. P., Kopchick, J., Colvin, R. A. (1996). Caloric restriction and spatial learning in old mice. Physiology Behavior, 60(2), 541-547. Bonkowski, M. S., Rocha, J. S., Masternak, M. M., Al Regaiey, K. A., Bartke, A. (2006). Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proceedings of the National Academy of Sciences, 103(20), 7901-7905. Broadbent, N. J., Squire, L. R., Clark, R. E. (2004). Spatial memory, recognition memory, and the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 101(40), 14515-14520. Canto, C., Auwerx, J. (2009). Caloric restriction, SIRT1 and longevity. Trends in endocrinology and metabolism: TEM, 20(7), 325-331. Chamberland, S., Topolnik, L. (2012). Inhibitory control of hippocampal inhibitory neurons. Frontiers in Neuroscience, 6, 165. Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., . . . Weindruch, R. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science (New York, N.Y.), 325(5937), 201-204. Colman, R. J., Beasley, T. M., Kemnitz, J. W., Johnson, S. C., Weindruch, R., Anderson, R. M. (2014). Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun, 5. Dellu, F., Contarino, A., Simon, H., Koob, G. F., Gold, L. H. (2000). Genetic Differences in Response to Novelty and Spatial Memory Using a Two-Trial Recognition Task in Mice. Neurobiology of Learning and Memory, 73(1), 31-48. Duan, W., Mattson, M. P. (1999). Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. Journal of Neuroscience Research, 57(2), 195-206. Engert, F., Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature, 399(6731), 66-70. Grutzendler, J., Kasthuri, N., Gan, W.-B. (2002). Long-term dendritic spine stability in the adult cortex. Nature, 420(6917), 812-816. Gutierrez, R. (2003). The GABAergic phenotype of the “glutamatergic” granule cells of the dentate gyrus. Progress in Neurobiology, 71(5), 337-358. Gutierrez, R., Romo-Parra, H., Maqueda, J., Vivar, C., Ramirez, M., Morales, M. A., Lamas, M. (2003). Plasticity of the GABAergic Phenotype of the “Glutamatergic” Granule Cells of the Rat Dentate Gyrus. The Journal of Neuroscience, 23(13), 5594-5598. Hansalik, M., Skalicky, M., Viidik, A. (2006). Impairment of water maze behaviour with ageing is counteracted by maze learning earlier in life but not by physical exercise, food restriction or housing conditions. Experimental Gerontology, 41(2), 169-174. Hughes, R. N. (2004). The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neuroscience Biobehavioral Reviews, 28(5), 497-505. Hursting, S. D., Lavigne, J. A., Berrigan, D., Perkins, S. N., Barrett, J. C. (2003). Calorie Restriction, Aging, and Cancer Prevention: Mechanisms of Action and Applicability to Humans. Annual Review of Medicine, 54(1), 131-152. Koubova, J., Guarente, L. (2003). How does calorie restriction work? Genes Development, 17(3), 313-321. Kuhla, A., Lange, S., Holzmann, C., Maass, F., Petersen, J., Vollmar, B., Wree, A. (2013). Lifelong Caloric Restriction Increases Working Memory in Mice. PLoS ONE, 8(7), e68778. Lazarov, O., Marr, R. (2013). Of Mice and Men: Neurogenesis, Cognition and Alzheimer’s disease. Frontiers in Aging Neuroscience, 5. Li, L., Wang, Z., Zuo, Z. (2013). Chronic Intermittent Fasting Improves Cognitive Functions and Brain Structures in Mice. PLoS ONE, 8(6), e66069. Masoro, E. J. (2000). Caloric restriction and aging: an update. Experimental Gerontology, 35(3), 299-305. Mattson, M. P. (2000). Neuroprotective signaling and the aging brain: take away my food and let me run1. Brain Research, 886(1–2), 47-53. Mattson, M. P., Chan, S. L., Duan, W. (2002). Modification of Brain Aging and Neurodegenerative Disorders by Genes, Diet, and Behavior. Physiological Reviews, 82(3), 637-672. McCay, C. M., Crowell, M. F., Maynard, L. A. (1989). The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition, 5(3), 155-171; discussion 172. Michan, S., Li, Y., Chou, M. M.-H., Parrella, E., Ge, H., Long, J. M., . . . Longo, V. D. (2010). SIRT1 is essential for normal cognitive function and synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(29), 9695-9707. Ming, G.-l., Song, H. (2005). Adult Neurogenesis in The Mammalian Central Nervous System. Annual Review of Neuroscience, 28(1), 223-250. Molteni, R., Barnard, R. J., Ying, Z., Roberts, C. K., Gomez-Pinilla, F. (2002). A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience, 112(4), 803-814. Moroi-Fetters, S. E., Mervis, R. F., London, E. D., Ingram, D. K. (1989). Dietary restriction suppresses age-related changes in dendritic spines. Neurobiology of Aging, 10(4), 317-322. Morris, R. G. M., Garrud, P., Rawlins, J. N. P., O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681-683. O'Keefe, J., Speakman, A. (1987). Single unit activity in the rat hippocampus during a spatial memory task. Experimental Brain Research, 68(1), 1-27. Olton, D. S., Paras, B. C. (1979). Spatial memory and hippocampal function. Neuropsychologia, 17(6), 669-682. Piper, M. D. W., Bartke, A. (2008). Diet and Aging. Cell Metabolism, 8(2), 99-104. Prolla, T. A., Mattson, M. P. (2001). Molecular mechanisms of brain aging and neurodegenerative disorders: lessons from dietary restriction. Trends in Neurosciences, 24(11), S21-S31. Rakic, P., Bourgeois, J.-P., Goldman-Rakic, P. S. (1994). Synaptic development of the cerebral cortex: implications for learning, memory, and mental illness. In M. A. C. H. B. M. U. J. Van Pelt F. H. L. D. Silva (Eds.), Progress in Brain Research (Vol. Volume 102, pp. 227-243): Elsevier. Recinto, P., Samant, A. R. H., Chavez, G., Kim, A., Yuan, C. J., Soleiman, M., . . . Mandyam, C. D. (2012). Levels of Neural Progenitors in the Hippocampus Predict Memory Impairment and Relapse to Drug Seeking as a Function of Excessive Methamphetamine Self-Administration. Neuropsychopharmacology, 37(5), 1275-1287. Rich, N. J., Van Landingham, J. W., Figueiroa, S., Seth, R., Corniola, R. S., Levenson, C. W. (2010). Chronic caloric restriction reduces tissue damage and improves spatial memory in a rat model of traumatic brain injury. Journal of Neuroscience Research, 88(13), 2933-2939. Sarnyai, Z., Sibille, E. L., Pavlides, C., Fenster, R. J., McEwen, B. S., Toth, M. (2000). Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14731-14736. Sengupta, P. (2013). The Laboratory Rat: Relating Its Age With Human's. International Journal of Preventive Medicine, 4(6), 624-630. Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of Anatomy, 87(Pt 4), 387-406.381. Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195-231. Stranahan, A. M., Lee, K., Martin, B., Maudsley, S., Golden, E., Cutler, R. G., Mattson, M. P. (2009). Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus, 19(10), 951-961. Stranahan, A. M., Norman, E. D., Lee, K., Cutler, R. G., Telljohann, R., Egan, J. M., Mattson, M. P. (2008). Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus, 18(11), 1085-1088. Ultanir, S. K., Kim, J.-E., Hall, B. J., Deerinck, T., Ellisman, M., Ghosh, A. (2007). Regulation of spine morphology and spine density by NMDA receptor signaling in vivo. Proceedings of the National Academy of Sciences, 104(49), 19553-19558. Wang, J. H., Ma, Y. Y., van den Buuse, M. (2006). Improved spatial recognition memory in mice lacking adenosine A2A receptors. Experimental Neurology, 199(2), 438-445. Winocur, G., Moscovitch, M., Sekeres, M. (2007). Memory consolidation or transformation: context manipulation and hippocampal representations of memory. Nat Neurosci, 10(5), 555-557. Witte, A. V., Fobker, M., Gellner, R., Knecht, S., Floel, A. (2009). Caloric restriction improves memory in elderly humans. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1255-1260. Zhao, S., Zhou, Y., Gross, J., Miao, P., Qiu, L., Wang, D., Feng, G. (2010). Fluorescent Labeling of Newborn Dentate Granule Cells in GAD67-GFP Transgenic Mice: A Genetic Tool for the Study of Adult Neurogenesis. PLoS ONE, 5(9), e12506. Zhu, H., Guo, Q., Mattson, M. P. (1999). Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation. Brain Research, 842(1), 224-229. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17873 | - |
dc.description.abstract | 卡路里節制在多種實驗動物模型的研究上發現能延長壽命,也能有效減少發生老化相關疾患發生的可能性,除此之外,亦能提升老鼠及人類的認知功能。為探討卡路里節制作用於記憶功能的機制,本實驗選擇空間記憶做分析,以Y型迷津作為空間記憶的測驗裝置,利用老鼠天生傾向探索新事物的特性,調整間隔時間以檢測卡路里節制對長期(間隔24小時)及短期(間隔2 小時)的空間記憶能力的影響。實驗結果發現,卡路里節制及正常飲食的小鼠在短期空間記憶表現並無差異,而隨間隔時間增長,一般飲食組小鼠的表現變差,相較之下卡路里節制小鼠的長期空間記憶則顯著表現較好。 記憶的改變可能來自大腦結構的改變,為探討卡路里節制影響認知功能的機制,本實驗著重形象學的分析,重新架構與空間記憶相關腦區——海馬迴中齒狀迴及CA1的神經細胞,結果發現卡路里節制減少樹突分叉數量及長度,另外樹突上與訊息傳遞、認知功能相關的突觸脊,其密度在卡路里節制下具有上升的現象。由上述結果可知,神經細胞樹突結構受到飲食操弄影響,進一步使用甲酚紫染色分析海馬迴神經細胞的分佈密度,不論在CA1、CA3或齒狀迴,卡路里節制組及正常飲食組間並無顯著差異;另外特別針對抑制型的GABA神經細胞分析,則發現在齒狀迴區域卡路里節制會使得GABA神經細胞數量顯著高於正常飲食組,CA1和CA3則無差異。此神經結構的改變以及抑制型神經細胞密度變化的結果可能提供了卡路里節制改善空間記憶的機制的新解釋。 | zh_TW |
dc.description.abstract | Calorie restriction (CR) has been shown to extend lifespan and reduce the incidence and onset of aging-related disease in several animal models. It can also promote cognitive functions in mice and human. Among several type of memory, the spatial memory is analyzed in this study. Y-maze is chose as task to discuss the effect of CR on short-term (2 hours) and long-term (24 hours) spatial recognition memory. It is based on the natural tendency of mice to explore novelty that prevents emotional factors from influencing the result. I found that there is no difference between CR and AL mice in short-term memory task, however, CR mice has significantly better spatial recognition memory in long-term task. Since memory formation is generally associated with molecular and structural alterations, the dendritic structures of granule cells and pyramidal cells in dentate gyrus (DG) and CA1 regions of hippocampus are reconstructed to discuss how CR regulates brain functions. By using Golgi-Cox impregnation and Sholl analysis, we found that the number of intersections and the length of dendrites are significantly decreased in CR mice. On the other hand, the spine density is much higher in CR mice. Accordingly, the dendritic structure of CR mice is shrink and simpler compared to AL mice, while the function of neural cells may be elevated. In the following steps, the neural cell density in hippocampus is measured with Cresyl violet staining. The result shows that CR has no effect on total neural cell density. However, GABAergic neuron density is altered in DG but not in CA1 and CA3. These morphological findings may provide new explanation of the CR mechanism on spatial memory enhancement. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:45:12Z (GMT). No. of bitstreams: 1 ntu-104-R02454012-1.pdf: 10657116 bytes, checksum: 8b9fda97bd2c3ce8b4a82969b4964aae (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 論文口試委員審定書........................................................................................i Acknowledgement........................................................................................ii 中文摘要.................................................................................................................iii Abstract........................................................................................................v Chapter 1 Introduction............................................................................1 1.1 Calorie restriction..............................................................................1 1.2 Calorie restriction and brain...............................................................2 1.3 Calorie restriction and hippocampus-dependent memory..................3 Chapter 2 Materials and Methods............................................................7 2.1 Animals and experimental procedure.................................................7 2.2 Y-maze..............................................................................................8 2.3 Morphological analyses.....................................................................9 2.3.1 Golgi-Cox impregnation..............................................................9 2.3.2 Dendritic structure analyses......................................................11 2.3.3 Spine density analyses..............................................................11 2.4 Cell density analyses .......................................................................12 2.4.1 Cresyl violet staining.................................................................12 2.4.2 GABAergic neuron density.........................................................13 2.5 Statistical analysis............................................................................13 Chapter 3 Results...................................................................................14 3.1 Calorie restriction decreased mice body weight gain.........................14 3.2 CR improved long-term spatial recognition memory performance in mice .................................................................................................................15 3.3 Morphological analysis.......................................................................15 3.3.1 CR affects the dendritic architectures of DG granule cells...........15 3.3.2 CR increased dendritic spine density of DG granule cells............16 3.3.3 CR affected dendritic architectures of hippocampus CA1 pyramidal neurons.......................................................................................16 3.3.4 CR increased dendritic spine density of basilar and apical dendrites in neuron of CA1..........................................................................17 3.3.5 CR has no effect on cell body features of DG granule cell and CA1 pyramidal neuron............................................................................ 17 3.4 Cell density analyses ..........................................................................18 3.4.1 CR did not affect total neuronal cell density in hippocampus.......18 3.4.2 CR increase inhibitory neuron density in DG................................18 Chapter 4 Discussion..............................................................................19 List of Figures Figure1. Experimental design....................................................................27 Figure 2. CR improves spatial recognition memory performance in mice...28 Figure 3. CR alters dendritic features of dentate gyrus (DG) granule cells..29 Figure 4. CR affects dendritic features of CA1 pyramidal cells...................31 Figure 5. CR has no effect on neuronal density in hippocampus................33 Figure 6. CR affects GABAergic neuron density in mouse hippocampus....35 List of Tables Table 1. Morphometric features of granule cell in DG in hippocampus.......37 Table 2. Morphometric features of granule cell in basilar and apical dendrites in hippocampus........................................................................................38 Table 3. Cell body features of DG granule cell and CA1 pyramidal neuron..39 Table 4. Summary of neural dendritic alterations seen in DG granule cells and CA1 pyramidal neurons with CR...............................................................40 Reference.................................................................................................41 | |
dc.language.iso | en | |
dc.title | 卡路里節制改變小鼠海馬迴神經細胞結構並促進空間記憶 | zh_TW |
dc.title | Calorie restriction alters hippocampal neuron morphology and improves spatial memory in mice | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李立仁,邱麗珠 | |
dc.subject.keyword | 卡路里節制,空間記憶,Y型迷津,海馬迴,齒狀迴,CA1,樹突分支,突觸脊,細胞密度,甲酚紫染色,GABA神經細胞, | zh_TW |
dc.subject.keyword | calorie restriction,spatial memory,Y-maze,hippocampus,dentate gyrus,CA1,dendritic structure,spine,cell density,Cresyl violet,GABAergic neuron, | en |
dc.relation.page | 45 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2015-08-05 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 腦與心智科學研究所 | zh_TW |
顯示於系所單位: | 腦與心智科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 10.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。