請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17865完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林?輝 | |
| dc.contributor.author | Wei-Ting Kuo | en |
| dc.contributor.author | 郭韋廷 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:45:00Z | - |
| dc.date.copyright | 2015-09-02 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-05 | |
| dc.identifier.citation | [1] Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108.
[2] Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med 2008;359:1367-1380. [3] Rosti G, Bevilacqua G, Bidoli P, Portalone L, Santo A, Genestreti G. Small cell lung cancer. Ann Oncol 2006;17:5-10. [4] Brambilla E, Travis WD, Colby TV, Corrin B, Shimosato Y. The new World Health Organization classification of lung tumours. Eur Respir J 2001;18:1059-1068. [5] William DT. Pathology of lung cancer. Clin Chest Med 2002;23:65-81. [6] Goldstraw P, Crowley JJ. The International Association for the Study of Lung Cancer International Staging Project on Lung Cancer. J Thorac Oncol 2006;1:281-286. [7] Mirsadraee S, Oswal D, Alizadeh Y, Caulo A, van Beek E Jr. The 7th lung cancer TNM classification and staging system: Review of the changes and implications. World J Radiol 2012;4:128-134. [8] Chheang S, Brown K. Lung cancer staging: clinical and radiologic perspectives. Semin Intervent Radiol 2013;30:99-113. [9] Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, Postmus PE, Rusch V, Sobin L. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. [10] Hodkinson PS, Mackinnon A, Sethi T. Targeting growth factors in lung cancer. Chest 2008;133:1209-1216. [11] Schiller JH1, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J, Johnson DH. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002;346:92-98. [12] Metro G, Cappuzzo F, Finocchiaro G, Toschi L, Crin ograve; L. Development of gemcitabine in non-small cell lung cancer: the Italian contribution. Ann Oncol 2006;17 Suppl 5:v37-v46. [13] Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2;127-137. [14] Janku F, Stewart DJ, Kurzrock R. Targeted therapy in non-small-cell lung cancer--is it becoming a reality? Nat Rev Clin Oncol 2010;7:401-414. [15] Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005;5:341-354. [16] Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 2006;12:5268-5272. [17] Hirsch FR, Varella-Garcia M, Cappuzzo F. Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene 2006;28 Suppl 1:S32-S37. [18] Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 2006;7:505-516. [19] Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 2008;65:1566-1584. [20] Yarden Y. The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer 2001;37 Suppl 4:S3-S8. [21] Nyati MK, Morgan MA, Feng FY, Lawrence TS. Integration of EGFR inhibitors with radiochemotherapy. Nat Rev Cancer 2006;6:876-85. [22] Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;7:57-70. [23] Gazdar AF. Epidermal growth factor receptor inhibition in lung cancer: the evolving role of individualized therapy. Cancer Metastasis Rev 2010;29:37-48. [24] Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med 2008:358;1160-1174. [25] Capdevila J, Elez E, Macarulla T, Ramos FJ, Ruiz-Echarri M, Tabernero J. Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treat Rev 2009;35;354-363. [26] De Mej iacute;a EG, Prisecaru VI. Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci Nutr 2005;45:425-445. [27] Leavitt RD, Feldsted RL, Bachur NR. Biological and biochemical properties of Phaseolus vulgaris isolectins. J Biol Chem 1977;252:2961-2966. [28] R uuml;diger H, Gabius HJ. Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 2001;18:589-613. [29] Zhang JS, Shi J, Ilic S, Xue SJ, Kakuda Y. Biological Properties and Characterization of Lectin from Red Kidney Bean (Phaseolus Vulgaris). FOOD REV INT 2009;25:12-27. [30] O'Flynn K, Krensky AM, Beverley PC, Burakoff SJ, Linch DC. Phytohaemagglutinin activation of T cells through the sheep red blood cell receptor. Nature 1985;313:686-687. [31] Yashwantrai NV, Flossie WS. The biochemistry of AIDS. Annu Rev Biochem 1991;60:577-630. [32] Ye XY, Ng TB, Tsang WK, Wang J. Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris) seeds. J Protein Chem 2001;20:367-375. [33] Kiss R, Camby I, Duckworth C, De Decker R, Salmon I, Pasteels JL, Danguy A, Yeaton P. In vitro influence of Phaseolus vulgaris, Griffonia simplicifolia, concanavalin A, wheat germ, and peanut agglutinins on HCT-15, LoVo, and SW837 human colorectal cancer cell growth. Gut 1997;40:253-261. [34] De Mej iacute;a EG, Prisecaru VI. Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci Nutr 2005;45:425-445. [35] Wimer BM. Therapeutic activities of PHA-L4, the mitogenic isolectin of phytohemagglutinin. Mol Biother 1990;2:74-90. [36] Kuo WT, Ho YJ, Kuo SM, Lin FH, Tsai FJ, Chen YS, Dong GC, Yao CH. Induction of the mitochondria apoptosis pathway by phytohemagglutinin erythroagglutinating in human lung cancer cells. Ann Surg Oncol 2011;18:848-856. [37] Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014;53:12320-12364. [38] Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631-651. [39] De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008;3:133-149. [40] Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 2005;109:256-274. [41] Truong-Le VL, Walsh SM, Schweibert E, Mao HQ, Guggino WB, August JT, Leong KW. Gene transfer by DNA-gelatin nanospheres. Arch Biochem Biophys 1999;361:47-56. [42] Kaul G, Amiji M. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm Res 2005;22:951-961. [43] Michaelis M, Langer K, Arnold S, Doerr HW, Kreuter J, Cinatl J Jr. Pharmacological activity of DTPA linked to protein-based drug carrier systems. Biochem Biophys Res Commun 2004;323:1236-1240. [44] Nahar M, Mishra D, Dubey V, Jain NK. Development, characterization, and toxicity evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomedicine 2008;4:252-61. [45] Balthasar S, Michaelis K, Dinauer N, von Briesen H, Kreuter J, Langer K. Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials 2005;26:2723-2732. [46] Morimoto K, Katsumata H, Yabuta T, Iwanaga K, Kakemi M, Tabata Y, Ikada Y. Gelatin microspheres as a pulmonary delivery system: evaluation of salmon calcitonin absorption. J Pharm Pharmacol 2000;52:611-617. [47] Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene 2000;19:6550-6565. [48] Piehler J. New methodologies for measuring protein interactions in vivo and in vitro. Curr Opin Struct Biol 2005;15:4-14. [49] Engel A, M uuml;ller DJ. Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol 2000;7:715-718. [50] Florin EL, Moy VT, Gaub HE. Adhesion forces between individual ligand-receptor pairs. Science 1994;264:415-417. [51] Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A 1996;93:3477-3481. [52] M uuml;ller DJ, Dufr ecirc;ne YF. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 2008;3:261-269. [53] Allen S, Chen X, Davies J, Davies MC, Dawkes AC, Edwards JC, Roberts CJ, Sefton J, Tendler SJ, Williams PM. Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry 1997;36:7457-7463. [54] Cleveland JP, Manne S, Bocek D, Hansma PK. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 1993;64:403-405. [55] Lee CK, Wang YM, Huang LS, Lin S. Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein-ligand interaction. Micron 2007;38:446-461. [56] F auml;gerstam LG, Frostell-Karlsson A, Karlsson R, Persson B, R ouml;nnberg I. Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis. J Chromatogr 1992;597:397-410. [57] Myszka DG, Jonsen MD, Graves BJ. Equilibrium analysis of high affinity interactions using BIACORE. Anal Biochem 1998;265:326-330. [58] Wilson WD. Analyzing biomolecular interactions. Science 2002;295:2103-2105. [59] Cooper MA. Optical biosensors in drug discovery. Nat Rev Drug Discov 2002;1:515-528. [60] O'Shannessy DJ, Brigham-Burke M, Soneson KK, Hensley P, Brooks I. Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods. Anal Biochem 1993;212:457-468. [61] O'Shannessy DJ. Determination of kinetic rate and equilibrium binding constants for macromolecular interactions: a critique of the surface plasmon resonance literature. Curr Opin Biotechnol 1994;5:65-71. [62] MacKenzie CR, Hirama T, Deng SJ, Bundle DR, Narang SA, Young NM. Analysis by surface plasmon resonance of the influence of valence on the ligand binding affinity and kinetics of an anti-carbohydrate antibody. J Biol Chem 1996;271:1527-1533. [63] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239-257. [64] Lockshin RA, Zakeri Z. Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol 2001;2:545-550. [65] Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999;15:269-290. [66] Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell 2000;102:1-4. [67] Oz ouml;ren N, El-Deiry WS. Cell surface Death Receptor signaling in normal and cancer cells. Semin Cancer Biol 2003;13:135-147. [68] Khosravi-Far R, Esposti MD. Death receptor signals to mitochondria. Cancer Biol Ther 2004;3:1051-1057. [69] Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005;5:876-885. [70] Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309-1312. [71] Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281:1312-1316. [72] Strasser A, O'Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem 2000;69:217-245. [73] Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol 2000;10:369-377. [74] Kelekar A, Thompson CB. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol 1998;8:324-330. [75] Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007;26:1324-1337. [76] Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008;9:47-59. [77] Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 2000;407:784-788. [78] Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456-1462. [79] Zornig M, Hueber A, Baum W, Evan G. Apoptosis regulators and their role in tumorigenesis. Biochim Biophys Acta 2001;1551:F1-F37. [80] Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004;116:205-219. [81] Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 2005;258:479-517. [82] Nicholson DW. From bench to clinic with apoptosis-based therapeutic agents. Nature 2000;407:810-816. [83] Khan N, Afaq F, Mukhtar H. Apoptosis by dietary factors: the suicide solution for delaying cancer growth. Carcinogenesis 2007;28:233-239. [84] Chen M, He M, Song Y, Chen L, Xiao P, Wan X, Dai F, Shen P. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells. Int J Mol Med 2014;34:276-282. [85] Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F. Role of gemcitabine in cancer therapy. Future Oncol 2005;1:7-17. [86] Ueno H, Kiyosawa K, Kaniwa N. Pharmacogenomics of gemcitabine: can genetic studies lead to tailor-made therapy? Br J Cancer 2007;97:145-151. [87] Hill R, Rabb M, Madureira PA, Clements D, Gujar SA, Waisman DM, Giacomantonio CA, Lee PW. Gemcitabine-mediated tumour regression and p53-dependent gene expression: implications for colon and pancreatic cancer therapy. Cell Death Dis 2013;4:e791. [88] Kumar S. Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more? Nat Rev Cancer 2009;9:897-903. [89] Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 2005;109:256-274. [90] Elzoghby AO. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release 2013;172:1075-1091. [91] Mohanty B, Aswal VK, Kohlbrecher J, Bohidar HB, Synthesis of gelatin nanoparticles via simple coacervation. J Surf Sci Technol 2005;21:149-160. [92] Bilati U, All eacute;mann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 2005;24:67-75. [93] Lee EJ, Khan SA, Lim KH. Gelatin nanoparticle preparation by nanoprecipitation. J Biomater Sci Polym Ed 2011;22:753-771. [94] Khan SA, Schneider M. Improvement of nanoprecipitation technique for preparation of gelatin nanoparticles and potential macromolecular drug loading. Macromol Biosci 2013;13:455-463. [95] Kaul G, Amiji M. Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Res 2002;19:1061-1067. [96] Elzoghby AO. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release 2013;172:1075-1091. [97] Bajpai AK, Choubey J. In vitro release dynamics of an anticancer drug from swellable gelatin nanoparticles. J Appl Polym Sci 2006;101:2320-2332. [98] Leo E, Cameroni R, Forni F. Dynamic dialysis for the drug release evaluation from doxorubicin–gelatin nanoparticle conjugates. Int J Pharm 1999;180:23-30. [99] Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007;9:257-288. [100] Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol 2005;23:2445-2459. [101] Peeters M, Balfour J, Arnold D. Review article: panitumumab--a fully human anti-EGFR monoclonal antibody for treatment of metastatic colorectal cancer. Aliment Pharmacol Ther 2008;28:269-281. [102] Acharya S, Dilnawaz F, Sahoo SK. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 2009;30:5737-5750. [103] Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine 2014;9:467-483. [104] Yokoyama T, Tam J, Kuroda S, Scott AW, Aaron J, Larson T, Shanker M, Correa AM, Kondo S, Roth JA, Sokolov K, Ramesh R. EGFR-targeted hybrid plasmonic magnetic nanoparticles synergistically induce autophagy and apoptosis in non-small cell lung cancer cells. PLoS One 2011;6:e25507. [105] Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD, Park JW. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res 2003;63:3154-3161. [106] Mamot C, Drummond DC, Noble CO, Kallab V, Guo Z, Hong K, Kirpotin DB, Park JW. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 2005;65:11631-11638. [107] Gomez V, Irusta S, Balas F, Santamaria J. Generation of TiO2 aerosols from liquid suspensions: influence of colloid characteristics. J Aerosol Sci Tech 2013;47:1383-1392. [108] Joshi N, Shirsath N, Singh A, Joshi KS, Banerjee R. Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: pulmonary compatible and site-specific drug delivery in lung metastases. Sci Rep 2014;4:7085. [109] Yeo LY, Friend JR, McIntosh MP, Meeusen EN, Morton DA. Ultrasonic nebulization platforms for pulmonary drug delivery. Expert Opin Drug Deliv 2010;7:663-679. [110] Beck-Broichsitter M, Knuedeler MC, Schmehl T, Seeger W. Following the concentration of polymeric nanoparticles during nebulization. Pharm Res 2013;30:16-24. [111] Verma NK, Crosbie-Staunton K, Satti A, Gallagher S, Ryan KB, Doody T, McAtamney C, MacLoughlin R, Galvin P, Burke CS, Volkov Y, Gun'ko YK. Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnology 2013;11:1. [112] Borm PJ. Particle toxicology: from coal mining to nanotechnology. Inhal Toxicol 2002;14:311-324. [113] Oberd ouml;rster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004;16:437-445. [114] Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 2010;4:3181-3186. [115] Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. The nanosilica hazard: another variable entity. Part Fibre Toxicol 2010;7:39. [116] Rossi EM, Pylkk auml;nen L, Koivisto AJ, Nyk auml;senoja H, Wolff H, Savolainen K, Alenius H. Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Part Fibre Toxicol 2010;7:35. [117] Pisters KM, Evans WK, Azzoli CG, Kris MG, Smith CA, Desch CE, Somerfield MR, Brouwers MC, Darling G, Ellis PM, Gaspar LE, Pass HI, Spigel DR, Strawn JR, Ung YC, Shepherd FA. Cancer Care Ontario and American Society of Clinical Oncology adjuvant chemotherapy and adjuvant radiation therapy for stages I-IIIA resectable non small-cell lung cancer guideline. J Clin Oncol 2007;25:5506-5518. [118] Crin ograve; L, Weder W, van Meerbeeck J, Felip E. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010;21 Suppl 5:v103-v115. [119] Furuse K, Fukuoka M, Kawahara M, Nishikawa H, Takada Y, Kudoh S, Katagami N, Ariyoshi Y. Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage III non-small-cell lung cancer. J Clin Oncol 1999;17:2692-2699. [120] Pfister DG, Johnson DH, Azzoli CG, Sause W, Smith TJ, Baker S Jr, Olak J, Stover D, Strawn JR, Turrisi AT, American Society of Clinical Oncology treatment of unresectable non-small-cell lung cancer guideline: update 2003. J Clin Oncol 2004;22:330-353. [121] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015;65:5-29. [122] Yewale C, Baradia D, Vhora I, Patil S, Misra A. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials 2013;34:8690-8707. [123] Ray M, Salgia R, Vokes EE. The role of EGFR inhibition in the treatment of non-small cell lung cancer. Oncologist 2009;14:1116-1130. [124] Gridelli C, Maione P, Ferrara ML, Rossi A. Cetuximab and other anti-epidermal growth factor receptor monoclonal antibodies in the treatment of non-small cell lung cancer. Oncologist 2009;14:601-611. [125] Pal SK, Figlin RA, Reckamp K. Targeted therapies for non-small cell lung cancer: an evolving landscape. Mol Cancer Ther 2010;9:1931-1944. [126] Leahy DJ. A molecular view of anti-ErbB monoclonal antibody therapy. Cancer Cell 2008;13:291-293. [127] Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010;75:1-18. [128] Lee EJ, Khan SA, Park JK, Lim KH. Studies on the characteristics of drug-loaded gelatin nanoparticles prepared by nanoprecipitation. Bioprocess Biosyst Eng 2012;35:297-307. [129] She QB, Solit DB, Ye Q, O'Reilly KE, Lobo J, Rosen N. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 2005;8:287-297. [130] Law B, Tung CH. Proteolysis: a biological process adapted in drug delivery, therapy, and imaging. Bioconjug Chem 2009;20:1683-1695. [131] Chen M, Hough AM, Lawrence TS. The role of p53 in gemcitabine-mediated cytotoxicity and radiosensitization. Cancer Chemother Pharmacol 2000;45:369-374. [132] Sharpe JC, Arnoult D, Youle RJ. Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 2004;1644:107-113. [133] Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1998;1366:139-149. [134] Von Ahsen O, Waterhouse NJ, Kuwana T, Newmeyer DD, Green DR. The 'harmless' release of cytochrome c. Cell Death Differ 2000;7:1192-1199. [135] Cain K, Bratton SB, Cohen GM. The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie 2002;84:203-214. [136] Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene 2003;22:8543-8567. [137] Armstrong JS. Mitochondrial membrane permeabilization: the sine qua non for cell death. Bioessays 2006;28:253-260. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17865 | - |
| dc.description.abstract | 發展針對表皮生長因子接受器的標靶分子,可以有效改善傳統非小細胞癌治療的缺陷,例如缺乏標定的選擇性與對正常細胞造成的毒性。植物凝集素E是一種來自大紅豆的萃取物,它可以封鎖表皮生長因子接受器的活化,進而誘導肺癌細胞凋亡。明膠常被用來當作藥物傳輸系統的載體,因為具有生物相容性、生物可降解性、低細胞毒性、並且有很多活化的官能基,可以用來接枝標靶分子像是植物凝集素E,並且可以攜帶化療藥物例如健擇。 由於表皮生長因子是植物凝集素E於臨床運用上在人體內最主要的競爭者,所以植物凝集素E首先必須先證明其與表皮生長因子接受器間的結合力優於表皮生長因子與其接受器間的結合力。首先,我們用原子力顯微鏡來測量附著力,由實驗結果可以發現,植物凝集素E與表皮生長因子接受器間有較高的附著力。我們也用表面電漿共振儀來量測親合力,植物凝集素E與表皮生長因子接受器間有一樣有較高的親合力。而從流式細胞儀和共軛焦顯微鏡的結果來看,當植物凝集素E在培養液中的濃度提高時,表皮生長因子結合率會下降。另外,從西方點墨法的試驗當中發現,當植物凝集素E濃度提高時,一樣也會減少表皮生長因子與接受器結合,導致表皮生長因子接受器無法被磷酸化進而抑制癌細胞生長。 本實驗以奈米沉澱法來合成明膠奈米粒子,並結合植物凝集素E與化療藥物健擇,使奈米粒子所攜帶的藥物透過植物凝集素E標定到肺癌細胞。本實驗所合成的明膠奈米粒子為均一奈米大小的圓形顆粒,粒徑為290奈米。而從明膠奈米粒子所釋放出來的健擇其釋放曲線在72小時達到平穩,累積的釋放量只有30%。此外,有結合植物凝集素E的明膠奈米粒子確實較容易標定到肺癌細胞A-549與H292。結合植物凝集素E與攜帶健擇之明膠奈米粒子可以有效抑制肺癌細胞的生長且造成其細胞毒性。由annexin V/PI雙染法結果證實,結合植物凝集素E與攜帶健擇之明膠奈米粒子會誘導肺癌細胞凋亡。最後,從西方點墨法的結果顯示,結合植物凝集素E與攜帶健擇之明膠奈米粒子會抑制表皮生長因子接受器與Akt的磷酸化表現,進而導致Bad的磷酸化表現也被抑制,同時也會活化p53的磷酸化表現,進而活化Bax,以上結果共同促使cytochrom c的釋放,進而活化最下游的caspase-9與caspase-3,因而誘導肺癌細胞凋亡。 總結上述結果,我們發現植物凝集素E與表皮生長因子接受器間有較高的結合力,因此可以有效競爭且降低表皮生長因子與其接受器的結合,進而可與奈米藥物載體結合,標定至肺癌細胞。本實驗所合成的結合植物凝集素E與攜帶健擇之明膠奈米粒子可抑制表皮生長因子接受器並且啟動p53,進而誘導肺癌細胞凋亡,導致其產生細胞毒性並抑制生長。結合植物凝集素E與攜帶健擇之明膠奈米粒子具有發展成為抗肺癌藥物之潛力。 | zh_TW |
| dc.description.abstract | The development of epidermal growth factor receptor (EGFR)-targeting biomolecules would have a chance to improve the lack of target selectivity and toxicity profile of traditional treatments for non-small cell lung cancer (NSCLC). Phytohemagglutinin erythroagglutinating (PHA-E) is a natural product extracted from red kidney beans, and it has been reported to induce cell apoptosis by blocking EGFR in NSCLC. Gelatin is one of efficient drug delivery vehicles due to its biocompatibility, biodegradability, low cytotoxicity, and numerous available active groups for attaching targeting molecules like PHA-E and carried NSCLC chemotherapeutic agent gemcitabine. Because epidermal growth factor (EGF) is the major in vivo competitor to PHA-E in clinical application, PHA-E must be proved that has better binding ability to EGFR than that of EGF. The adhesion force, measured by AFM, between EGFR and PHA-E was 207.14±74.42 pN that was higher than EGF (183.65±86.93 pN). The equilibrium dissociation constant of PHA-E and EGF to EGFR was 2.4×10-9 | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:45:00Z (GMT). No. of bitstreams: 1 ntu-104-D00548012-1.pdf: 6378159 bytes, checksum: 55e6a278841e7b67a6bfa4c8f860330e (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES ix LIST OF ABBREVIATION x Chapter 1 Introduction 1 1.1 Lung cancer 1 1.1.1 The histologic classification of lung cancer 1 1.1.2 Lung cancer staging 3 1.1.3 Lung cancer treatment 4 1.1.3.1 Chemotherapy 4 1.1.3.1.1 Gemcitabine 5 1.1.3.2 Targeted therapy 5 1.2 Epidermal growth factor receptor 10 1.2.1 EGFR inhibitors 10 1.3 Phytohemagglutinin erythroagglutinating 15 1.4 Nanoparticles for drug delivery in cancer therapy 17 1.4.1 Gelatin nanoparticles for drug delivery 18 1.5 Object of study 24 Chapter 2 Theoretical basis 25 2.1 Biomolecular interaction analysis 25 2.1.1 Atomic force microscopy 25 2.1.2 Surface plasmon resonance 26 2.2 Apoptosis 31 2.2.1 Gemcitabine-induced apoptosis 33 2.2.2 PHA-E-induced apoptosis 34 2.3 Characterization of gelatin 40 2.3.1 Nanoprecipitation method for gelatin nanoparticle preparation 40 2.3.2 Drug release of gelatin nanoparticles 41 2.4 Receptor-mediated endocytosis of nanoparticles 44 2.5 Aerosol delivery of nanoparticles 47 Chapter 3 Materials and Methods 49 3.1 Flow chart 49 3.2 Material 51 3.2.1 Chemicals and reagents 51 3.2.2 Consumables 53 3.2.3 Instruments 53 3.3 Binding ability of PHA-E to EGFR compared with EGF 55 3.3.1 Modification of AFM tips and sensor CM5 chips 55 3.3.2 Adhesion force measurements 55 3.3.3 Binding affinity analysis 56 3.3.4 Cell culture 56 3.3.5 EGF binding assay 56 3.3.6 Immunofluorescent staining 57 3.3.7 Western blot analysis 57 3.3.8 Statistical analysis 58 3.4 Preparation of gelatin nanoparticles conjugated PHA-E and carried gemcitabine 59 3.4.1 Preparation of fluorescent gelatin nanoparticles (GNP) 59 3.4.2 PHA-E and gemcitabine conjugated on the surface of GNP 59 3.5 Material characteristics 63 3.5.1 Morphology of GNP 63 3.5.2 Particle size 63 3.5.3 Drug loading and release 63 3.6 In vitro study 65 3.6.1 Cell culture 65 3.6.2 Cellular uptake of nanoparticles 65 3.6.3 WST-1 assay 66 3.6.4 LDH assay 66 3.6.5 LIVE/DEAD assay 67 3.6.6 Annexin V/PI Assay 67 3.6.7 Western blot analysis 68 3.6.8 Statistical analysis 68 Chapter 4 Results 69 4.1 The measurement of adhesion force by AFM 69 4.2 The evaluation of binding affinity by SPR 72 4.3 The competition of PHA-E and EGF bind to EGFR 74 4.4 The effect of competition between PHA-E and EGF on EGFR phosphorylation 78 4.5 Characterization of nanoparticles 80 4.6 The gemcitabine loading and release profile 82 4.7 Cellular accumulation of nanoparticles 84 4.8 Cell viability and cytotoxicity 87 4.9 Live and dead cells staining 89 4.10 Nanoparticles-induced apoptosis 91 4.11 Nanoparticles-induced apoptotic pathway 93 Chapter 5 Discussion 95 Chapter 6 Conclusion 101 REFERENCES 102 | |
| dc.language.iso | en | |
| dc.title | 發展結合植物凝集素E與攜帶健擇之明膠奈米粒子於非小細胞肺癌治療之運用 | zh_TW |
| dc.title | Development of gelatin nanoparticles conjugated with phytohemagglutinin erythroagglutinating and carried gemcitabine for non-small cell lung cancer treatment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 姚俊旭,郭士民,張淑真,陳中明,謝文元 | |
| dc.subject.keyword | 表皮生長因子接受器,明膠奈米粒子,肺癌,奈米沉澱法,植物凝集素E, | zh_TW |
| dc.subject.keyword | epidermal growth factor receptor,gelatin nanoparticle,lung cancer,nanoprecipitation,phytohemagglutinin erythroagglutinating, | en |
| dc.relation.page | 111 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-08-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 6.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
