Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17748
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇(Guang-Yu Guo)
dc.contributor.authorRen-Bo Wangen
dc.contributor.author王仁博zh_TW
dc.date.accessioned2021-06-08T00:42:57Z-
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-14
dc.identifier.citationBibliography
[1] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich. Generation of optical harmonics. Phys. Rev. Lett., 7:118–119, 1961.
[2] Robert W. Boyd. Nonlinear Optics, Third Edition. Oxford University Press, 2008.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306:666 – 669, 2004.
[4] Z.-P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F.-Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 4:803 – 810, 2010.
[5] Q.-L. Bao, H. Zhang, Z.-H. Ni, Y. Wang, L. Polavarapu, Z.-X. Shen, Q.-H. Xu, D.-Y. Tang, and K.-P. Loh. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Research, 4:297 – 307, 2011.
[6] Q.-L. Bao and K.-P. Loh. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 6:3677 – 3694, 2012.
[7] J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen. Electromechanical resonators from graphene sheets. Science, 315:490 – 493, 2007.
[8] L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 11:865 – 871, 2012.
[9] S.-K. Bae, H.-K. Kim, Y.-B. Lee, X.-F. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.-R. Kim, Y.-I. Song, Y.-J. Kim, K.-S. Kim, B. Özyilmaz, J.-H. Ahn, B.-H. Hong, and S. Iijima. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5:574 – 578, 2010.
[10] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim. A roadmap for graphene. Nature, 490:192 – 200, 2012.
[11] X. Huang, Z.-Y. Zeng, Z.-X. Fan, J.-Q. Liu, and H. Zhang. Graphene-based electrodes. Advanced Materials, 24:5979 – 6004, 2012.
[12] S.-X. Wu, Q.-Y. He, C.-L. Tan, Y.-D. Wang, and H. Zhang. Graphene-based electro-chemical sensors. Small, 9:1160 – 1172, 2013.
[13] K. M. Dani, J. Lee, R. Sharma, A. D. Mohite, C. M. Galande, P. M. Ajayan, A. M. Dattelbaum, H. Htoon, A. J. Taylor, and R. P. Prasankumar. Intraband conductivity response in graphene observed using ultrafast infrared-pump visible-probe spectroscopy. Phys. Rev. B, 86:125403, 2012.
[14] K. M. Dani, J. Lee, R. Sharma, A. D. Mohite, C. M. Galande, P. M. Ajayan, A. M. Dattelbaum, H. Htoon, A. J. Taylor, and R. P. Prasankumar. Erratum: Intraband conductivity response in graphene observed using ultrafast infrared-pump visible-probe spectroscopy [Phys. Rev. B 86 , 125403 (2012)]. Phys. Rev. B, 88:119903, 2013.
[15] S. Gilbertson, G. L. Dakovski, T. Durakiewicz, J.-X. Zhu, K. M. Dani, A. D. Mohite, A. Dattelbaum, and G. Rodriguez. Tracing ultrafast separation and coalescence of carrier distributions in graphene with time-resolved photoemission. The Journal of Physical Chemistry Letters, 3:64 – 68, 2012.
[16] H. Li, Z.-Y. Yin, Q.-Y. He, H. Li, X. Huang, G. Lu, D. W.-H. Fam, A. I.-Y. Tok, Q. Zhang, and H. Zhang. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small, 8:63 – 67, 2012.
[17] S. Z. Butler, S. M. Hollen, L.-Y. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S.-S. Hong, J.-X. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7:2898 – 2926, 2013.
[18] H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Letters, 13: 3447 – 3454, 2013.
[19] W.-J. Zhao, Z. Ghorannevis, L.-Q. Chu, M.-L. Toh, C. Kloc, P.-H. Tan, and G. Eda. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano, 7:791 – 797, 2013.
[20] K.-F. Mak, K.-L. He, J. Shan, and T. F. Heinz. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 7:494 – 498, 2012.
[21] K.-F. Mak, C.-G. Lee, J. Hone, J. Shan, and T. F. Heinz. Atomically thin MoS2 : A new direct-gap semiconductor. Phys. Rev. Lett., 105:136805, 2010.
[22] N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S.-M. Feng, R.-T. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones. Photosensor device based on few-layered WS2 films. Advanced Functional Materials, 23:5511 – 5517, 2013.
[23] H.-S. Nam, S.-J. Wi, H. Rokni, M.-K. Chen, G. Priessnitz, W. Lu, and X.-G. Liang. MoS2 transistors fabricated via plasma-assisted nanoprinting of few-layer MoS2 flakes into large-area arrays. ACS Nano, 7:5870 – 5881, 2013.
[24] D.-S. Tsai, K.-K. Liu, D.-H. Lien, M.-L. Tsai, C.-F. Kang, C.-A. Lin, L.-J. Li, and J.-H. He. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano, 7:3905 – 3911, 2013.
[25] X. Huang, Z.-Y. Zeng, and H. Zhang. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev., 42:1934 – 1946, 2013.
[26] P.-A. Hu, L.-F. Wang, M. Yoon, J. Zhang, W. Feng, X.-N. Wang, Z.-Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Letters, 13: 1649 – 1654, 2013.
[27] S.-D. Lei, L.-H. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan. Synthesis and photoresponse of large GaSe atomic layers. Nano Letters, 13:2777 – 2781, 2013.
[28] P.-A. Hu, Z.-Z. Wen, L.-F. Wang, P.-H. Tan, and K. Xiao. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 6:5988 – 5994, 2012.
[29] S.-D. Lei, L.-H. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano, 8:1263 – 1272, 2014.
[30] K. Allakhverdiev, F. Ismailov, L. Kador, and M. Braun. Second-harmonic generation in GaS crystals. Solid State Communications, 104:1 – 3, 1997.
[31] G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Yu. Salaev, and V. V. Smirnov. GaSe, A New Effective Material for Nonlinear Optics . JETP Letters, 16:90 – 92, 1972.
[32] A. Bianchi, A. Ferrario, and M. Musci. 4-12 μm tunable down-conversion in GaSe from a LiNbO3 parametric oscillator. Optics Communications, 25:256 – 258, 1978.
[33] G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskiĭ, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev. Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal. Soviet Journal of Quantum Electronics, 19:494, 1989.
[34] K. L. Vodopyanov, L. A. Kulevskii, V. G. Voevodin, A. I. Gribenyukov, K. R. Allakhverdiev, and T. A. Kerimov. High efficiency middle ir parametric superradiance in ZnGeP2 and GaSe crystals pumped by an erbium laser. Optics Communications, 83:322 – 326, 1991.
[35] W. Shi, Y.-J. J. Ding, N. Fernelius, and K. Vodopyanov. Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal. Opt. Lett., 27:1454 – 1456, 2002.
[36] W. Shi, Y.-J. J. Ding, N. Fernelius, and K. Vodopyanov. Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal: erratum. Opt. Lett., 28:136 – 136, 2003.
[37] Y. Fan, M. Bauer, L. Kador, K. R. Allakhverdiev, and E. Yu. Salaev. Photoluminescence frequency up-conversion in GaSe single crystals as studied by confocal microscopy. Journal of Applied Physics, 91:1081 – 1086, 2002.
[38] Yu. F. Solomonov and V. K. Subashiev. The study of the third order nonlinear susceptibility in GaSe. physica status solidi (a), 74:75 – 78, 1982.
[39] C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer. Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared. Applied Physics Letters, 85:3360 – 3362, 2004.
[40] I. M. Catalano, A. Cingolani, C. Calí, and S. Riva-Sanseverino. Second harmonic generation in InSe. Solid State Communications, 30:585 – 588, 1979.
[41] E. Bringuier, A. Bourdon, N. Piccioli, and A. Chevy. Optical second-harmonic generation in lossy media: Application to GaSe and InSe. Phys. Rev. B, 49:16971 – 16982, 1994.
[42] A. Segura, J. Bouvier, M. V. Andr ́s, F. J. Manj ́n, and V. Mu ̃oz. Strong optical nonlinearities in gallium and indium selenides related to inter-valence-band transitions induced by light pulses. Phys. Rev. B, 56:4075 – 4084, 1997.
[43] D. J. Late, B. Liu, J.-J. Luo, A.-M. Yan, H. S. S. R. Matte, M. Grayson, C. N. R. Rao, and V. P. Dravid. GaS and GaSe ultrathin layer transistors. Advanced Materials, 24: 3549 – 3554, 2012.
[44] I. M. Catalano, A. Cingolani, A. Minafra, and C. Paorici. Second harmonic generation in layered compounds. Optics Communications, 24:105 – 108, 1978.
[45] J. L. Oudar, P. J. Kupecek, and D. S. Chemla. Medium infrared tunable down conversion of a YAG-pumped infrared dye laser in gallium selenide. Optics Communications, 29:119 – 122, 1979.
[46] P. Kupecek, H. Le Person, and M. Comte. A multipurpose efficient tunable infrared coherent source with tuning range from 0.8 to 25 μm and peak powers in the range 50-200 kw. Infrared Physics, 19:263 – 271, 1979.
[47] V. S. Dneprovskii, A. I. Furtichev, V. I. Klimov, E. V. Nazvanova, D. K. Okorokov, and U. V. Vandishev. Excitons at high density in CdS and GaSe, and optical bistability. physica status solidi (b), 146:341 – 350, 1988.
[48] C. Hirlimann, J. F. Morhange, and A. Chevy. Excitonic resonant second harmonic in GaSe. Solid State Communications, 69:1019 – 1022, 1989.
[49] A. Kuhn, A. Chevy, and R. Chevalier. Refinement of the 2H GaS β-type. Acta Crystallographica Section B, 32:983 – 984, 1976.
[50] A. Kuhn, A. Chevy, and R. Chevalier. Crystal structure and interatomic distances in GaSe. physica status solidi (a), 31:469 – 475, 1975.
[51] A. Likforman, D. Carr ́, J. Etienne, and B. Bachet. Structure cristalline du monos ́l ́niure d’indium InSe. Acta Crystallographica Section B, 31:1252 – 1254, 1975.
[52] S. Nagel, A. Baldereschi, and K. Maschke. Tight-binding study of the electronic states in GaSe polytypes. Journal of Physics C: Solid State Physics, 12:1625, 1979.
[53] S.-X. Yang, Y. Li, X.-Z. Wang, N.-J. Huo, J.-B. Xia, S.-S. Li, and J.-B. Li. High performance few-layer GaS photodetector and its unique photo-response in different gas environments. Nanoscale, 6:2582 – 2587, 2014.
[54] X.-F. Li, M.-W. Lin, A. A. Puretzky, J. C. Idrobo, C. Ma, M.-F. Chi, M. Yoon, C. M. Rouleau, I. I. Kravchenko, D. B. Geohegan, and K. Xiao. Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse. Scientific Reports, 4:5497, 2014.
[55] G. W. Mudd, S. A. Svatek, T.-H. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi, and A. I. Dmitriev. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Advanced Materials, 25:5714 – 5718, 2013.
[56] P. D. Haynes. Linear-scaling methods in ab initio quantum-mechanical calculations. PhD thesis, University of Cambridge, 1998.
[57] M. Born and R. Oppenheimer. Zur quantentheorie der molekeln. Annalen der Physik, 389:457 – 484, 1927.
[58] R. G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules. Oxford University Press, 1994.
[59] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864 – B871, 1964.
[60] L. H. Thomas. The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society, 23:542 – 548, 1927.
[61] E. Fermi. Un metodo statistico per la determinazione di alcune proprietà dell’atome. Rend. Accad. Naz. Lincei, 6:602 – 607, 1927.
[62] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133 – A1138, 1965.
[63] P. A. M. Dirac. Note on exchange phenomena in the thomas atom. Mathematical Proceedings of the Cambridge Philosophical Society, 26:376 – 385, 1930
[64] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45:566 – 569, 1980.
[65] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 45:13244 – 13249, 1992.
[66] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77:3865 – 3868, 1996.
[67] J. C. Slater. Wave functions in a periodic potential. Phys. Rev., 51:846 – 851, 1937.
[68] C. Herring. A new method for calculating wave functions in crystals. Phys. Rev., 57:1169 – 1177, 1940.
[69] P. E. Bl ̈chl. Projector augmented-wave method. Phys. Rev. B, 50:17953 – 17979, 1994.
[70] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59:1758 – 1775, 1999.
[71] P. A. M. Dirac. A new notation for quantum mechanics. Mathematical Proceedings of the Cambridge Philosophical Society, 35:416 – 418, 1939.
[72] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Brooks Cole, 1976.
[73] G.-Y. Guo, K.-C. Chu, D.-S. Wang, and C.-G. Duan. Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations. Phys. Rev. B, 69: 205416, 2004.
[74] J. Li, C.-G. Duan, Z.-Q. Gu, and D.-S. Wang. Linear optical properties and multi-photon absorption of alkali halides calculated from first principles. Phys. Rev. B, 57: 2222 – 2228, 1998.
[75] B. Adolph, J. Furthm ̈ller, and F. Bechstedt. Optical properties of semiconductors using projector-augmented waves. Phys. Rev. B, 63:125108, 2001.
[76] E. Ghahramani, D. J. Moss, and J. E. Sipe. Second-harmonic generation in odd-period, strained, (Si)n (Ge)n /Si superlattices and at Si/Ge interfaces. Phys. Rev. Lett., 64:2815 – 2818, 1990.
[77] E. Ghahramani, D. J. Moss, and J. E. Sipe. Full-band-structure calculation of second-harmonic generation in odd-period strained (Si)n /(Ge)n superlattices. Phys. Rev. B, 43:8990 – 9002, 1991.
[78] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47:558 – 561, 1993.
[79] G. Kresse and J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B, 49:14251 – 14269, 1994.
[80] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6:15 – 50, 1996.
[81] K. Cenzual, L. M. Gelato, M. Penzo, and E. Parth ́. Inorganic structure types with revised space groups. I. Acta Crystallographica Section B, 47:433 – 439, 1991.
[82] Y. Depeursinge, E. Doni, R. Girlanda, A. Baldereschi, and K. Maschke. Electronic properties of the layer semiconductor InSe. Solid State Communications, 27:1449 – 1453, 1978.
[83] J. L. P. Hughes and J. E. Sipe. Calculation of second-order optical response in semiconductors. Phys. Rev. B, 53:10751 – 10763, 1996.
[84] M. Balkanski, C. Julien, and M. Jouanne. Electron and phonon aspects in a lithium intercalated InSe cathode. Journal of Power Sources, 20:213 – 219, 1987.
[85] G.-Y. Guo and J.-C. Lin. Second-harmonic generation and linear electro-optical coefficients of BN nanotubes. Phys. Rev. B, 72:075416, 2005.
[86] G.-Y. Guo and J.-C. Lin. Erratum: Second-harmonic generation and linear electro-optical coefficients of BN nanotubes [Phys. Rev. B 72 , 075416 (2005)]. Phys. Rev. B, 77:049901, 2008.
[87] E. Doni, R. Girlanda, V. Grasso, A. Balzarotti, and M. Piacentini. Electronic properties of the III-VI layer compounds GaS, GaSe and InSe. I: Band structure. Il Nuovo Cimento B Series 11, 51:154 – 180, 1979.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17748-
dc.description.abstractThe family of III-VI semiconductors MX (M = Ga, In and X = S, Se) monolayers (MLs) has recently gotten attention as a new type of two dimensional materials for their significant electronic and optical properties such as layer dependent properties and sizable band gaps. In this thesis, a systematic first-principles study of second-order nonlinear optical properties of III-VI semiconductors was performed within density functional theory with local density approximation. The underlying determination of crystal structures was taken from experimental data. Our calculations with scissors corrections for bulk ε-GaSe and γ-InSe are in good agreement with experiment results, which shows that all MX MLs display significant second-order harmonic generation coefficients under scissors corrections. Furthermore, the prominent features in the χ(2)abc(−2ω, ω, ω) spectra for MX MLs are successfully correlated with the features in linear optical dielectric function ε(ω) in terms of single- and two-photon resonances. Among the MLs, InSe ML possesses the largest second-order harmonic generation susceptibility and the largest linear electro-optical coefficient.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:42:57Z (GMT). No. of bitstreams: 1
ntu-104-R01245020-1.pdf: 6942562 bytes, checksum: 06fe1a000f1bb83945e697491bf2ad65 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsContents
口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables ix
1 Introduction 1
1.1 Nonlinear Optics and Their Applications . . . . . . . . . . . . . . . . . . 1
1.2 Emergent Two-Dimensional Materials . . . . . . . . . . . . . . . . . . . 7
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Theory and Computation Methods 11
2.1 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.2 The Hohenberg-Kohn Theorems . . . . . . . . . . . . . . . . . . 13
2.1.3 Exchange and Correlation . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 The Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . 15
2.2 Exchange and Correlation Potentials . . . . . . . . . . . . . . . . . . . . 17
2.2.1 The Local Density Approximation . . . . . . . . . . . . . . . . . 17
2.2.2 Generalized Gradient Approximation . . . . . . . . . . . . . . . 18
2.3 Projector Augmented Wave Method . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Transforming the Wavefunction . . . . . . . . . . . . . . . . . . 19
2.3.2 Transforming Operators . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Calculation Methods of Optical Properties . . . . . . . . . . . . . . . . . 23
2.4.1 Linear Dielectric Function . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Second-Order Nonlinear Optics . . . . . . . . . . . . . . . . . . 24
2.4.3 The Pockels effect and Linear Electro-Optic Coefficients . . . . . 25
3 Nonlinear Optical Properties of Bulk III-VI Semiconductors 28
3.1 Crystal Structures and Electronic Properties . . . . . . . . . . . . . . . . 28
3.1.1 Introduction and Computational Details . . . . . . . . . . . . . . 28
3.1.2 Electronic Structures of ε-GaSe, ε-InSe, and γ-InSe . . . . . . . 29
3.2 Nonlinear Optical Properties of ε-GaSe and γ-InSe . . . . . . . . . . . . 32
3.2.1 Results without Scissors Corrections . . . . . . . . . . . . . . . . 32
3.2.2 Results with Scissors Corrections . . . . . . . . . . . . . . . . . 33
4 Nonlinear Optical Properties of III-VI Semiconductor Monolayers
4.1 Crystal Structures and Fundamental Properties . . . . . . . . . . . . . . . 36
4.1.1 Introduction and Computational Details . . . . . . . . . . . . . . 36
4.1.2 Electronic Structures of MX Monolayers . . . . . . . . . . . . . 37
4.2 Nonlinear Optical Properties of MX Monolayers . . . . . . . . . . . . . 38
4.2.1 Results without Scissors Corrections . . . . . . . . . . . . . . . . 39
4.2.2 Results with Scissors Corrections . . . . . . . . . . . . . . . . . 41
5 Conclusions 43
Bibliography 44
dc.language.isozh-TW
dc.title第一原理理論計算 III-VI 族半導體原子厚度薄膜之二階非線性光學性質zh_TW
dc.titleSecond-Order Nonlinear Optical Properties of III-VI Semiconductor Monolayers from First-Principles Calculationsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁贊全(Tsan-Chuen Leung),胡崇德(Chong Der Hu),薛宏中(Hung-Chung Hsueh),魏金明(Ching-Ming Wei)
dc.subject.keyword二階非線性光學,鏡面對稱性破壞,III-VI族層狀半導體,第一原理計算,zh_TW
dc.subject.keywordIII-VI Layered Semiconductors,Second-order Nonlinear Optics,First-Principles Calculation,en
dc.relation.page53
dc.rights.note未授權
dc.date.accepted2015-08-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
6.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved