Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17602
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂宗昕
dc.contributor.authorHsin-Cheng Linen
dc.contributor.author林信成zh_TW
dc.date.accessioned2021-06-08T00:24:35Z-
dc.date.copyright2013-07-25
dc.date.issued2013
dc.date.submitted2013-07-16
dc.identifier.citation[1] G. Blasse, A. Bril, Philips Tech. Rev. 32 (1970) 304.
[2] K. Nassau, The Physics and Chemistry of Color, John Wiley & Sons, New York (1983).
[3] S. Shionoya, W.M. Yen, H. Yamamoto, Phosphor Handbook, CRC Press, Washington DC (2006) 87.
[4] N.D. Abazovic, M.I. Comor, Opt. Mater. 30 (2008) 1139.
[5] Y. Du, M.S. Zhang, J. Hong, Appl. Phys. A-Mater. 76 (2003) 171.
[6] T. Gao, T.H. Wang, Mater. Res. Bull. 43 (2008) 836.
[7] B.G. Yacobi, Cathodoluminescence Microscopy of Inorganic Solids, ed. D.B. Holt. Spiringer, New York (1990) 27.
[8] R.C. Ropp, Luminescence and the Solid State, Elesevier (1991).
[9] G. Blasse, B.C. Grabmaier, Luminescent materials, Springer-Verlag (1994).
[10] G. Blasse, Philips Res. Repts. 24 (1969) 131.
[11] D.L. Dexter, J. Chem. Phys. 21 (1953) 836.
[12] B. Di Bartolo, Energy Transfer Processes in Condensed Matter, Plenum, New York (1984) 366.
[13] R.C. Ropp, Luminescence: From theory to application, WILEY-VCH Verlag GmbH & Co. KGaA (2007) 14.
[14] M. Sekita, J. Lumin. 22 (1981) 335.
[15] A.B.P. Lever, Comprehensive Coordination Chemistry, Pergamon Press, 2 (1987) 77.
[16] B.N. Figgis, M.A. Hitchman, Ligand Field Theory and its Applications, Wiley-VCH, (2000) 181.
[17] E. Nakazawa, S. Shionoya, J. Phys. Soc. Jpn. 28 (1970) 1260.
[18] W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana, J. Chem. Phys. 90 (1989) 343.
[19] P. Dorenbos, J. Lumin. 104 (2003) 239.
[20] M. Yang, S. Zhang, J. Phys. Chem. Solids 64 (2003) 213.
[21] T. Schlieper, W. Milius, W. Schnick, Z. Anorg. Allg. Chem. 621(1995) 1380.
[22] X.Q. Piao, T. Horikawa, H. Hanzawa, K. Machida, Appl. Phys. Lett. 88 (2006) 161908.
[23] W.L. Wanmaker, J.W. Vrugt, J.G. Verlijsdonk, J. Solid State Chem. 3 (1971) 452.
[24] S. Kubota, R. L. Stanger, Y. Suzuyama, H. Yamane, M. Shimada, J. Electrochem. Soc. 149 (2002) H134.
[25] C.H. Lu, P.C. Wu, J. Alloys. Compd. 466 (2008) 457-462.
[26] S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64 (1994) 1687.
[27] M. Yamada, Y. Narukawa, T. Mukai, Jpn. J. Appl. Phys. 41 (2002) L246.
[28] R.J. Xie, N. Hirosaki, M. Mitomo, K. Sakuma, N. Kimura, Apply. Phys. Lett. 89 (2006) 241103.
[29] F.W. Liu, C.H. Hsu, F.S. Chen, C.H. Lu, Ceram. Int. 38 (2012) 1577.
[30] C.F. Guo, L. Lin, C.H. Chen, D.X. Huang, Q. Su, Mater. Lett. 62 (2008) 600.
[31] C.F. Guo, D.X. Huang, Q. Su, Mater. Sci. Eng. B 130 (2006) 189.
[32] R. Mueller-Mach, G.O. Mueller, M.R. Krames, T. Trottier, IEEE J. 8 (2002) 339.
[33] H.T. Hintzen, J.W.H. van Krevel, G. Botty, Patent EP-1104 799 A1, 1999.
[34] Y.Q. Li, Ph.D. Thesis, p.28, Eindhoven University of Technology (2005).
[35] A.A. Setlur, Interface J. Electrochem. Soc., 2009.
[36] S.H.M. Poort, J.W.H. van Krevel, R. Stomphorst, A.P. Vink, G. Blasse, J. Solid State Chem. 122 (1996) 432
[37] X.F. Song, R.L. Fu, S. Agathopoulos, H. He, X.R. Zhao, J. Zeng, Mater. Sci. Eng. B 164 (2009) 12.
[38] Q.N. Fei, Y.H. Liu, T.C. Gu, D.J. Wang, J. Lumin. 131 (2011) 960.
[39] R.S. Liu, Y.H. Liu, N.C. Bagkar, S.F. Hu, 91 (2007) 061119
[40] M. Hossu, R.O. Schaeffer, L. Ma, W. Chen, Y.B. Zhu, R. Sammynaiken, A.G. Joly, Opt. Mater. 35 (2013) 1513.
[41] T.G. Kim, H.S. Lee, C.C. Lin, T.H. Kim, R.S. Liu, T.S. Chan, S.J. Im, Appl. Phys. Lett. 96 (2010) 061904.
[42] Y.Q. Li, J.E.J. van Steen, J.W.H. van Krevel, G. Botty, A.C.A. Delsing, F.J. DiSalvo, G. de With, H.T. Hintzen, J. Alloys Compd. 417 (2006) 273.
[43] C.J. Duan, W.M. Otten, A.C.A. Delsing, H.T. Hintzen, J. Solid State Chem. 181 (2008) 751.
[44] Y.Q. Li, A.C.A. Delsing, G. de With, H.T. Hintzen, Chem. Mater. 17 (2005) 3242.
[45] Y.Q. Li, G. de With, H.T. Hintzen, J. Mater. Chem. 15 (2005) 4492.
[46] J.K. Park, M.A. Lim, C.H. Kim, H.D. Park, J.T. Park, S.Y. Choi, Appl.
Phys. Lett. 82 (2003) 683.
[47] X. Song, H. He, R. Fu, D. Wang, X. Zhao, Z. Pan, J. Phys. D 42 (2009)
065409.
[48] H.L. Li, R.J. Xie, N. Hirosaki, T. Suehiro, Y. Yajima, J. Electrochem. Soc.
155 (2008) J175.
[49] V.D. Luong, W. Zhang, H.R. Lee, J. Alloys Compd. 509 (2011) 7525.
[50] G. Blasse, J. Solid State Chem. 62 (1986) 207.
[51] C.H. Hsu, C.H. Lu, J. Mater. Chem. 21 (2011) 2932.
[52] K.Y. Jung, J.H. Seo, Electrochem. Solid State Lett. 11 (2008) J64.
[53] Y. Zorenko, V. Gorbenko, T. Voznyak, M. Batentschuk, A. Osvet, A. Winnacker, J. Lumin. 128 (2008) 652.
[54] U.G. Caldino, A.F. Munoz, J.O. Rubio, J. Phys.-Condens. Mater. 5 (1993)
2195.
[55] W.J. Yang, L. Luo, T.M. Chen, N.S. Wang, Chem. Mater. 17 (2005) 3883.
[56] M. Zhang, J. Wang, Q. Zhang, Q. Su, Apply. Phys. B 93 (2008) 829.
[57] S. Nakamura, G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers, Springer-Verlag, Berlin, 1997.
[58] S.H. Lee, D.S. Jung, J.M. Han, H.Y. Koo, Y.C. Kang, J. Alloys. Compd. 477 (2009) 776.
[59] C.H. Hsu, B.M. Cheng, C.H. Lu, J. Am. Ceram. Soc. 94 (2011) 3256.
[60] C.H. Hsu, R. Jagannathan, C.H. Lu, Mater. Sci. Eng. B 167 (2010)137.
[61] W.H. Hsu, M.H. Sheng, M.S. Tsai, J. Alloys Compd. 467 (2009) 491.
[62] H. Jiao, N. Zhang, X. Jing, D. Jiao, Opt. Mater. 29 (2007) 1023.
[63] L. Xiong, J. Shi, J. Gu, L. Li, W. Huang, J. Gao, M. Ruan, J. Phys. Chem. B 109 (2005) 731.
[64] K.H. Lee, S.H. Choi, H.K. Jung, W.B. Im, Acta Mater. 60 (2012) 5783.
[65] C.H. Lu, C.T. Chen, J. Sol-Gel Technol. 43 (2007) 179.
[66]B. Dierre, R.J. Xie, N. Hirosaki, T. Sekiguchi, J. Mater. Res. 22 (2007) 1933.
[67] L. Liu, R.J. Xie, N. Hirosaki, T. Takeda, C.N. Zhang, J. Li, X. Sun, J. Electrochem. Soc. 157 (2010) H50.
[68] C.H. Hsu, C.H. Lu, J. Am. Ceram. Soc. 94 (2011) 1320.
[69] H.Y. Chung, C.H. Lu, C.H. Hsu, J. Am. Ceram. Soc. 93 (2010) 1838.
[70] B.V. Rao, Y.T. Nien, W.S. Hwang, I.G. Chen, J. Elecrochem. Soc. 156 (2009) J338.
[71] X. Fu, L. Fang, S. Niu, H. Zhang, J. Lumin. 142 (2013) 163.
[72] Y. Kojima, M. Numazawa, T. Umegaki, J. Lumin. 132 (2012) 2992.
[73] W.L. Wanmaker, J.W.T. Vrugt, J.G. Verlijsdonk, Philips. Res. Rep. 26 (1971) 373.
[74] R.D. Shannon, Acta Cryst. A 32 (1976) 751.
[75] B. H. Toby, J. Appl. Crystallogr. 34 (2001) 210.
[76] Y. Suwa, S. Naka, T. Noda, Mater. Res. Bull. 3 (1968) 139.
[77] L. Zhou, C.H. Choy, J. Shi, M. Gong, H. Liang, J. Alloys. Compd. 463 (2008) 302.
[78] G. Blasse, Mater. Chem. Phys. 16 (1987) 201
[79] T.W. Kuo, W.R. Liu, T.M. Chen, Opt. Express 18 (2010) 1888.
[80] Y. Shi, G. Zhu, M. Mikami, Y. Shimomura, Y. Wang, Mater. Res. Bull. 48 (2013) 114
[81] W.J. Yang, T.M. Chen, Appl. Phys. Lett. 90 (2007) 171908.
[82] C. Ronda, Luminescence: From Theory to Applications, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2008).
[83] H. Jiao, F. Liao, S. Tian, X.J. Jing, J. Electrochem. Soc. 150 (2003) H220.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17602-
dc.description.abstract白光發光二極體因具有壽命長、堅固耐用及節能環保之優點,而具有取代白熾燈泡或日光燈管等傳統光源之可能性,因此被視為是下個世代具有潛力的照明光源之一。然而,過去市面上的白光發光二極體因螢光粉體缺乏紅色波段的放光,使得所合成之白光多屬於冷白光且演色性差。為了克服此缺失,多種替代方案已被提出並進行相關研究。其一為在傳統的藍光LED晶片激發黃光螢光材料中添加紅光螢光材料,以補足其紅光波段之不足而可合成出演色性較佳之白光。其二為以紫外光LED晶片同時激發藍光、綠光與紅光之三色螢光材料,預期也能合成出高演色性之白光。本論文將就此兩方法為主軸進行研究與探討。
論文第一部分選擇三元之氮化物(Sr2Si5N8)作為螢光材料之主體。在單獨摻雜銪離子(Eu2+)的情況下,當激發光波長固定在420 nm時,可觀察到峰值約在615 nm之橘紅光放光。當將銪離子與激活劑離子共同摻雜到主體時,在相同的激發光下,可觀察到橘紅光之放光有增強的趨勢。藉由銪離子與激活劑離子共添加的螢光粉體其最高放光強度經量測較單獨摻雜銪離子的螢光粉體增加43%。研究結果解釋藉由銪離子與激活劑離子的共摻效應,可有效增強螢光粉體的放光強度,進一步增加此螢光粉體在白光發光二極體中的實用性。
論文第二部分為新型矽酸鈣鑭螢光材料之研究,其化學組成為Ca3La6(SiO4)6。在單獨摻雜鈰離子(Ce3+)與鋱離子(Tb3+)時,分別具有420 nm及545 nm 之特徵放光。當鈰離子與鋱離子共添加於主體時,隨著鋱離子添加量的增加,經由能量轉移之機制,可觀察到鈰離子所產生的藍光強度下降而鋱離子所產生的綠光強度上升。研究結果說明Ca3La6(SiO4)6: Ce3+, Tb3+螢光粉體之放光顏色可藉由調整鋱離子的添加量,由藍紫光移動到綠光,顯示其為適用於發光二極體之一具有潛力的新型可調光式螢光材料。
zh_TW
dc.description.abstractWhite light-emitting diodes (LEDs) have become a promising luminescent light source in the next generation to substitute for the conventional incandescent and fluorescent lamps. However, the white light produced from the conventional type of white LEDs lacks sufficient emission in the red range, therefore leading to the so-called “cold white light” with a low color rendering index. To overcome the drawback, several alternative approaches have been proposed and been underway now. One of the approaches is to integrate the conventional type of white LEDs with red-emitting phosphors for generating white light with high color rendering index. Another approach is to combine ultraviolet LEDs with tricolor-emitting phosphors, which is also expected to produce the white light with high color rendering index. The above-mentioned alternative approaches are mainly focused in this study.
In the first section, nitride-based Sr2Si5N8 was selected as the host material for preparing red-emitting phosphors. Under the blue excitation at 420 nm, solely Eu2+-doped Sr2Si5N8 phosphors displayed a broad emission band peaking at around 615 nm. When Eu2+ and sensitizer ions were co-doped into Sr2Si5N8, it was observed that the emission intensity in the red region tended to increase and was found to be enhanced at most 43% as compared with that of solely Eu2+-doped Sr2Si5N8 phosphor. The results demonstrate that the emission intensity of the phosphors could be enhanced via incorporating Eu2+ and sensitizer ions into Sr2Si5N8, further improving the applicability of the phosphors for white LEDs.
In the second section, silicate-based Ca3La6(SiO4)6 was chosen as the host material, while Ce3+ and Tb3+ ions were selected as the doping ions. The solely Ce3+-doped and Tb3+-doped Ca3La6(SiO4)6 phosphors exhibited emissions at 420 nm and 545 nm, respectively. When Ce3+ and Tb3+ ions were co-doped into Ca3La6(SiO4)6, the emission spectra showed a combination of the emission band originated from Ce3+ ions and the emission lines generated from Tb3+ ions. With the increasing doping content of Tb3+ ions, the emission intensity of Ce3+ ions in the blue region decreased monotonically, whereas that of Tb3+ ions in green region considerably increased. The results reveal that the emitting colors of the phosphors could be shifted from purplish blue to green via controlling the doping content of Tb3+ ions. Ca3La6(SiO4)6: Ce3+, Tb3+ phosphors are the prospective color-tunable materials for applications to light emitting diodes.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:24:35Z (GMT). No. of bitstreams: 1
ntu-102-R00524012-1.pdf: 4354212 bytes, checksum: 0f4b1d0d2bf2d6520eb0a421b42e5b25 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要
Abstract
Contents………………………………………………………..I
List of Figures………………………………………………..IV
List of Tables……………………………………………….VIII
Chapter 1 Introduction
1.1 Luminescent materials 1
1.1.1 Classification of luminescence 1
1.1.2 Mechanism of luminescence 2
1.1.3 Application of phosphors 3
1.2 Luminescence theory 4
1.2.1 Radiative and nonradiative transitions 4
1.2.2 Energy transfer between luminescent centers 5
1.2.3 Crystal-field theory and Stark splits 6
1.2.4 Hund's Rules and selection rules 7
1.2.5 Concentration quenching phenomena 8
1.2.6 Thermal quenching phenomena 9
1.2.7 Rare-earth ions (4fn) 10
1.2.8 Luminescent properties of Eu2+, Mn2+, Ce3+, Tb3+ ions 10
1.3 Introduction to Sr2Si5N8 and Ca3La6(SiO4)6 12
1.3.1 Crystal Structure of Sr2Si5N8 12
1.3.2 Crystal Structure of Ca3La6(SiO4)6 13
1.4 Research objective 13
Chapter 2 Luminescence properties of nitride-based Sr2Si5N8 : Eu2+, Mn2+ phosphors
2.1 Introduction 27
2.2Experimental 29
2.3 Results and Discussion 30
2.3.1 Phase characterization and structural refinement of
Sr2Si5N8: Eu2+and Sr2Si5N8:Mn2+ phosphors 30
2.3.2 Optical properties of Sr2Si5N8: Eu2+and Sr2Si5N8:Mn2+ phosphors 31
2.3.3 Energy transfer study between Eu2+and Mn2+ in Sr2Si5N8:Eu2+, Mn2+ phosphors 35
2.4 Conclusions 41
Chapter 3 Luminescence properties and energy transfer mechanism of color-tunable Ca3La6(SiO4)6 : Ce3+, Tb3+ phosphors
3.1 Introduction 59
3.2Experimental 60
3.3 Results and Discussion 61
3.3.1 Characterization and structural refinement of Ca3La6(SiO4)6: Ce3+, Tb3+ phosphors 61
3.3.2 Photoluminescence properties of Ca3La6(SiO4)6: Ce3+, Tb3+ phosphors 63
3.3.3 Energy transfer study between Ce3+and Tb3+ in Ca3La6(SiO4)6: Ce3+, Tb3+ phosphors 66
3.4 Conclusions 70
Chapter 4 Conclusions 86
Reference 88
dc.language.isoen
dc.title發光二極體用氮化物及矽酸鹽螢光材料之製備與特性分析zh_TW
dc.titlePreparation and Luminescence Properties of Nitride and Silicate-based Phosphors for Light Emitting Diodesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳登銘,黃文正
dc.subject.keyword螢光粉,氮化物,矽酸鹽,zh_TW
dc.subject.keywordphosphor,nitride,silicate,en
dc.relation.page92
dc.rights.note未授權
dc.date.accepted2013-07-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
4.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved