Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17579
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑
dc.contributor.authorHsiu-Hung Yangen
dc.contributor.author楊秀鴻zh_TW
dc.date.accessioned2021-06-08T00:22:48Z-
dc.date.copyright2013-08-06
dc.date.issued2013
dc.date.submitted2013-07-18
dc.identifier.citation第六章 參考文獻
[1] O.C. Farokhzad, R. Langer, Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews 58 (2006) 1456-1459.
[2] 莊萬發,超微粒子理論應用,復漢出版社,(1994)
[3] E.S. Kawasaki, A. Player, Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine: Nanotechnology, Biology and Medicine 1 (2005) 101-109.
[4] D.A Groneberg, M. Giersig, T. Welte, U. Pison, Nanoparticle-based diagnosis and therapy. Curr. Drug Targets 7 (2006) 643-648.
[5] 行政院衛生署,100年死因統計統計表. (2011)
[6] S.K. Hobbs, W.L. Monsky, F. Yuan, W.G. Roberts, L. Griffith, V.P. Torchilin, R.K. Jain, Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of National Academy of Sciences of the United States of America 95 (1998) 4607-4612.
[7] F.Yuan, M. Dellian, D. Fukumura, M. Leunig, D.A. Berk, V.P. Torchilin, R.K.Jain, Vascular-permeability in a humor tumor xenograft molecular-size dependence and cutoff size. Cancer Res. 55 (1995) 3752-3756
[8] P. Couvreur, C. Vauthier, Nanotechnology: Intelligent design to treat complex disease. Pharmaceutical Research 23 (2006) 1417-1450.
[9] V.P. Torchilin, Recent advances with liposomes as pharmaceautucal carriers. Nat. Rev. Drug Discov. 4 (2005) 145-160.
[10] D. Peer, J.M. Karp, S. Hong, O.C. FaroKhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology 2 (2007) 751-760.
[11] B. Haley, E.Frenkel, Nanoparticles for drug delivery in cancer treatment. Urol. Oncol.-Semin. Orig. Investig. 26 (2008) 57-64.
[12] U. Lungwitz, M. Breunig, T. Blunk, A. Gopferich, Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm. 60 (2005) 247-266.
[13] S. Lehrman, Virus treatment questioned after gene therapy death. Nature 401 (1999) 517-518.
[14] J.Y. Sun, V. Anand-Jawa, S. Chatterjee, K.K. Wong, Immune responses to adeno-associated virus and its recombinant vectors. Gene Therapy 10 (2003) 964-976.
[15] A. von Harpe, H. Petersen, Y.X. Li, T. Kissel, Characterization of commercially available and synthesized polyethylenimines for gene delivery. Journal of Controlled Release 69 (2000) 309-322.
[16] O. Boussif , H.F. Lezoualc, M.A. Zanta, M.D. Mergny, D.Scherman, B. Demeneix, J.P. Behr, A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine, Proc. Natl. Acad. Sci. 92 (1995) 7297-7301.
[17] J.P. Behr, Gene-transfer with synthetic cationic amphiphiles - prospects for gene-therapy. Bioconjugate Chemistry 5 (1994) 382-389.
[18] 程上芬,以 mPEG-PLGA 接枝超順磁性氧化鐵作為多功能藥物載體之應用,清華大學化工研究所碩士論文,(2008)
[19] 馬振基主編,奈米材料科技原理與應用,全華科技圖書,(2003)
[20] 劉沐潔,氧化鐵奈米粒子表面修飾之研究與應用,國立清華大學微機電系統工程研究所碩士論文,(2005)
[21] 鄭豐裕,四氧化三鐵磁性奈米粒子之製備及其在生物醫學上的應用,國立成功大學化學研究所博士論文,(2006)
[22] 陳育裕,鐵氧超微粉之製備研究,國立成功大學化學工程研究所碩士論文,(1998)
[23] 林嘉鈞,製備具標靶葉酸受體診斷及治療的多功能pluronic修飾四氧化三鐵,國立高雄大學生物科技研究所碩士論文,(2009)
[24] A.B. Bourlinos, A. Simopoulos, D. Petridis, Synthesis of capped ultrafine γ-Fe2O3 particles from Iron(III) hydroxide caprylate:  a novel starting material for readily attainable organosols. Chemistry of Materials 14 (2002) 899-903.
[25] J. Lin, W. Zhou, A. Kumbhar, J. Wiemann, J. Fang, E.E. Carpenter, C. J. O'Connor, Gold-Coated Iron (Fe@Au) Nanoparticles: Synthesis, Characterization, and Magnetic Field-Induced Self-Assembly. Journal of Solid State Chemistry 159 (2001) 26-31.
[26] A.B. Bourlinos, A. Simopoulos, D. Petridis, Surface Modification of Ultrafine Magnetic Iron Oxide Particles, Chem. Mater. 14 (2002) 3226-3228.
[27] Y. Lu, Y. Yin, B.T. Mayers, Y. Xia, Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol-Gel Approach. Nano Letters 2 (2002) 183-186.
[28] S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J. Halas, Nanoengineering of optical resonances, Chemical Physics Letters 288 (1998) 243-247.
[29] B. Yoza, A. Araki, T. Matsunaga, DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer, J. Biotechnology 101 (2003) 219-228.
[30] C. Sun, J.S. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60 (2008) 1252-65.
[31] M.J. Shinkai, Functional magnetic particles for medical application. Journal of Bioscience and Bioengineering 94 (2002) 606–613.
[32] N. Nagatani, M. Shinkai, H. Honda, T. Kobayashi, Gene delivery for genetically engineered mucosal cells with enhanced function. Bioteclnol. Lett. 22 (2000) 999-1002.
[33] D.D. Stark, R. Weissleder, E. Elizondo, Superparamagnetic iron oxide: Clinical application as acontrastagent for MRimaging of the liver. Radiology 168 (1988) 297-301.
[34] 郭炫廷,以聚乙二醇修飾之高分子微胞包覆超順磁性氧化鐵奈米粒子於磁振造影導引之藥物與基因傳輸之研究,國立台灣大學醫學工程研究所碩士論文, (2010)
[35] S.C. Bushong, Magnetic resonance imaging: Physical and biological principles 2 ed., St. Louis: Mosby-Year Book, 1996.
[36] M.G. Lentschig, P. Reimer, U.L. Rausch-Lentschig, T. Allkemper, M. Oelerich, G. Laub, Breath-hold gadolinium-enhanced MR angiography of the major vessels at 1.0 T: Dose-response findings and angiographic correlation. Radiology 208 (1998) 353-357.
[37] T. Grobner, Gadolinium - a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol. Dial. Transplant. 21 (2006) 1104-1108.
[38] H. Ai, C. Flask, B. Weinberg, X. Shuai, M.D. Pagel, D. Farrell, J. Duerk, J.M. Gao, Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Advanced Materials 17 (2005) 1949-1952.
[39] T. Islam, L. Josephson, Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark. 5 (2009) 99-107.
[40] P. Arnold, J. Ward, D. Wilson, J. Ashley Guthrie, P.J. Robinson, Superparamagnetic iron oxide (SPIO) enhancement in the cirrhotic liver: a comparison of two doses of ferumoxides in patients with advanced disease. Magnetic Resonance Imaging 21 (2003) 695-700.
[41] M. Talelli, C.J.F. Rijcken, T. Lammers, P.R. Seevinck, G. Storm, C.F. van Nostrum, W.E. Hennink, Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug Delivery. Langmuir 25 (2009) 2060-2067.
[42] Y. Tabata, et al, Protein release from gelatin matrices, Advanced Drug Delivery Reviews. 31 (1998) 287-301.
[43] H. Hosseinkhani., Y. Tabata, Self assembly of DNA nanoparticles with polycations for the delivery of genetic materials into cells. J. Nanosci. Nanotechnol. 6 (2006) 2320-2328.
[44] C. Coester, et al, Gelatin namoparticles by two step desolvation – a new preparation method, surface modification and cell uptake. J. Microencapsul. 17 (2000), 187-193.
[45] S. Balthasar, K. Michaelis, N. Dinauer, H.V Briesen, J. Kreuter , K. Langer, Preparation and characterization of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials 26 (2005) 723-2732.
[46] S. Azarmi, Y. Huang, H. Chen, S. McQuarrie, D. Abrams, W. Roa, W.H. Finlay, G.G. Niller, R. Löbenberg, Optimization of a two-step desolvation method for preparing gelatin nanoparticles and cell uptake studies in 143B osteosarcoma cancer cells. J. Pharm. Pharmaceut. 9 (2006) 124-132.
[47] G. Babita, S. K. Myung, A. K. Jung, Y.K. Hak, Techniques of controlling hydrodynamic size of ferrofluid of gelatin-coated magnetic iron oxide nanoparticle, J Mater 43 (2008) 6881-6889.
[48] F.S. Yen, W.C. Chen, J.M. Yang, C.T. Hong, Crystalline size variations of nanosized Fe2O3 powders during
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17579-
dc.description.abstract近幾年來,癌症是醫學上亟需解決的問題之一,但由於現行採用的治療方式,如:化療、放療、侵入式手術等方式仍然無法有效解決。所以,我們希望開發出多功能性的奈米磁粒,同時結合MRI磁振造影、基因治療、藥物傳輸的功能。本實驗的奈米磁粒是由明膠包覆氧化鐵奈米微粒,再經由低分子量的聚乙烯亞胺修飾成帶正電,使其同時為基因傳輸的載體。明膠為可分解性生物高分子,具有良好的生物相容性,表面具有許多官能基能作修飾與鍵結。氧化鐵奈米微粒為磁振造影的對比劑,採用化學共沉澱法製成,具有低磁矯頑力與高飽和磁化量的超順磁性的性質,且有很高的T2弛緩率。
本實驗中利用二階段去溶劑法成功將明膠包覆超順磁性氧化鐵奈米微粒,再將PEI修飾在其表面。利用動態光散射儀 (DLS)、穿透式電子顯微鏡 (TEM)、X光粉末繞射儀 (XRD)、熱重分析儀 (TGA)、超導量子干涉儀 (SQUID)確認所製備的粒徑大小、表面電位、表面型態、結晶結構、磁性等性質。DNA retardation assay中顯示PEI-GIOPs具有良好的DNA吸附能力。細胞活性實驗中,利用MTT assay將PEI-GIOPs與NIH-3T3纖維母細胞培養並與SPIONs、GIOPs比較,可發現低分子量PEI修飾後仍然具有良好的生物活性。細胞吸收量採用普魯士藍染色法,與利用感應耦合電漿質譜儀作定量分析。經磁振造影的樣本分析,PEI-GIOPs與SPIONs比較,具有較高的T2弛緩率。在活體實驗中,經老鼠尾部靜脈注射後發現在體內肝、脾、腎的T2加權影像有更好的對比效果。因此,由此實驗中可證實,所製備的奈米磁粒能作為磁振造影之影像對比劑,以及基因治療與藥物傳輸的多重功用。
zh_TW
dc.description.abstractOver the past few years, cancer has been one in urgent need for solving in medical science. Nowadays the cancer treatment is major by dependent on chemotherapy, radiotherapy and surgery, but these methods do not achieve our expectation and solve problems well. So we develop multifunctional magnetic nanoparticles for MRI image diagnosis, gene therapy and drug delivery. The developed magnetic nanoparticles are composed of iron oxide nanoparticles encapsulated in gelatin nanoparticles and then modified by low molecule polyethylenimine (PEI) to have positive charge. Gelatin is biodegradable polymer. With high biocompatibility and multifunctional group makes it as a suitable candidate for further modification. Iron Oxide nanoparticles are used as MRI contrast agent with high T2 relaxivity and are made by co-precipitation. The superparamagnetic character of iron oxide nanoparticles are low magnetic coercivity and high saturation magnetization.
In this study, we have successfully developed two-step desolvation method to encapsulate iron oxide into gelatin nanoparticles and then modified by PEI (PEI-GIOPs). The characteristics of their size, zeta potential, morphology, crystalline structure and magnetism are determined by using dynamic light scattering (DLS), transmission electron microscopy (TEM), x-ray diffraction (XRD), thermogravimetric analysis (TGA) and superconducting quantum interference device (SQUID). The DNA retardation assay demonstrated that PEI-GIOPs showed good DNA binding efficiency. The cytotoxicity of the PEI-GIOPs to NIH-3T3 fibroblast was assessed by MTT assay and compared with SPIONs、GIOPs. The results showed that modified by low molecule PEI still had high biocompatibility. The cellular uptake was assayed by Prussian blue staining and quantified by inductively coupled plasma spectroscopy (ICPS). MRI scanning of samples revealed that the T2 relaxivity of PEI-GIOPs were higher than that of SPIONs、GIOPs. Moreover, in vivo study revealed that after tail vein injection, liver, spleen and kidney had better effect and turned darker on T2 weighted image. Therefore, all of these results indicated that PEI-GIOPs have multifunction and can serve as MRI contrast agent and for gene and drug delivery system.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:22:48Z (GMT). No. of bitstreams: 1
ntu-102-R00548062-1.pdf: 2858535 bytes, checksum: b24219ee03f834c86a7ea96db779ef4f (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝................................................................................................................................... I
摘要.................................................................................................................................. II
Abstract........................................................................................................................... III
目錄……………………………………………………………………………….….... V
圖目錄……………………………………………………………………………........ IX
表目錄…………………………………………………………………………............ XI
第一章 序論………………………………………………………………………..... 1
1.1 奈米科技與醫學…………………………...…………………………... 1
1.2 癌症…………………………………………………...………………... 2
1.2.1 腫瘤環境…………………………………………...…………….. 3
1.2.1.1 腫瘤血管系統………………………………...……………. 3
1.2.1.2 腫瘤細胞間質…………………………………...…………. 4
1.2.1.3 抗藥性…………………………………………...…………. 5
1.3 基因治療…………………………………………………...………...… 5
1.4 聚乙烯亞胺PEI……………………………………………...………… 5
1.5 磁性材料…………………………………………………...…………... 7
1.5.1 磁性來源………………………………………………...……….. 7
1.5.2 磁性分類………………………………………………...……….. 8
1.5.2.1 磁性與粒徑…………………………………...…………... 9
1.5.3 磁滯曲線與磁性粒子………………………………...………… 10
1.5.3.1 順磁性之磁滯曲線…………………………...…………. 11
1.5.4 超順磁性奈米氧化鐵…………………………...……………… 11
1.5.4.1 超順磁性奈米氧化鐵概述…………………………..….. 11
1.5.4.2 超順磁性奈米氧化鐵表面修飾…………………...……. 12
1.5.4.3 超順磁性奈米氧化鐵表面修飾生醫領域之應用…...…. 13
1.6 磁振造影…………………………………………………………….... 14
1.6.1 磁振造影原理……………………….……………………..…… 15
1.6.2 磁振造影對比劑………………….………………………..…… 16
1.7 明膠……………………………………………...........….....………… 17
1.7.1明膠奈米微粒…………………………………………………… 18
第二章 研究目的與動機…………………………………………………………... 21
第三章 實驗材料與方法…………………………………………………………... 23
3.1 實驗藥品…………………………………………………………….. 23
3.2 實驗儀器…………………………………………………………….. 24
3.3 緩衝溶液配製……………………………………………………….. 25
3.4 明膠奈米微粒(Gelatin Nanoparticles)之製備………………….... 26
3.5 製備超順磁性氧化鐵奈米微粒(SPIONs)…………………….…. 27
3.6 製備明膠包覆超順磁性氧化鐵奈米微粒(GIOPs)…………….... 28
3.7 以聚乙烯亞胺PEI修飾明膠包覆之超順磁性氧化鐵奈米微粒
(PEI-GIOPs)……………………………………………………… 29
3.8 性質分析…………………………………………………………….. 30
3.8.1 粒徑分析(Z-Average)與表面電位(zeta potential).……..…… 30
3.8.2 穿透式電子顯微鏡觀測(TEM)………………………….... 30
3.8.3 X光粉末繞射儀(XRD)…………………...………………….. 31
3.8.4 熱重分析儀(TGA)…………………………………...………. 31
3.8.5 超導量子干涉儀(SQUID)……………………...…...….……… 31
3.8.6 感應耦合電漿質譜儀(ICPS)…………...................…………… 31
3.9 PEI修飾明膠包覆超順磁性奈米微粒之表面胺基測定…………… 31
3.10 質體DNA分離……………………………………………………. 32
3.10.1 菌株培養………………………………………………...…..... 32
3.10.2 質體DNA分離………………………………..…………........ 32
3.10.3 質體DNA定量………………………………………….......... 34
3.11 DNA吸附能力分析……………………………………….…….…..... 34
3.11.1 膠體製作…………………………………………………….... 34
3.11.2 DNA吸附…………………………………………………….... 34
3.11.3 膠體電泳…………………………………………………….... 35
3.12 細胞活性測試………………………...……………………..….…..... 35
3.12.1 MTT assay…………………………………..........…………..... 35
3.13 細胞吞噬實驗…………………………………………......………..... 36
3.13.1 普魯士藍染色(Prussian blue staining)………….....………..... 36
3.13.2 細胞吞噬定量分析……………………………………............ 37
3.14 MRI弛緩率測量…………………………………………………....… 38
3.15 動物實驗……………………………………………………...........… 38
第四章 研究結果與討論……………………………………………….......……...… 40
4.1 明膠奈米微粒製備結果…………….........................................…….... 40
4.1.1 粒徑分析與表面電位.................................................................. 40
4.2 超順磁性氧化鐵奈米微粒製備結果..................................................... 41
4.2.1 粒徑分析與表面電位.................................................................. 42
4.2.2 穿透式電子顯微鏡...................................................................... 42
4.3 明膠包覆超順磁性氧化鐵奈米微粒(GIOPs)製備結果…………….... 43
4.3.1 粒徑分析與表面電位.................................................................. 44
4.3.2 穿透式電子顯微鏡...................................................................... 45
4.3.3 熱重分析儀.................................................................................. 47
4.3.4 X光粉末繞射儀............................................................................ 48
4.3.5 超導量子干涉儀.......................................................................... 49
4.4 聚乙烯亞胺修飾明膠包覆之超順磁性氧化鐵奈米微粒(PEI-GIOPs)
製備結果............................................................................................. 51
4.4.1 粒徑分析與表面電位............................................................... 51
4.4.2 穿透式電子顯微鏡................................................................... 53
4.4.3 表面自由胺基濃度測定.. ........................................................ 54
4.4.4 超導量子干涉儀....................................................................... 55
4.4.5 DNA吸附能力分析.................................................................. 56
4.4.6 細胞活性分析........................................................................... 57
4.4.6.1 MTT assay....................................................................... 57
4.4.7 細胞吞噬能力分析................................................................... 60
4.4.7.1 普魯士藍染色(Prussian blue staining).......................... 60
4.4.7.2 細胞吞噬定量分析........................................................ 64
4.4.8 MRI弛緩率測量....................................................................... 65
4.4.9 動物實驗................................................................................... 68
第五章 結論............................................................................................................... 77
參考文獻………………………………………………………………………......... 78
dc.language.isozh-TW
dc.title聚乙烯亞胺修飾之明膠包覆超順磁性氧化鐵奈米微粒於磁振造影之影像對比劑之研究zh_TW
dc.titleSuperparamagnetic Iron Oxide Nanoparticles Encapsulated in Polyethyleneimine Modified Gelatin Nanoparticles for MRI Contrast Agenten
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江鴻生,黃意真,許馨云
dc.subject.keyword明膠,超順磁性氧化鐵奈米微粒,聚乙烯亞胺,基因傳輸,磁振造影,zh_TW
dc.subject.keywordgelatin,superparamagnetic iron oxide nanoparticles (SPIONs),polyethylenimine (PEI),gene delivery system,magnetic resonance imaging (MRI),en
dc.relation.page82
dc.rights.note未授權
dc.date.accepted2013-07-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved