Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17569
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊西苑教授
dc.contributor.authorKai-Wei Changen
dc.contributor.author張凱為zh_TW
dc.date.accessioned2021-06-08T00:22:07Z-
dc.date.copyright2013-07-26
dc.date.issued2013
dc.date.submitted2013-07-21
dc.identifier.citationAsher RA, Morgenstern DA, Moon LD, Fawcett JW (2001) Chondroitin sulphate proteoglycans: inhibitory components of the glial scar. Prog. Brain Res. 132: 611-19.
Bikfalvi A, Klein S, Pintucci G, Rifkin DB (1997) Biological roles of fibroblast growth factor-2. Endocr. Rev. 18: 26–45.
Bush TG, Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23: 297-308.
Carbonell WS, Mandell JW (2003) Transient neuronal but persistent astroglial activation of ERK/MAP kinase after focal brain injury in mice. J. Neurotrauma 20: 327-36.
Cavanagh JF, Mione MC, Pappas IS, and Parnavelas JG (1997) Basic fibroblast growth factor prolongs the proliferation of rat cortical progenitor cells in vitro without altering their cell cycle parameters. Cereb. Cortex 7: 293-302.
Chadi G, Cao Y, Pettersson RF, Fuxe K (1994) Temporal and spatial increase of astroglial basic fibroblast growth factor synthesis after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine neurons. Neuroscience 61: 891-910.
Cheng L, Jin Z, Liu L, Yan Y, Li T, Zhu X, Jing N. (2004) Characterization and promoter analysis of the mouse nestin gene. FEBS Lett. 565: 195-202.
Chou YH, Khuon S, Herrmann H, Goldman RD (2003) Nestin promotes the phosphorylation-dependent disassembly of vimemtin intermediate filaments during mitosis. Mol. Biol. Cell 14: 1468-78.
Coulombe PA, Omary MB (2002) 'Hard' and 'soft' principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol.14: 110-22.
Coulombe PA, Wong P (2004) Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat. Cell Biol. 6: 699-706.
Dahlstrand J, Zimmerman L, McKay R, Lendahl U (1992) Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments. J. Cell Sci. 103: 589-97.
Dailey L, Ambrosetti D, Mansukhani A, Basilico C (2005) Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 16: 233-47.
Dono R, Texido G, Dussel R, Ehmke H, Zeller R (1998) Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J. 17: 4213-25.
Eclancher F, Kehrli P, Labourdette G, Sensenbrenner M (1996) Basic fibroblast growth factor (bFGF) injection activates the glial reaction in the injured adult rat brain. Brain Res. 737: 201-14.
Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16: 139-49.
Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 24: 2143-55.
Finklestein SP, Apostolides PJ, Caday CG, Posser J, Philips MF, Klagsbrun M (1988) Increased basic fibroblast growth factor (bFGF) immunoreactivity at the site of focal brain wounds. Brain Res. 460: 253-59.
Fitch MT, Silver J (1997) Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp. Neurol. 148: 587-603.
Flanders KC, Ludecke G, Renzing J, Hamm C, Cissel DS, Unsicker K (1993) Effects of TGF-β and bFGF on astroglial cell growth and gene expression in vitro. Mol. Cell Neurosci. 4: 406-17.
Frautschy SA, Walicke PA, Baird A (1991) Localization of basic fibroblast growth factor and its mRNA after CNS injury. Brain Res. 553: 291–99.
Frisen J, Johansson CB, Tőrők C, Risling M, Lendahl U (1995) Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS. J Cell Biol 131: 453-64.
Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63: 345-82.
Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filaments in health and disease. Science. 279: 514-9.
Gomez-Pinilla F, Cummings BJ, Cotman CW (1990) Induction of basic fibroblast growth factor in Alzheimer’s disease pathology. Neuroreport 1: 211-14.
Gomez-Pinilla F, Cotman CW (1993) Distribution of fibroblast growth factor 5 mRNA in the rat brain: an in situ hybridization study. Brain Res. 606: 79–86.
Gomez-Pinilla F, Vu L, Cotman CW (1995) Regulation of astrocyte proliferation by FGF-2 and heparan sulfate in vivo. J. Neurosci. 15: 2021-29.
Gospodarowicz D, Cheng J, Lui MG, Baird A, Bohlen P (1984) Isolation of brain fibroblast growth factor by heparin-Sepharose affinity chromatography: identity with pituitary fibroblast growth factor. Proc. Natl. Acad. Sci. USA 81: 6963–67.
Gospodarowicz D, Neufeld G, Schweiger L (1986) Fibroblast growth factor. Mol. Cell Endocrinol. 46: 187–204.
Green KJ, Bohringer M, Gocken T, Jones JC (2005) Intermediate filament associated proteins. Adv. Protein Chem. 70: 143-202.
Guerette D, Khan PA, Savard PE, Vincent M (2007) Molecular evolution of type VI intermediate filament proteins. BMC Evol Biol 7: 164-173
Hatzfeld M, Weber K (1992) A synthetic peptide representing the consensus sequence motif at the carboxy-terminal end of the rod domain inhibits intermediate filament assembly and disassembles preformed filaments. J. Cell Biol. 116: 157-66.
Heffron DS, Mandell JW (2005) Opposing roles of ERK and p38 MAP kinases in FGF2-induced astroglial process extension. Mol. Cell Neurosci. 28: 779-90.
Helfand BT, Chou YH, Shumaker DK, Goldman RD (2005) Intermediate filament proteins participate in signal transduction. Trends Cell Biol. 15: 568-70.
Herrmann H, Aebi U (2000) Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr Opin Cell Biol 12: 79–90.
Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 8: 562-73.
Hockfield S, McKay RD (1985) Identification of major cell classes in the developing mammalian nervous system. J. Neurosci. 5: 3310-28.
Huang YL, Shi GY, Jiang MJ, Lee H, Chou YW, Wu HL, Yang HY (2008) Epidermal growth factor up-regulates the expression if nestin through the Ras-Raf-ERK signaling axis in rat vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 377: 361-66.
Huang YL, Shi GY, Lee H, Jiang MJ, Huang BM, Wu HL, Yang HY (2009) Thrombin induces nestin expression via the transactivation of EGFR signaling in rat vascular smooth muscle cells. Cell Signal. 21: 954-68.
Hyder CL, Isoniemi KO, Torvaldson ES, Eriksson JE (2011) Insights into intermediate filament regulation from development to ageing. J Cell Sci 124: 1363–72.
Itoh N, Ornitz DM (2008) Functional evolutionary history of the mouse Fgf gene family. Dev. Dyn. 237: 18-27.
Itoh N, Ornitz DM (2011) Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J. Biochem. 149: 121-30.
Izawa I, Inagaki M (2006) Regulatory mechanisms and functions of intermediate filaments: A study using site- and phosphorylation state-specific antibodies. Cancer Sci. 97: 167-74.
Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911-12.
Josephson R, Muller T, Pickel J, Okabe S, Reynolds K (1998) POU transcription factors control expression of CNS stem cell-specific genes. Development 125: 3087-3100.
Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP, Kawamura K, Li Y, Raisman G (2012) Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res. 349: 169-80.
Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci. 31: 653-59.
Kim S, Coulombe PA (2007) Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev. 21: 1581-97.
Kouklis P, Traub P, Georgatos S (1992) Involvement of the consensus sequence motif at coil 2b in the assembly and stability of vimentin filaments. J. Cell Sci. 102: 31-41.
Lee CY, Pappas GD, Kriho V, Huang BM, Yang HY (2003) Proliferation of reactive astrocytes following needle-insertion lesion in rat brain. Neurol. Res. 25: 767-76.
Lendahl U, Zimmerman LB, McKay RDG (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60: 585-95.
Letai A, Coulombe P, Fuchs E (1992) Do the ends justify the mean? Proline mutations at the ends of the keratin coiled-coil rod segment are more disruptive than internal mutations. J. Cell Biol. 116: 1181-95.
Logan A, Frautschy SA, Gonzalez AM, Baird A (1992) A time course for the focal elevation of synthesis of basic fibroblast growth factor and one of its high-affinity receptor (flg) following a localized conical brain injury. J. Neurosci. 12: 3828-37.
McCarthy KD and de Vellis 1 (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Bioi. 85: 890-902.
Malhotra SK, Shnitka TK, Elbrink J (1990) Reactive astrocytes--a review. Cytobios. 61: 133-60.
Mandell JW, Vandenberg SR (1999) ERK/MAP kinase is chronically activated in human reactive astrocytes. Neuroreport 10: 3567-72.
Mandell JW, Gocan NC, Vandeneberg SR (2001) Mechanical trauma induces rapid astroglial activation of ERK/MAP kinase: evidence for a paracrine signal. Glia 34: 283-95.
Mason I (2007) Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat. Rev. Neurosci. 8: 583-96.
Marvin MJ, Dahlstrand J, Lendahl U, McKay RD (1998) A rod end deletion in the intermediate filament protein nestin alters its subcellular localization in neuroepithelial cells of transgenic mice. J Cell Sci 111 ( Pt 14): 1951-61.
Menon VK, Landerholm TE (1994) Intralesion injection of basic fibroblast growth factor alters glial reactivity to neural trauma. Exp. Neurol. 129: 142-54.
Michalczyk K, Ziman M (2005) Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol 20: 665–71.
Morgenstern DA, Asher RA, Fawcett JW (2002) Chondroitin sulphate proteoglycans in the CNS injury response. Prog. Brain Res. 137: 313-32.
Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV (2006) Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129: 2761-72.
Niswander L, Martin GR (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114: 755-68.
Oikawa H, Hayashi K, Maesawa C, Masuda T, Sobue K (2010) Expression profiles of nestin in vascular smooth muscle cells in vivo and in vitro. Exp Cell Res 316: 940-50.
Okada-Ban M, Thiery JP, Jouanneau J (2000) Fibroblast growth factor-2 Int. J. Biochem. Cell Biol. 32: 263-67.;
Omary MB, Ku NO, Tao GZ, Toivola DM, Liao J (2006) ‘Heads and tails’ of intermediate filament phosphorylation: Multiple sites and functional insights. Trends Biochem. Sci. 31: 383-394.
Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M (1996) Receptor specificity of the fibroblast growth-factor family. J. Biol. Chem. 271: 15292-97.
Ortega S, Ittmann M, Tsang SH, Ehrlich M, and Basilico C (1998) Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc. Natl. Acad. Sci. USA 95: 5672-77.
Osborn M, Weber K (1982) Intermediate filaments: cell-type-specific markers in differentiation and pathology. Cell. 31: 303-6.
Pallari HM, Eriksson JE (2006) Intermediate filaments as signaling platforms. Sci STKE 2006: pe53.
Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J. Neurochem. 121: 4-27.
Parry DA (2005) Microdissection of the sequence and structure of intermediate filament chains. Adv. Protein. Chem. 70: 113-42.
Pehar M, Vargas MR, Cassina P, Barbeito AG, Beckman JS, Barbeito L (2005) Complexity of astrocyte-motor neuron interactions in amyotrophic lateral sclerosis. Neurodegener. Dis. 2: 139-46.
Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50: 427-34.
Perraud F, Besnard F, Pettmann B, Sensenbrenner M, Labourdette G (1988) Effects of acidic and basic fibroblast growth factors (aFGF and bFGF) on the proliferation and the glutamine synthetase expression of rat astroblasts in culture. Glia 1: 124-131.
Pindon A, Berry M, Hantai D (2000) Thrombomodulin as a new marker of lesion-induced astrogliosis: involvement of thrombin through the G-protein -coupled protease-activated receptor-1. J. Neurosci. 20: 2543-50.
Raballo R, Rhee J, Lyn-Cook R, Leckman JF, Schwartz ML, Vaccarino FM (2000) Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J. Neurosci. 20: 5012-23.
Reier PJ, Houle JD (1988) The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv. Neurol. 47: 87-138.
Reilly JF, Kumari VG (1996) Alterations in fibroblast growth factor receptor expression following brain injury. Exp. Neurol. 140: 139-50.
Reuss B, Dono R, Unsicker K (2003) Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood-brain barrier permeability: evidence from mouse mutants. J. Neurosci. 23: 6404-12.
Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat. Rev. Neurosci. 10: 235-41.
Sahlgren CM, Pallari HM, He T, Chou YH, Gokdman RD, Eriksson JE (2006) A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death. EMBO J. 25: 4808-19.
Sancho-Tello M, Valles S, Montoliu C, Renau-Piqueras J, Guerri C (1995) Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures. Glia 15: 157-66.
Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RK, Mohammadi M (2000) Crystal structure of a ternary FGF-FGFR- heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6: 743–50.
Sejersen T, Lendahl U (1993) Transient expression of the intermediate filament nestin during skeletal muscle development. J. Cell Sci. 106: 1291-300.
Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat. Rev. Neurosci . 7: 194-206.
Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5: 146-56.
Smith C, Berry M, Clarke WE, Logan A (2001) Differential expression of fibroblast growth factor-2 and fibroblast growth factor receptor 1 in a scarring and nonscarring model of CNS injury in the rat. Eur. J. Neurosci. 13: 443-56.
Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32: 638-47.
Steinert PM, Chou YH, Prahlad V, Parry DA, Marekov LN, Wu KC, Jang SI, Goldman RD (1999) A high molecular weight intermediate filament-associated protein in BHK-21 cells is nestin, a type VI intermediate filament protein. Limited co-assembly in vitro to form heteropolymers with type III vimentin and type IV alpha-internexin. J. Biol. Chem. 274: 9881-90.
Takami K, Kiyota Y, Iwane M, Miyamoto M, Tsukuda R, Shino A, Wanaka A, Shiosaka S, Tohyama M (1993) Upregulation of fibroblast growth factor-receptor messenger RNA expression in rat brain following transient forebrain ischemia. Exp. Brain Res. 97: 185-94.
Tan AM, Zhang W, Levine JM (2005) NG2: a component of the glial scar that inhibits axon growth. J. Anat. 207: 717-25.
Toivola DM, Strnad P, Habtezion A & Omary MB (2010) Intermediate filaments take the heat as stress proteins. Trends Cell Biol 20: 79–91.
Tooyama I, Kawamata T, Walker D, Yamada T, Hanai K, Kimura H, Iwane M, Igarashi K, McGeer EG, McGeer PL (1993) Loss of basic fibroblast growth factor in substantia nigra neurons in Parkinson’s disease. Neurology 43: 372-76.
Tournier C, Pomerance M, Gavaret JM, Pierre M (1994) MAP kinase cascade in astrocytes. Glia 10: 81-8.
Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer. 10: 116-29.
Vaca K, Wendt E (1992) Divergent effects of astroglial and microglial secretions on neuron growth and survival. Exp. Neurol. 118: 62–72.
Vaccarino FM, Schwartz ML, Raballo R, Nilsen J, Rhee J, Zhou M, Doetschman T, Coffin JD, Wyland JJ, Hung YT (1999) Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat. Neurosci. 2: 246-53.
Vaittinen S, Lukka R, Sahlgren C, Hurme T, Rantanen J, Lendahl U, Eriksson JE, Kalimo H. (2001) The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle. J. Neuropathol. Exp. Neurol. 60: 588-97.
Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ (2010) Astrocytes in Alzheimer's disease. Neurotherapeutics. 7: 399-412.
Vescovi AL, Reynolds BA, Fraser DD, Weiss S (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11: 951-66.
Vicario-Abejon C, Johe KK, Hazel TG, Collazo D, McKay RDG (1995) Functions of basic fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons. Neuron 15: 105-14.
Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6: 626-40.
Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LB, Tiwari-Woodruff S, Sofroniew MV (2009) Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J. Neurosci. 29: 11511-22.
Wang DD, Bordey A (2008) The astrocyte odyssey. Prog. Neurobiol. 86: 342-67.
Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, Wersto RP, Boheler KR, Wobus AM (2004) Nestin expression--a property of multi-lineage progenitor cells? Cell Mol Life Sci 61: 2510-22
Yang HY, Lieska N, Goldman AE, Goldman RD (1992) Colchicine-sensitive and colchicine-insensitive intermediate filament systems distinguished by a new intermediate filament-associated protein, IFAP-70/280 kD. Cell Motil. Cytoskeleton 22: 185-99.
Yang HY, Lieska N, Shao D, Kriho V, Pappas GD (1993) Immunotyping of radial glia and their glial derivatives during development of the rat spinal cord. J Neurocytol 22: 558-71.
Yang HY, Lieska N, Goldman RD, Johnson-Seaton D, Pappas GD (1993) Distinct developmental subtypes of cultured non-stellate rat astrocytes distinguished by a new glial intermediate filament-associated protein. Brain Res. 573: 161-8.
Yang HY, Lieska N, Shao D, Kriho V, Pappas GD (1994) Proteins of the intermediate filament cytoskeleton as markers for astrocytes and human astrocytomas. Mol. Chem. Neuropathol. 21: 155-76.
Yang HY, Lieska N, Kriho V, Wu CM, Pappas GD (1997) A subpopulation of reactive astrocytes at the immediate site of cerebral injury. Exp Neurol 146: 199-205.
Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64: 841–8.
Yazaki N, Hosoi Y, Kawabata K, Miyake A, Minami M, Ohta M, Kawasaki T, Itoh N (1994) Differential expression patterns of mRNAs for members of the fibroblast growth factor receptor family, FGFR-1-FGFR-4, in rat brain. J. Neurosci. Res. 37: 445-52.
Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, Waeber C, Bakowska JC, Breakefield XO, Moskowitz MA (2001) FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc. Natl. Acad. Sci. USA 98: 5874-79.
Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM (2006) Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem. 281: 15694-700.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17569-
dc.description.abstract中間絲巢蛋白是一分子量240 kDa的中間絲蛋白成員,主要表現於神經與肌肉的幹細胞中,並且被廣泛的使用為這些細胞的分子標記。關於巢蛋白的相關研究主要集中於中樞神經系統中,目前已知巢蛋白只會短暫的表現神經發育初期,隨著神經發育的過程其表現量會逐漸遞減,當神經發育完成時,巢蛋白的表現就會終止,並且在成熟的神經元以及神經膠細胞會分別被神經絲蛋白與神經膠質微纖維酸性蛋白質所取代,但是在神經系統受傷的初期,星型膠細胞會受到刺激而重新表現巢蛋白,這些重新表現巢蛋白的稱之為反應型星型膠細胞。儘管目前有許多研究專注於反應型星型膠細胞的細胞特性,但是很少有研究在探討究竟是什麼分子透過何種機制影響星型膠細胞的巢蛋白重新表現,而這也是本篇論文的研究主題。第二型纖維母細胞生長因子是發育時期重要的細胞激素,其功能在於促進神經前驅細胞、神經膠前驅細胞以及平滑肌細胞的增生與發育,而這些細胞也正好是會表現巢蛋白的細胞。以神經膠瘤細胞作為模組的實驗中証實第二型纖維母細胞生長因子確為刺激巢蛋白表現的重要因子,並且是經由核酸與蛋白質重新合成所產生的。更進一步的訊息調控路徑檢視發現,此第二型纖維母細胞生長因子誘發巢蛋白的表現機制是透過纖維母細胞生長因子受體活化下游Ras-Raf-ERK路徑,並且牽涉到轉錄因子Sp1的活性,而在初級培養的星型膠細胞中也是此機制來調控巢蛋白之表現。本篇研究對反應型星型膠細胞之巢蛋白調控提供了新的見解,並且能作為未來研究巢蛋白在神經膠疤生成的功能之基石。zh_TW
dc.description.abstractNestin is a 240-kDa intermediate filament (IF) protein expressed mainly in neural and myogenic stem cells. The expression of nestin has primarily been studied in the central nervous system (CNS), where it is expressed transiently in CNS stem cells. During the development of the CNS, neural progenitor cells (NPCs) in the neural tube differentiate into mature neurons and glial cells, while nestin expression is down-regulated and replaced by the expression of neurofilament and glial fibrillary acidic protein (GFAP), respectively. During the early stages of CNS injury, nestin expression reappears in the injury-induced reactive astrocytes adjacent to wound regions. Although a substantial number of studies have focused on the cellular characteristics of reactive astrocytes, little is known about the factors that induce and regulate the re-expression of nestin. Fibroblast growth factor-2 (FGF-2) is an effective mitogen and is expressed in the developing nervous tissue. It stimulates the proliferation and differentiation of NPCs, glial precursor cells, and smooth muscle cells, where nestin is expressed. To assess whether FGF-2 is a potent factor that induces the re-expression of nestin, C6 glioma cells were used. The results showed that nestin expression was up-regulated by FGF-2 via de novo RNA and protein synthesis. Further signaling analyses also revealed that the FGF-2-induced nestin re-expression is mediated through the activation of the FGFR-MAPK-ERK signaling axis and the downstream transcriptional factor Sp1 in both C6 glioma cells and primary astrocytes. These findings provide new insights into the regulation of nestin in reactive astrocytes and enable further studies in understanding the function of nestin in glial scar formation.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:22:07Z (GMT). No. of bitstreams: 1
ntu-102-D97B43005-1.pdf: 13133724 bytes, checksum: acb5b2b799e01a12c5fc79f29e8ae6b2 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書
謝辭
中文摘要 ---------------------------------------------------------------------------------------i
Abstract------------------------------------------------------------------------------------------iii
1. Intriduction -----------------------------------------------------------------------------------1
1.1 Astrocyte ----------------------------------------------------------------------------------1
1.2 Reactive astrocyte and glial scar -------------------------------------------------------2
1.3 Intermediate filaments -------------------------------------------------------------------4
1.4 Nestin --------------------------------------------------------------------------------------6
1.5 Fibroblast growth factor 2 (FGF-2) ----------------------------------------------------9
2. Objectives -----------------------------------------------------------------------------------13
3. Materials and Methods -------------------------------------------------------------------14
3.1 Reagents ---------------------------------------------------------------------------------14
3.2 Animals ----------------------------------------------------------------------------------14
3.3 Cell cultures -----------------------------------------------------------------------------15
3.4 Primary cultures of astrocytes --------------------------------------------------------15
3.5 Establishment of C6 glioma subclones by limiting dilution ----------------------16
3.6 Whole cell extraction ------------------------------------------------------------------17
3.7 Protein assay ----------------------------------------------------------------------------17
3.8 Western blotting analysis --------------------------------------------------------------17
3.9 Immunofluorescence microscopy ----------------------------------------------------19
3.10 MTT assay -----------------------------------------------------------------------------19
3.11 RT-PCR ---------------------------------------------------------------------------------19
3.12 Nuclear extraction --------------------------------------------------------------------21
3.13 Electrophoretic mobility shift assay (EMSA) -------------------------------------21
3.14 Densitometry and statistical analysis -----------------------------------------------22
4. Results ---------------------------------------------------------------------------------------23
4.1 Subclones of C6 cells were established based on their nestin expression levels--------------------------------------------------------------------------------------23
4.2 FGF-2 induces nestin expression in serum-deprived C6 cells --------------------23
4.3 FGF-2-induced nestin expression is mediated by fibroblast growth factor receptors ---------------------------------------------------------------------------------25
4.4 FGF-2 induces nestin expression via de novo RNA and protein synthesis -----26
4.5 FGF-2 induces nestin expression through the Ras–Raf–ERK signaling axis --27
4.6 Sp1 is involved in the FGF-2-induced nestin expression -------------------------28
4.7 FGF-2 induces nestin expression in primary cultures of rat astrocytes through the same FGFR-ERK-Sp1 signaling axis -------------------------------------------29
5. Discussion -----------------------------------------------------------------------------------30
6. Conclusion ----------------------------------------------------------------------------------37
7. References -----------------------------------------------------------------------------------38
dc.language.isoen
dc.title中間絲巢蛋白於神經膠瘤細胞與星型膠細胞的表現調控zh_TW
dc.titleRegulation of Nestin Expression in C6 Glioma Cells and Astrocytesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃步敏教授,李心予教授,溫進德助理教授,黃元勵助理教授
dc.subject.keyword巢蛋白,第二型纖維母細胞生長因子,星型膠細胞,反應型星型膠細胞,神經膠瘤細胞,神經膠疤,zh_TW
dc.subject.keywordNestin,Fibroblast growth factor-2 (FGF-2),Astrocytes,Reactive astrocytes,C6 glioma,Glial scar,en
dc.relation.page99
dc.rights.note未授權
dc.date.accepted2013-07-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
12.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved