Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17553
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷
dc.contributor.authorChih-Cheng Wuen
dc.contributor.author吳至程zh_TW
dc.date.accessioned2021-06-08T00:20:42Z-
dc.date.copyright2013-07-30
dc.date.issued2013
dc.date.submitted2013-07-24
dc.identifier.citation[1] R. Bashir, 'BioMEMS: state-of-the-art in detection, opportunities and prospects,' Advanced Drug Delivery Reviews, vol. 56, pp. 1565-1586, Sep 2004.

[2] G. H. Wu, et al., 'Bioassay of prostate-specific antigen (PSA) using microcantilevers,' Nature Biotechnology, vol. 19, pp. 856-860, Sep 2001.
[3] Gajendra Shekhawat, Soo-Hyun Tark, Vinayak P. Dravid, “MOSFET-Embedded microcantilever for measuring deflection in biomolecular sensors,” Science, vol. 331, pp.1592-1595, Mar. 2006.
[4] Jeong Hoon Lee, Kyo Seon Hwang, Jaebum Park, Ki Hyun Yoon, Dae Sung Yoon, Tae Song Kim,” Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever,” Biosensors and Bioelectronics, vol.20, pp. 2157–2162, Apr 2005.
[5] M. Liss, et al., 'An aptamer-based quartz crystal protein biosensor,' Analytical Chemistry, vol. 74, pp. 4488-4495, Sep 2002.
[6] D. R. Shankaran, et al., 'Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,' Sensors and Actuators B-Chemical, vol. 121, pp. 158-177, Jan 2007.
[7] Y. Cui, et al., 'Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,' Science, vol. 293, pp. 1289-1292, Aug 2001.
[8] Horng-Chih Lin, Ming-Hsien Lee, Chun-Jung Su, and Shih-Wen Shen,” Fabrication and Characterization of Nanowire Transistors With Solid-Phase Crystallized Poly-Si Channels,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 10, pp. 2471-2477, Oct 2006.
[9] M. Curreli, et al., 'Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs,' IEEE Transactions on Nanotechnology, vol. 7, pp. 651-667,Nov 2008.
[10] W. Lu and C. M. Lieber, 'Semiconductor nanowires,' Journal of Physics D-Applied Physics, vol. 39, pp. R387-R406, Nov 2006.
[11] Luca De Vico et al, 'Quantifying signal changes in nano-wire based biosensors,', Nanoscale, vol 3, pp. 706–717, 2011.
[12] P. R. Nair and M. A. Alam, 'Design considerations of silicon nanowire biosensors,' IEEE Transactions on Electron Devices, vol. 54, pp. 3400-3408, Nov 2007.
[13] R. J. Chen, et al., 'Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors,' Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 4984-4989, Apr 2003.
[14] Hann-Huei Tsai, Chen-Fu Lin, Ying-Zong Juang, I-Long Wang, Yu-Cheng Lin, Ruey-Lue Wang, and Huang-Yin Lin,” Multiple type biosensors fabricated using the CMOS BioMEMS platform,” Sensors and Actuators, vol.144, pp. 407-412, Feb 2010.
[15] Andres Hierlemann and Henry Baltes,” CMOS-based chemical microsensors,” Analyst, 128, pp. 15-28, 2003.
[16] Hann-Huei Tsai, Chen-Fu Lin, Ying-Zong Juang, I-Long Wang, Yu-Cheng Lin, Ruey-Lue Wang, Hung-Yin Lin, “Multiple type biosensors fabricated using the CMOS BioMEMS platform,”, Sensors and Actuators B, vol.144, pp. 407-412, Feb 2010.
[17] http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=12939&class_no=440&level_no=4
[18] W. U. Wang, et al., 'Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,' Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 3208-3212, Mar 2005.
[19] E. Stern, et al., 'Label-free immunodetection with CMOS-compatible semiconducting nanowires,' Nature, vol. 445, pp. 519-522, Feb 2007.
[20] G. F. Zheng, et al., 'Multiplexed electrical detection of cancer markers with nanowire sensor arrays,' Nature Biotechnology, vol. 23, pp. 1294-1301, Oct 2005.
[21] A. Kim, et al., 'Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,' Applied Physics Letters, vol. 91, Sep 2007.
[22] Z. Li, et al., 'Sequence-specific label-free DNA sensors based on silicon nanowires,' Nano Letters, vol. 4, pp. 245-247, Feb 2004.
[23] Y. L. Bunimovich, et al., 'Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,' Journal of the American Chemical Society, vol. 128, pp. 16323-16331, Dec 2006.
[24] J. Hahm and C. M. Lieber, 'Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors,' Nano Letters, vol. 4, pp. 51-54, Jan 2004.
[25] F. Patolsky, et al., 'Electrical detection of single viruses,' Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 14017-14022, Sep 2004.
[26] Engvalle, E. and Perlmann, P., Immunochemistry, 8, 871-874, 1971.
[27] Gengfeng Zheng, Fernando Patolsky, Yi Cui, Wayne U Wang, and Charles M. Lieber, Nature Biotech., 23,1294-1301, 2005.
[28] Chih-Heng Lin, Cheng-Yun Hsiao, Cheng-Hsiung Hung, Yen-Ren Lo,Cheng-Che Lee, Chun-Jung Su, Horng-Chin Lin, Fu-Hsiang Ko,Tiao-Yuan Huang and Yuh-Shyong Yang,” Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor,” Chem. Commun, pp 5749–5751, 2008.
[29] Cheng-Yun Hsiao, Chih-Heng Lin, Cheng-Hsiung Hung, Chun-Jung Su, Yen-Ren Lo, Cheng-Che Lee, Horng-Chin Lin, Fu-Hsiang Ko, Tiao-Yuan Huang, Yuh-Shyong Yang,”Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosensors and Bioelectronics, vol.24, pp.1223–1229, Jan 2009.
[30] Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J.; Lieber, C. M. “Diameter-controlled synthesis of single-crystal silicon nanowires,”Appl. Phys. Lett., 78, pp.2214-2216, 2001.
[31] Gudiksen, M. S.; Lieber, C. M.“Diameter-Selective Synthesis of Semiconductor Nanowires,” J. Am. Chem. Soc.122, pp.8801, 2000.
[32] Y. Cui, X. Duan, J. Hu, C. M. Lieber,“Doping and Electrical Transport in Silicon Nanowires,” J. Phys. Chem. B 104, pp.5213-5216, 2000.
[33] Y. Cui, C. M. Lieber,“Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291, pp.851-853, 2001.
[34] Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. ' Control of thickness and orientation of solution-grown silicon nanowires,' Science , vol.287, pp.1471-1473, Feb 2000.
[35] Hanrath, T.; Korgel, B. A.' Supercritical Fluid–Liquid–Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals,' Adv. Mater., vol.15, pp.437-440, Mar 2003.
[36] Lu, X.;Hanrath, T.;Johnston, K.P.; Korgel, B. A.' Growth of single-crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate.' Nano Lett., vol.3, pp.93-99, 2003.
[37] Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Bello, I.; Lee, S. T. 'Si Nanowires Grown from Silicon Oxide,' Chem. Phys. Lett. vol.299, pp.237, 1999.
[38] Wu, Y.; Cui, Y.; Huynh, L.; Barrelet, C. J.; Bell, D. C.; Lieber, C. M.“Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Lett.4, pp.433-436, 2004.
[39] Fernando Patolsky, Gengfeng Zheng, Oliver Hayden, Melike Lakadamyali, Xiaowei Zhuang, and Charles M. Lieber,“Electrical detection of single viruses,” PNAS, 101, pp.14017-14022, 2004.
[40] Jong-in Hahm and Charles M. Lieber,“Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors,” Nano Letters, 4, pp.51-54, 2004.
[41] Yi Cui, Qingqiao Wei, Hongkun Park, Charles M. Lieber,“Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science, vol.293, pp.1289-1292, 2001
[42] H.-C. Lin, M.-H. Lee, C.-J. Su, T.-Y. Huang, C. C. Lee, and Y.-S. Yang, “A Simple and Low-Cost Method to Fabricate TFTs With Poly-Si Nanowire Channel,” IEEE ELECTRON DEVICE LETTERS, vol.26, NO.9, Sep 2005.
[43] Eric Stern, James F. Klemic, David A. Routenberg, Pauline N. Wyrembak, Daniel B. Turner-Evans, Andrew D. Hamilton, David A. LaVan, Tarek M. Fahmy & Mark A. Reed,” Label-free immunodetection with CMOS-compatible semiconducting nanowires,” NATURE, vol 445, pp.519-522, Feb 2007
[44] Z. Li, et al., 'Sequence-specific label-free DNA sensors based on silicon nanowires,' Nano Letters, vol. 4, pp. 245-247, Feb 2004.
[45] F. L. Yang, D. H. Lee, H. Y. Chen, C. Y. Chang, S. D. Liu, and C. C. Huang et al., “5 nm-gate nanowire FinFET,” in VLSI Symp. Tech. Dig.,pp. 196–197, 2004.
[46] You-Lin Wu, Jing-Jenn Lin ,Po-Yen Hsu ,Chung-Ping Hsu ,'Highly sensitive polysilicon wire sensor for DNA detection using silica nanoparticles/ -APTES nanocomposite for surface modification', Sensors and Actuators B vol. 155, pp. 709–715, 2011.
[47] Eric Stern, Erin R. Steenblock, Mark A. Reed, and Tarek M. Fahmy, ” Label-free electronic detection of the antigen-specific T-cell immune response,” Nano Lett., vol.8, No.10, pp.3310-3314, 2008.
[48] Z. Li, et al., 'Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation,' Applied Physics a-Materials Science & Processing, vol. 80, pp. 1257-1263, Mar 2005.
[49] Eric Stern, Robin Wagner, Fred J. Sigworth, Ronald Breaker, Tarek M. Fahmy, and Mark A. Reed, “Importance of the Debye screening length on nanowire field effect transistor sensors,” Nano Lett., Vol. 7, No.11, pp. 3405- 3409, 2007.
[50] Xuan P. A. Gao, Gengfeng Zheng, and Charles M. Lieber,” Subthreshold regime has the optimal sensitivity for nanowire FET biosensors,” Nano Lett., 10, pp. 547-552, 2010.
[51] Guanghua Wu, Ram H. Datar, Karolyn M. Hansen, Thomas Thundat, Richard J. Cote, and Arun Majumdar, ” Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nature Biotech., vol.19, pp.856-860, Sep. 2001.
[52] Semiconductor Material and Device Characterization, Dieter K. Schrode

[53] http://www.scripps.edu/~cdputnam/index.html
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17553-
dc.description.abstract近年來,在生醫工程的領域,開始針對引起疾病的生物分子進行研究和檢測。並因應引發疾病的特定分子而做出不同的治療。然而,發展這些技術都必須要有快速、即時、準確,以及穩定的生物感測技術在背後作支援。隨著奈米科技的蓬勃發展,帶動了生物分子感測技術的進步,進而可以發展出更新穎的感測技術。多晶矽奈米線場效電晶體,近年來已被證實可以做出高靈敏度的生物分子感測器,可以針對不同的生物分子進行感測。
  為了要驗證本論文欲達到的目的,感測元件皆經過實驗上的驗證。多晶矽奈米線場效電晶體先經過表面固定化過程來使元件具有對特定生物分子的接合能力,如此來進行不同濃度的心肌肌鈣蛋白(Cardiac Troponin I; cTnI)的測試。本論文利用螢光圖來確定生物分子修飾固定化的步驟是否確實並利用電場來增加感測的靈敏度。最後利用臨界電壓的改變來分析,多晶矽奈米線場效電晶體生物分子感測器的靈敏度可達到320fM。由元件的結果可知,本論文的實驗結果被證實了具有成為生物分子感測科技的潛力。
zh_TW
dc.description.abstractThe biomolecular marker approach has become an emerging diagnosis method in healthcare systems. In general, this approach utilizes the high-specific binding affinity in bio-conjugates to identify the target biomarkers. Traditionally, this approach is accomplished by labor-intensive laboratory and well-trained analysts. However, the demand of fast, real-time, and accurate diagnosis tool is increasing for the next generation healthcare system. To address this demand, with well-developed nano-technology, poly silicon nanowire field effect biosensor can be one of candidates for biomolecular sensors.
To demonstrate our approaches, the characteristics of fabricated poly-silicon nanowire devices are experimentally verified by using cardiac troponin I. To have the specific binding to cardiac troponin I, the fabricated poly-silicon nanowire is modified by biomolecular immobilized protocols. Both the fluorescent images and the experimental results show the effectiveness of this bio-immobilized step and biosensing capabilities. Furthermore, the sensitivity of the biosensor can be enhanced by applying the electric field. With this enhancement, the sensitivity of the poly-silicon nanowire biosensor can be examined as 320fM. In addition, the selectivity is also demonstrated to distinguish biomolecules with different charges. From these experimental results, our approaches are examined to be potential methods for biomarker detection technologies.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:20:42Z (GMT). No. of bitstreams: 1
ntu-102-R99945031-1.pdf: 2199122 bytes, checksum: fa39a8cf0beaaa3626a1858e7a2736a6 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 I
ABSTRACT II
目錄 III
圖目錄 V
第一章 序論 1
一.1 序言 1
一.2 研究動機 3
一.3 論文架構 4
第二章 文獻回顧及原理介紹 5
二.1 生物分子感測技術之發展 5
二.2 矽奈米線場效生物感測器 6
第三章 元件製作與量測方法 14
三.1 多晶矽奈米線場效電晶體生物感測元件 14
三.1.1 製程步驟 14
三.1.2 元件圖 18
三.2 表面修飾與固定化 20
三.2.1 生物樣品材料 20
三.2.2 表面修飾及固定化步驟 25
三.3 量測架構與方法 27
三.3.1 量測系統的架設 27
三.3.2 元件電性量測 27
三.3.3 元件特性分析和目標物感測 30
第四章 實驗結果與討論 31
四.1 多晶矽奈米線電晶體元件電性分析 31
四.2 多晶矽奈米線電晶體Troponin I抗體固定化螢光圖 33
四.3 多晶矽奈米線電晶體不同濃度Troponin I感測結果 35
四.4 在小牛血清的環境中多晶矽奈米線電晶體不同濃度Troponin I感測結果 39
四.5 施加電場的環境中多晶矽奈米線電晶體不同濃度Troponin I感測結果 43
第五章 結論與未來展望 47
五.1 結論 47
五.2 未來展望 48
參考文獻.........................................................................................................................48
dc.language.isozh-TW
dc.title多晶矽奈米線生物分子感測元件之改善zh_TW
dc.titleThe Device Design to Enhance the Performance of Poly-Si Nanowire Biosensoren
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃榮山,宋孔彬
dc.subject.keyword生物分子感測器,奈米線,電壓,zh_TW
dc.subject.keywordbiosensor,nanowire,voltage,en
dc.relation.page57
dc.rights.note未授權
dc.date.accepted2013-07-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved