請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17542完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊顯(Chun-hsien Chen) | |
| dc.contributor.author | Feng-Jen Tsai | en |
| dc.contributor.author | 蔡豐任 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:19:50Z | - |
| dc.date.copyright | 2013-07-30 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-24 | |
| dc.identifier.citation | (1) Moore, G. E. Cramming More Components onto Integrated Circuits. IEEE. 1965, 86, 82-85.
(2) Aviram, A.; Ratner, M. A. Molecular Rectifiers. Chem. Phys. Lett. 1974, 29, 277-283. (3) Nitzan, A.; Ratner, M. A. Electron Transport in Molecular Wire Junctions. Science 2003, 300, 1384-1389. (4) McCreery, R. L. Molecular Electronic Junctions. Chem. Mater. 2004, 16, 4477-4496. (5) Tao, N. J. Electron Transport in Molecular Junctions. Nat. Nanotechnology. 2006, 1, 173-181. (6) Metzger, R. M. Unimolecular Electronics. J. Mater. Chem. 2008, 18, 4364-4396. (7) Akkerman, H. B.; de Boer, B. Electrical Conduction through Single Molecules and Self-Assembled Monolayers. J. Phys.: Condens. Matter 2008, 20. (8) Heath, J. R. Molecular Electronics. Annu. Rev. Master. Res. 2009, 39, 1-23. (9) McCreery, R. L.; Bergren, A. J. Progress with Molecular Electronic Junctions: Meeting Experimental Challenges in Design and Fabrication. Adv. Mater. 2009, 21, 4303-4322. (10) Ulgut, B.; Abruna, H. D. Electron Transfer through Molecules and Assemblies at Electrode Surfaces. Chem. Rev. 2008, 108, 2721-2736. (11) Li, B.; Li, Z. Y.; Yang, J. L.; Hou, J. G. Stm Studies of Single Molecules: Molecular Orbital Aspects. Chem. Commun. 2011, 47, 2747-2762. (12) Nichols, R. J.; Haiss, W.; Higgins, S. J.; Leary, E.; Martin, S.; Bethell, D. The Experimental Determination of the Conductance of Single Molecules. Phys. Chem. Chem. Phys. 2010, 12, 2801-2815. (13) Diez-Perez, I.; Hihath, J.; Lee, Y.; Yu, L. P.; Adamska, L.; Kozhushner, M. A.; Oleynik, I. I.; Tao, N. J. Rectification and Stability of a Single Molecular Diode with Controlled Orientation. Nat. Chem. 2009, 1, 635-641. (14) Metzger, R. M.; Chen, B.; Hopfner, U.; Lakshmikantham, M. V.; Vuillaume, D.; Kawai, T.; Wu, X. L.; Tachibana, H.; Hughes, T. V.; Sakurai, H.; Baldwin, J. W.; Hosch, C.; Cava, M. P.; Brehmer, L.; Ashwell, G. J. Unimolecular Electrical Rectification in Hexadecylquinolinium Tricyanoquinodimethanide. J. Am. Chem. Soc. 1997, 119, 10455-10466. (15) Park, H.; Park, J.; Lim, A. K. L.; Anderson, E. H.; Alivisatos, A. P.; McEuen, P. L. Nanomechanical Oscillations in a Single-C-60 Transistor. Nature 2000, 407, 57-60. (16) Park, J.; Pasupathy, A. N.; Goldsmith, J. I.; Chang, C.; Yaish, Y.; Petta, J. R.; Rinkoski, M.; Sethna, J. P.; Abruna, H. D.; McEuen, P. L.; Ralph, D. C. Coulomb Blockade and the Kondo Effect in Single-Atom Transistors. Nature 2002, 417, 722-725. (17) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a Molecular Junction. Science 1997, 278, 252-254. (18) Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Observation of Molecular Orbital Gating. Nature 2009, 462, 1039-1043. (19) Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-Temperature Transistor Based on a Single Carbon Nanotube. Nature 1998, 393, 49-52. (20) Lin, S.-Y.; Chen, I.-W. P.; Chen, C.-h.; Hsieh, M.-H.; Yeh, C.-Y.; Lin, T.-W.; Chen, Y.-H.; Peng, S.-M. Effect of Metal-Metal Interactions on Electron Transfer: An Stm Study of One-Dimensional Metal String Complexes. J. Phys. Chem. B 2004, 108, 959-964. (21) Chen, I. W. P.; Fu, M. D.; Tseng, W. H.; Yu, J. Y.; Wu, S. H.; Ku, C. J.; Chen, C. H.; Peng, S. M. Conductance and Stochastic Switching of Ligand-Supported Linear Chains of Metal Atoms. Angew. Chem. Int. Ed. 2006, 45, 6244-6244. (22) Yin, C. X.; Huang, G. C.; Kuo, C. K.; Fu, M. D.; Lu, H. C.; Ke, J. H.; Shih, K. N.; Huang, Y. L.; Lee, G. H.; Yeh, C. Y.; Chen, C. H.; Peng, S. M. Extended metal-atom chains with an inert second row transition metal: [Ru5(m5-tpda)4X2] (tpda2- = tripyridyldiamido dianion, X = Cl and NCS). J. Am. Chem. Soc. 2008, 130, 10090-10092. (23) Chae, D. H.; Berry, J. F.; Jung, S.; Cotton, F. A.; Murillo, C. A.; Yao, Z. Vibrational Excitations in Single Trimetal-Molecule Transistors. Nano. Lett. 2006, 6, 165-168. (24) Liu, I. P. C.; Benard, M.; Hasanov, H.; Chen, I. W. P.; Tseng, W. H.; Fu, M. D.; Rohmer, M. M.; Chen, C. H.; Lee, G. H.; Peng, S. M. A New Generation of Metal String Complexes: Structure, Magnetism, Spectroscopy, Theoretical Analysis, and Single Molecular Conductance of an Unusual Mixed-Valence Linear [Ni5]8+ Complex. Chem.-Eur. J. 2007, 13, 8667-8677. (25) van der Molen, S. J.; Liljeroth, P. Charge Transport through Molecular Switches. J. Phys.: Condens. Matter 2010, 22, 133001. (26) Tam, E. S.; Parks, J. J.; Shum, W. W.; Zhong, Y. W.; Santiago-Berrios, M. B.; Zheng, X.; Yang, W. T.; Chan, G. K. L.; Abruna, H. D.; Ralph, D. C. Single-Molecule Conductance of Pyridine-Terminated Dithienylethene Switch Molecules. Acs. Nano. 2011, 5, 5115-5123. (27) Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Mechanically Controlled Binary Conductance Switching of a Single-Molecule Junction. Nat. Nanotechnol. 2009, 4, 230-234. (28) Blum, A. S.; Kushmerick, J. G.; Long, D. P.; Patterson, C. H.; Yang, J. C.; Henderson, J. C.; Yao, Y. X.; Tour, J. M.; Shashidhar, R.; Ratna, B. R. Molecularly Inherent Voltage-Controlled Conductance Switching. Nat. Mater. 2005, 4, 167-172. (29) Choi, B. Y.; Kahng, S. J.; Kim, S.; Kim, H.; Kim, H. W.; Song, Y. J.; Ihm, J.; Kuk, Y. Conformational Molecular Switch of the Azobenzene Molecule: A Scanning Tunneling Microscopy Study. Phys. Rev. Lett. 2006, 96. (30) Lortscher, E.; Ciszek, J. W.; Tour, J.; Riel, H. Reversible and Controllable Switching of a Single-Molecule Junction. Small 2006, 2, 973-977. (31) Green, J. E.; Choi, J. W.; Boukai, A.; Bunimovich, Y.; Johnston-Halperin, E.; DeIonno, E.; Luo, Y.; Sheriff, B. A.; Xu, K.; Shin, Y. S.; Tseng, H. R.; Stoddart, J. F.; Heath, J. R. A 160-Kilobit Molecular Electronic Memory Patterned at 10(11) Bits Per Square Centimetre. Nature 2007, 445, 414-417. (32) Lee, J.; Chang, H.; Kim, S.; Bang, G. S.; Lee, H. Molecular Monolayer Nonvolatile Memory with Tunable Molecules. Angew. Chem. Int. Ed. 2009, 48, 8501-8504. (33) Hihath, J.; Tao, N. Rapid Measurement of Single-Molecule Conductance. Nanotechnology 2008, 19. (34) Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.; Burgin, T. P.; Jones, L.; Allara, D. L.; Tour, J. M.; Weiss, P. S. Are Single Molecular Wires Conducting? Science 1996, 271, 1705-1707. (35) Wold, D. J.; Frisbie, C. D. Fabrication and Characterization of Metal-Molecule-Metal Junctions by Conducting Probe Atomic Force Microscopy. J. Am. Chem. Soc. 2001, 123, 5549-5556. (36) Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Reproducible Measurement of Single-Molecule Conductivity. Science 2001, 294, 571-574. (37) Andres, R. P.; Bein, T.; Dorogi, M.; Feng, S.; Henderson, J. I.; Kubiak, C. P.; Mahoney, W.; Osifchin, R. G.; Reifenberger, R. 'Coulomb Staircase' at Room Temperature in a Self-Assembled Molecular Nanostructure. Science 1996, 272, 1323-1325. (38) Morita, T.; Lindsay, S. Determination of Single Molecule Conductances of Alkanedithiols by Conducting-Atomic Force Microscopy with Large Gold Nanoparticles. J. Am. Chem. Soc. 2007, 129, 7262-7263. (39) Haiss, W.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Hobenreich, H.; Schiffrin, D. J.; Nichols, R. J. Redox State Dependence of Single Molecule Conductivity. J. Am. Chem. Soc. 2003, 125, 15294-15295. (40) Haiss, W.; Martin, S.; Leary, E.; van Zalinge, H.; Higgins, S. J.; Bouffier, L.; Nichols, R. J. Impact of Junction Formation Method and Surface Roughness on Single Molecule Conductance. J. Phys. Chem. C 2009, 113, 5823-5833. (41) Haiss, W.; Wang, C. S.; Grace, I.; Batsanov, A. S.; Schiffrin, D. J.; Higgins, S. J.; Bryce, M. R.; Lambert, C. J.; Nichols, R. J. Precision Control of Single-Molecule Electrical Junctions. Nat. Mater. 2006, 5, 995-1002. (42) Haiss, W.; Nichols, R. J.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Schiffrin, D. J. Measurement of Single Molecule Conductivity Using the Spontaneous Formation of Molecular Wires. Phys. Chem. Chem. Phys. 2004, 6, 4330-4337. (43) Haiss, W.; van Zalinge, H.; Bethell, D.; Ulstrup, J.; Schiffrin, D. J.; Nichols, R. J. Thermal Gating of the Single Molecule Conductance of Alkanedithiols. Faraday Discuss. 2006, 131, 253-264. (44) Chen, I.-W. P.; Tseng, W.-H.; Gu, M.-W.; Su, L.-C.; Hsu, C.-H.; Chang, W.-H.; Chen, C.-h. Tactile-Feedback Stabilized Molecular Junctions for the Measurement of Molecular Conductance. Angew. Chem. Int. Ed. 2013, 52, 2449-2453. (45) Kim, B.; Choi, S. H.; Zhu, X. Y.; Frisbie, C. D. Molecular Tunnel Junctions Based on Pi-Conjugated Oligoacene Thiols and Dithiols between Ag, Au, and Pt Contacts: Effect of Surface Linking Group and Metal Work Function. J. Am. Chem. Soc. 2011, 133, 19864-19877. (46) Agrait, N.; Yeyati, A. L.; van Ruitenbeek, J. M. Quantum Properties of Atomic-Sized Conductors. Phys. Rep. 2003, 377, 81-279. (47) vanRuitenbeek, J. M.; Alvarez, A.; Pineyro, I.; Grahmann, C.; Joyez, P.; Devoret, M. H.; Esteve, D.; Urbina, C. Adjustable Nanofabricated Atomic Size Contacts. Rev. Sci. Instrum. 1996, 67, 108-111. (48) Moreland, J.; Ekin, J. W. Electron-Tunneling Experiments Using Nb-Sn Break Junctions. J. App.l Phys. 1985, 58, 3888-3895. (49) Muller, C. J.; van Ruitenbeek, J. M.; Dejongh, L. J. Conductance and Supercurrent Discontinuities in Atomic-Scale Metallic Constrictions of Variable Width. Phys. Rev. Lett. 1992, 69, 140-143. (50) Ohnishi, H.; Kondo, Y.; Takayanagi, K. Quantized Conductance through Individual Rows of Suspended Gold Atoms. Nature 1998, 395, 780-783. (51) Xu, B. Q.; Tao, N. J. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science 2003, 301, 1221-1223. (52) Xu, B. Q.; Xiao, X. Y.; Tao, N. J. Measurements of Single-Molecule Electromechanical Properties. J. Am. Chem. Soc. 2003, 125, 16164-16165. (53) Rubio-Bollinger, G.; Bahn, S. R.; Agrait, N.; Jacobsen, K. W.; Vieira, S. Mechanical Properties and Formation Mechanisms of a Wire of Single Gold Atoms. Phys. Rev. Lett. 2001, 87, 026101. (54) Frei, M.; Aradhya, S. V.; Koentopp, M.; Hybertsen, M. S.; Venkataraman, L. Mechanics and Chemistry: Single Molecule Bond Rupture Forces Correlate with Molecular Backbone Structure. Nano. Lett. 2011, 11, 1518-1523. (55) Frei, M.; Aradhya, S. V.; Hybertsen, M. S.; Venkataraman, L. Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions. J. Am. Chem. Soc. 2012, 134, 4003-4006. (56) Aradhya, S. V.; Frei, M.; Hybertsen, M. S.; Venkataraman, L. Van Der Waals Interactions at Metal/Organic Interfaces at the Single-Molecule Level. Nat. Mater. 2012, 11, 872-876. (57) Meisner, J. S.; Ahn, S.; Aradhya, S. V.; Krikorian, M.; Parameswaran, R.; Steigerwald, M.; Venkataraman, L.; Nuckolls, C. Importance of Direct Metal-Pi Coupling in Electronic Transport through Conjugated Single-Molecule Junctions. J. Am. Chem. Soc. 2012, 134, 20440-20445. (58) Davis, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R. Molecular-Wire Behaviour in P-Phenylenevinylene Oligomers. Nature 1998, 396, 60-63. (59) Tour, J. M. Molecular Electronics. Synthesis and Testing of Components. Acc. Chem. Res. 2000, 33, 791-804. (60) Tsuda, A.; Osuka, A. Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared. Science 2001, 293, 79-82. (61) Bildstein, B.; Loza, O.; Chizhov, Y. Alpha,Omega-Diferrocenyl Cumulene Molecular Wires Studied by Density Functional Theory. Organometallics 2004, 23, 1825-1835. (62) Tejel, C.; Ciriano, M. A.; Villarroya, B. E.; Lopez, J. A.; Lahoz, F. J.; Oro, L. A. A Hexanuclear Iridium Chain. Angew. Chem. Int. Ed. 2003, 42, 529-532. (63) Murahashi, T.; Mochizuki, E.; Kai, Y.; Kurosawa, H. Organometallic Sandwich Chains Made of Conjugated Polyenes and Metal-Metal Chains. J. Am. Chem. Soc. 1999, 121, 10660-10661. (64) Kar, S.; Chanda, N.; Mobin, S. M.; Urbanos, F. A.; Niemeyer, M.; Puranik, V. G.; Jimenez-Aparicio, R.; Lahiri, G. K. Unusual Monodentate Binding Mode of 2,2 '-Dipyridylamine (L) in Isomeric Trans-(Acac)2ruii(L)2, Trans-[(Acac)(2)Ruiii(L)2]Clo4, and Cis-(Acac)2ruii(L)2 (Acac = Acetylacetonate). Synthesis, Structures, and Spectroscopic, Electrochemical, and Magnetic Aspects. Inorg. Chem. 2005, 44, 1571-1579. (65) 劉柏君 九十六學年度國立台灣大學化學研究所博士論文 2008. (66) Sheu, J. T.; Lin, C. C.; Chao, I.; Wang, C. C.; Peng, S. M. Linear Trinuclear Three-Centred Metal-Metal Multiple Bonds: Synthesis and Crystal Structure of [M3(dpa)4Cl2] [M=RuII or RhII, dpa = bis(2-pyridyl)amidoanion]. Chem. Commun. 1996, 315-316. (67) Wang, C. C.; Lo, W. C.; Chou, C. C.; Lee, G. H.; Chen, J. M.; Peng, S. M. Synthesis, Crystal Structures, and Magnetic Properties of a Series of Linear Pentanickel(II) Complexes: [Ni5(m5-tpda)4X2] (X = Cl-, CN-, N3-, NCS-) and [Ni5(m5-tpda)4(CH3CN)2]-(PF6)2 (tpda2- = the tripyridyldiamido dianion). Inorg. Chem. 1998, 37, 4059-4065. (68) Shieh, S. J.; Chou, C. C.; Lee, G. H.; Wang, C. C.; Peng, S. M. Linear Pentanuclear Complexes Containing a Chain of Metal Atoms: [Co5(m5-tpda)4(NCS)2] and [Ni5(m5-tpda)4(Cl)2]. Angew. Chem. Int. Ed. Engl. 1997, 36, 56-59. (69) Chang, H. C.; Li, J. T.; Wang, C. C.; Lin, T. W.; Lee, H. C.; Lee, G. H.; Peng, S. M. Linear Five-Centred Chromium Multiple Bonds Bridged by Four tpda2- Ligands [tpda2- = tripyridyldiamido dianion] - Synthesis and Structural Studies. Eur. J. Inorg. Chem. 1999, 1243-1251. (70) Yeh, C. Y.; Chiang, Y. L.; Lee, G. H.; Peng, S. M. Unsymmetrical Linear Pentanuclear Nickel String Complexes: [Ni5(tpda)4(H2O)(BF4)](BF4)2 and [Ni5(tpda)4(SO3CF3)2](SO3CF3). Inorg. Chem. 2002, 41, 4096-4098. (71) Yeh, C. Y.; Chou, C. H.; Pan, K. C.; Wang, C. C.; Lee, G. H.; Su, Y. O.; Peng, S. M. Linear Pentacobalt Complexes: Synthesis, Structures, and Physical Properties of Neutral and One-Electron Oxidation Compounds. J. Chem. Soc. Dalton. Trans. 2002, 2670-2677. (72) Chen, Y. H.; Lee, C. C.; Wang, C. C.; Lee, G. H.; Lai, S. Y.; Li, F. Y.; Mou, C. Y.; Peng, S. M. A Linear Metal String [Cr7(m7-teptra)4Cl2] Complex with Delocalized Heptachromium(II) Multiple Bonds (teptraH3 = tetrapyridyltriamine). Chem. Commun. 1999, 1667-1668. (73) Lai, S. Y.; Lin, T. W.; Chen, Y. H.; Wang, C. C.; Lee, G. H.; Yang, M. H.; Leung, M. K.; Peng, S. M. Metal String Complexes: Synthesis and Crystal Structure of [Ni4(m4-phdpda)4] and [Ni7(m7-(teptra)4Cl2] (H2phdpda = N-phenyldipyridyldiamine and H3teptra = tetrapyridyltriamine). J. Am. Chem. Soc. 1999, 121, 250-251. (74) Lai, S. Y.; Wang, C. C.; Chen, Y. H.; Lee, C. C.; Liu, Y. H.; Peng, S. M. Metal String Complexes: Synthesis, Crystal Structures and Magnetic Properties of Heptanuclear Nickel(II) Complexes, [Ni7(m7-teptra)4X2] (teptra equals tetrapyridyltriamido, X = Cl-, NCS-). J. Chin. Chem. Soc. 1999, 46, 477-485. (75) Peng, S. M.; Wang, C. C.; Jang, Y. L.; Chen, Y. H.; Li, F. Y.; Mou, C. Y.; Leung, M. K. One-Dimensional Metal String Complexes. J. Magn. Magn. Mater. 2000, 209, 80-83. (76) Cotton, F. A.; Curtis, N. F.; Johnson, B. F. G.; Mague, J. T.; Wood, J. S.; Harris, C. B.; Robinson, W. R.; Lippard, S. J. Mononuclear + Polynuclear Chemistry of Rhenium (III) - Its Pronounced Homophilicity. Science 1964, 145, 1305-1307. (77) Cotton, F. A.; Curtis, N. F.; Johnson, B. F. G.; Robinson, W. R. Compounds Containing Dirhenium(III) Octahalide Anions. Inorg. Chem. 1965, 4, 326-330. (78) Gattesch.D; Mealli, C.; Sacconi, L. Binuclear Complex of 1.5 Valent Nickel. J. Am. Chem. Soc. 1973, 95, 2736-2738. (79) Sacconi, L.; Mealli, C.; Gattesch.D Synthesis and Characterization of 1,8-Naphthyridine Complexes of 1.5-Valent Nickel. Inorg. Chem. 1974, 13, 1985-1991. (80) Bencini, A.; Berti, E.; Caneschi, A.; Gatteschi, D.; Giannasi, E.; Invernizzi, I. Electronic Structure and Nature of the Ground State of the Mixed-Valence Binuclear Tetra(m-1,8-Naphthyridine-N,N')-bis(halogenonickel) Tetraphenylborate Complexes: Experimental and DFT Characterization. Chem.-Eur. J. 2002, 8, 3660-3670. (81) Shih, K.-N.; Huang, M.-J.; Lu, H.-C.; Fu, M.-D.; Kuo, C.-K.; Huang, G.-C.; Lee, G.-H.; Chen, C.-h.; Peng, S.-M. On the tuning of electric conductance of extended metal atom chains via axial ligands for [Ru3(m3-dpa)4(X)2]0/+ (X = NCS-, CN-). Chem. Commun. 2010, 46, 1338-1340. (82) Li, X. L.; He, J.; Hihath, J.; Xu, B. Q.; Lindsay, S. M.; Tao, N. J. Conductance of Single Alkanedithiols: Conduction Mechanism and Effect of Molecule-Electrode Contacts. J. Am. Chem. Soc. 2006, 128, 2135-2141. (83) Park, Y. S.; Whalley, A. C.; Kamenetska, M.; Steigerwald, M. L.; Hybertsen, M. S.; Nuckolls, C.; Venkataraman, L. Contact Chemistry and Single-Molecule Conductance: A Comparison of Phosphines, Methyl Sulfides, and Amines. J. Am. Chem. Soc. 2007, 129, 15768-15769. (84) Fu, M.-D.; Chen, I.-W. P.; Lu, H.-C.; Kuo, C.-T.; Tseng, W.-H.; Chen, C.-h. Conductance of Alkanediisothiocyanates: Effect of Headgroup-Electrode Contacts. J. Phys. Chem. C 2007, 111, 11450-11455. (85) Ko, C.-H.; Huang, M.-J.; Fu, M.-D.; Chen, C.-h. Superior Contact for Single-Molecule Conductance: Electronic Coupling of Thiolate and Isothiocyanate on Pt, Pd, and Au. J. Am. Chem. Soc. 2010, 132, 756-764. (86) Rohmer, M. M.; Liu, I. P. C.; Lin, J. C.; Chiu, M. J.; Lee, C. H.; Lee, G. H.; Benard, M.; Lopez, X.; Peng, S. M. Structural, Magnetic, and Theoretical Characterization of a Heterometallic Polypyridylamide Complex. Angew. Chem. Int. Ed. 2007, 46, 3533-3536. (87) Liu, I. P. C.; Wang, W. Z.; Peng, S. M. New Generation of Metal String Complexes: Strengthening Metal-Metal Interaction via Naphthyridyl Group Modulated Oligo-a-pyridylamido Ligands. Chem. Commun. 2009, 4323-4331. (88) Xu, G. L.; Ren, T. Axial butadiynyl adducts on a tetrakis(di(m-methoxyphenyl)formamidinato)diruthenium core: First examples of M-M bonded complexes containing sigma-poly-ynyl ligand. Inorg. Chem. 2001, 40, 2925-2927. (89) Ren, T. Diruthenium Sigma-Alkynyl Compounds: A New Class of Conjugated Organometallics. Organometallics 2005, 24, 4854-4870. (90) Stephens.Ta; Wilkinso.G New Ruthenium Carboxylate Complexes. J. Inorg. Nuclear Chem. 1966, 28, 2285-2291. (91) Bennett, M. J.; Caulton, K. G.; Cotton, F. A. Structure of Tetra-N-Butyratodiruthenium Chloride a Compound with a Strong Metal-Metal Bond. Inorg. Chem. 1969, 8, 1-6. (92) Huber, R.; Gonzalez, M. T.; Wu, S.; Langer, M.; Grunder, S.; Horhoiu, V.; Mayor, M.; Bryce, M. R.; Wang, C. S.; Jitchati, R.; Schonenberger, C.; Calame, M. Electrical Conductance of Conjugated Oligorners at the Single Molecule Level. J. Am. Chem. Soc. 2008, 130, 1080-1084. (93) Ishizuka, K.; Suzuki, M.; Fuju, S.; Takayama, Y.; Sato, F.; Fujihira, M. Effect of Molecule-Electrode Contacts on Single-Molecule Conductivity of Mu-Conjugated System Measured by Scanning Tunneling Microscopy under Ultrahigh Vacuum. Jpn. J. Appl. Phys. 2006, 45, 2037-2040. (94) Kim, C. M.; Bechhoefer, J. Conductive Probe Afm Study of Pt-Thiol and Au-Thiol Contacts in Metal-Molecule-Metal Systems. J. Chem. Phys. 2013, 138. (95) Yanson, A. I.; Bollinger, G. R.; van den Brom, H. E.; Agrait, N.; van Ruitenbeek, J. M. Formation and Manipulation of a Metallic Wire of Single Gold Atoms. Nature 1998, 395, 783-785. (96) Martin, C. A.; Ding, D.; Sorensen, J. K.; Bjornholm, T.; van Ruitenbeek, J. M.; van der Zant, H. S. J. Fullerene-Based Anchoring Groups for Molecular Electronics. J. Am. Chem. Soc. 2008, 130, 13198-13199. (97) Hong, W. J.; Manrique, D. Z.; Moreno-Garcia, P.; Gulcur, M.; Mishchenko, A.; Lambert, C. J.; Bryce, M. R.; Wandlowski, T. Single Molecular Conductance of Tolanes: Experimental and Theoretical Study on the Junction Evolution Dependent on the Anchoring Group. J. Am. Chem. Soc. 2012, 134, 2292-2304. (98) Long, D. P.; Lazorcik, J. L.; Mantooth, B. A.; Moore, M. H.; Ratner, M. A.; Troisi, A.; Yao, Y.; Ciszek, J. W.; Tour, J. M.; Shashidhar, R. Effects of Hydration on Molecular Junction Transport. Nat. Mater. 2006, 5, 901-908. (99) Leary, E.; Hobenreich, H.; Higgins, S. J.; van Zalinge, H.; Haiss, W.; Nichols, R. J.; Finch, C. M.; Grace, I.; Lambert, C. J.; McGrath, R.; Smerdon, J. Single-Molecule Solvation-Shell Sensing. Phys. Rev. Lett. 2009, 102, 086801. (100) Fatemi, V.; Kamenetska, M.; Neaton, J. B.; Venkataraman, L. Environmental Control of Single-Molecule Junction Transport. Nano. Lett. 2011, 11, 1988-1992. (101) Nakashima, S.; Takahashi, Y.; Kiguchi, M. Effect of the Environment on the Electrical Conductance of the Single benzene-1,4-diamine Molecule Junction. Beilstein J. Nanotech. 2011, 2, 755-759. (102) Troisi, A.; Ratner, M. A. Modeling the Inelastic Electron Tunneling Spectra of Molecular Wire Junctions. Phys. Rev. B 2005, 72, 033408-033411. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17542 | - |
| dc.description.abstract | 本研究以掃描式穿隧顯微破裂接合點法(STM-bj)測量異核金屬串分子(heteronuclear metal string complexes, HMSCs) [RhRhRhNiNi(tpda)4(NCS)2] (tpda2‒:tripyridylamido dianion)的單分子導電值,此分子的幾何結構是以四個吡啶胺配基呈螺旋狀結構與中心金屬配位形成一維金屬串分子,且軸向配基為異硫氰基(NCS‒)可吸附於金電極。STM-bj為控制STM探針撞擊及遠離基材,重複地進行此過程產生電極‒分子‒電極的接合點(MMM junctions)並紀錄探針遠離時的電流值(稱為I(s) trace)。由I(s) trace的圖形可以發現當探針撞擊基材兩端金原子會產生融合(fuse)並可形成金原子串接合點。此時在1 G0(金原子串的量子導電值,G0 = 77.5 microsiemens)或其倍數位置會呈現階梯平台狀,斷裂後電流急遽下降(sharp drop)並產生原子尺寸狹縫及電極結構,分子即有機率架接至此狹縫並呈現階梯平台狀。隨著探針遠離基材MMM junction會斷裂並再次呈現sharp drop。將所記錄的I(s) traces加以統計可得到分子導電值並計算金原子串及分子斷裂的探針拉升距離即可得到分子在接合點中所拉升的長度(step length)。在實驗過程中分別以甲苯(toluene)液體及1,2,4-三氯苯(TCB)做為溶劑時,皆無法得到明顯的導電峯值。若改以二氯甲烷(DCM)及TCB混合溶劑進行量測,則可得到明顯的導電峯值。DCM與TCB體積比值為50/50、20/80及11/89 (v/v)時,量測的導電峯值分別為2.2× 10^(‒5)、1.3× 10^(‒4)及4.8× 10^(‒4) G0。欲探討金屬原子間作用力對導電值的影響,須先釐清與溶劑相關的現象,於是檢視了銠鎳異核及鎳同核金屬串分子包含三核的Ni3、RhRhNi、NiRhNi及五核的Ni5及RhRhNiNiNi。實驗結果顯示(1)中心金屬的排列若是對稱,異核及同核金屬串分子在不同溶劑比例下量測到的導電峯值類似,step length也類似。(2)中心金屬的排列若是不對稱,在不同溶劑比例下量測到的導電值皆不相同且step length也有所不同。由以上的實驗結果搭配目前既有的文獻中環境因素對導電值影響的研究,推測最有可能的因素為頭基在不同溶劑下存在的型態不同,導致電極與頭基之間的作用程度在不同溶劑比例下有所差異進而影響導電值。 | zh_TW |
| dc.description.abstract | Metal string complexes (MSCs), in which the metal centers are co-linear and stably coordinated by four oligopyridylamido ligands, have been demonstrated a unique category of conductive molecular wires. Bond orders which describe the strength of metal-metal interactions are qualitatively well correlated with the single-molecule conductance of the MSCs. Previous examples are limited to homometallic string complexes in which the metal centers are composed of the same element. Explored in this thesis work are the conductive properties of heterometallic string complexes (HMSCs). Specifically, the sequences of the metal cores are RhRhNi, NiRhNi, RhRhNiNiNi, and RhRhRhNiNi. Also examined are Ni3 and Ni5 MSCs. Methods of compound purification and crystallization are improved. The experimental protocols and data analysis are also modified. The conductance measurements are carried out through electrode-molecule-electrode junctions created by an STM (scanning tunneling microscope) tip which repeatedly impinges into and retracts from the substrate. In this study, the tip-substrate contact is ensured by an external device, while it was not monitored in our earlier work. The conductance histograms are prepared by pooling all acquired conductance traces while, in the past, only those with step-like features were selectively used. The results show that the conductance histograms are featureless and that it is very difficult to determine the conductance values for pentametallic string complexes, even for Ni5 MSC. X-ray crystallographic data reveal that solvent molecules, present in the unit cell by previous purification methods, are absent for the new samples. Accordingly, mixed solvents exhibiting a range of polarity are utilized to improve the solubility of MSCs. The conductance peaks are slightly more pronounced in a more polar environment. The conductance peaks of Ni3, Ni5, and NiRhNi are solvent-independent, while the peak positions of asymmetric RhRhNi, RhRhNiNiNi, and RhRhRhNiNi shift associated with the solvent utilized. According to published researches in the effect of environment on molecular junction, we proposed that solvent molecules will affect the head group and alter gold-sulfur contact. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:19:50Z (GMT). No. of bitstreams: 1 ntu-102-R99223179-1.pdf: 3503609 bytes, checksum: df95045325fb4c13158482730264faa9 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 總目錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 單分子導電值測量方法 2 1.2.1 掃描式探針顯微術於分子電子學的文獻報導 2 1.2.1.1 掃描式穿隧顯微術 2 1.2.1.2 導電原子力顯微術 3 1.2.1.3 I(s)及I(t)測量技術 6 1.2.1.4 觸覺感應回饋式原子力顯微術 7 1.2.2 破裂接合點法於分子電子學的文獻報導 8 1.2.2.1 機械式控制破裂接合點法 8 1.2.2.2 掃描式穿隧顯微破裂接合點法 10 1.2.2.3 導電原子力顯微破裂接合點法 12 1.3 金屬串分子簡介 14 1.3.1 一維直線型金屬串分子結構 14 1.3.2 金屬‒金屬鍵結理論 16 1.3.3 金屬串分子電性之研究 17 1.4 本論文研究動機 24 第二章 實驗部分 25 2.1 實驗藥品、耗材及儀器 25 2.1.1 實驗藥品 25 2.1.2 實驗耗材 25 2.1.3 實驗儀器 26 2.2 實驗流程 27 2.2.1 金電極製備 27 2.2.2 掃描式穿隧顯微破裂接合點法 28 第三章 結果與討論 31 3.1 [RhRhRhNiNi(tpda)4(NCS)2]導電值的量測結果 31 3.1.1 [RhRhRhNiNi(tpda)4(NCS)2]在不同溶劑比例下的導電值量測 36 3.1.2 其餘的金屬串分子在不同溶劑比例下的導電值量測 40 3.2 環境因素對金屬串分子導電值量測的討論 41 3.2.1 環境因素對分子接合點影響的文獻報導 41 3.2.2 金屬串分子的量測結果討論 45 第四章 總結 47 第五章 參考文獻 48 附錄 57 | |
| dc.language.iso | zh-TW | |
| dc.title | 銠鎳異核金屬串於二氯甲烷及三氯苯混合溶劑之導電值研究 | zh_TW |
| dc.title | Single-Molecule Conductance of Rh and Ni Heterometallic String Complexes in Mixed Solvents of Dichloromethane and 1,2,4-Trichlorobenzene | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 彭旭明(Shie-Ming Peng),金必耀(Bih-Yaw Jin) | |
| dc.subject.keyword | 分子導電值,銠鎳異核金屬串,掃描式穿隧顯微破裂接合點法, | zh_TW |
| dc.subject.keyword | molecular conductance,Rh an Ni heteometallic metal string complexes,STM-bj, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-07-25 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
