請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17537完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳水田 | |
| dc.contributor.author | Wei-Chung Tsai | en |
| dc.contributor.author | 蔡維中 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:19:28Z | - |
| dc.date.copyright | 2013-08-07 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-25 | |
| dc.identifier.citation | 8. References
1 Hsu, C. S. & Kao, J. H. Non-alcoholic fatty liver disease: an emerging liver disease in Taiwan. Journal of the Formosan Medical Association = Taiwan yi zhi 111, 527-535, doi:10.1016/j.jfma.2012.07.002 (2012). 2 Moore, J. B. Non-alcoholic fatty liver disease: the hepatic consequence of obesity and the metabolic syndrome. The Proceedings of the Nutrition Society 69, 211-220, doi:10.1017/S0029665110000030 (2010). 3 Cohen, J. C., Horton, J. D. & Hobbs, H. H. Human fatty liver disease: old questions and new insights. Science 332, 1519-1523, doi:10.1126/science.1204265 (2011). 4 Tessari, P., Coracina, A., Cosma, A. & Tiengo, A. Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutrition, metabolism, and cardiovascular diseases : NMCD 19, 291-302, doi:10.1016/j.numecd.2008.12.015 (2009). 5 Enjoji, M., Yasutake, K., Kohjima, M. & Nakamuta, M. Nutrition and nonalcoholic Fatty liver disease: the significance of cholesterol. International journal of hepatology 2012, 925807, doi:10.1155/2012/925807 (2012). 6 Nakamuta, M. et al. Evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. International journal of molecular medicine 16, 631-635 (2005). 7 Kohjima, M. et al. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. International journal of molecular medicine 20, 351-358 (2007). 8 Xie, Z. et al. Analysis of transcriptome and metabolome profiles alterations in fatty liver induced by high-fat diet in rat. Metabolism: clinical and experimental 59, 554-560, doi:10.1016/j.metabol.2009.08.022 (2010). 9 Imanshahidi, M. & Hosseinzadeh, H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytotherapy research : PTR 22, 999-1012, doi:10.1002/ptr.2399 (2008). 10 Brusq, J. M. et al. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. Journal of lipid research 47, 1281-1288, doi:10.1194/jlr.M600020-JLR200 (2006). 11 Hardie, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature reviews. Molecular cell biology 8, 774-785, doi:10.1038/nrm2249 (2007). 12 Kong, W. et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nature medicine 10, 1344-1351, doi:10.1038/nm1135 (2004). 13 Choi, B. et al. Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte. Experimental and molecular medicine 38, 599 (2006). 14 Hu, Y. & Davies, G. E. Berberine inhibits adipogenesis in high-fat diet-induced obesity mice. Fitoterapia 81, 358-366 (2010). 15 Zhou, J. & Zhou, S. Berberine regulates peroxisome proliferator-activated receptors and positive transcription elongation factor b expression in diabetic adipocytes. European journal of pharmacology 649, 390-397 (2010). 16 Li, G.-S. et al. Berberine-improved visceral white adipose tissue insulin resistance associated with altered sterol regulatory element-binding proteins, liver x receptors, and peroxisome proliferator-activated receptors transcriptional programs in diabetic hamsters. Biological and Pharmaceutical Bulletin 34, 644-654 (2011). 17 Lee, Y. S. et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55, 2256-2264 (2006). 18 Hu, Y. & Davies, G. E. Berberine inhibits adipogenesis in high-fat diet-induced obesity mice. Fitoterapia 81, 358-366, doi:10.1016/j.fitote.2009.10.010 (2010). 19 Chang, X. et al. Berberine reduces methylation of the MTTP promoter and alleviates fatty liver induced by a high-fat diet in rats. Journal of lipid research 51, 2504-2515 (2010). 20 Zhou, J. Y. et al. Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats. Biological and Pharmaceutical Bulletin 31, 1169-1176 (2008). 21 Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 (2004). 22 Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. The EMBO journal 23, 4051-4060, doi:10.1038/sj.emboj.7600385 (2004). 23 Borchert, G. M., Lanier, W. & Davidson, B. L. RNA polymerase III transcribes human microRNAs. Nature structural & molecular biology 13, 1097-1101, doi:10.1038/nsmb1167 (2006). 24 Chen, K. & Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nature reviews. Genetics 8, 93-103, doi:10.1038/nrg1990 (2007). 25 Treiber, T., Treiber, N. & Meister, G. Regulation of microRNA biogenesis and function. Thrombosis and haemostasis 107, 605-610, doi:10.1160/TH11-12-0836 (2012). 26 Okamura, K. et al. The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution. Nature structural & molecular biology 15, 354-363, doi:10.1038/nsmb.1409 (2008). 27 Guo, L. & Lu, Z. The fate of miRNA* strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule? PloS one 5, e11387, doi:10.1371/journal.pone.0011387 (2010). 28 Yang, J. S. et al. Widespread regulatory activity of vertebrate microRNA* species. Rna 17, 312-326, doi:10.1261/rna.2537911 (2011). 29 Kim, S. et al. MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). The Journal of biological chemistry 283, 18158-18166, doi:10.1074/jbc.M800186200 (2008). 30 Lee, D. Y. et al. A 3'-untranslated region (3'UTR) induces organ adhesion by regulating miR-199a* functions. PloS one 4, e4527, doi:10.1371/journal.pone.0004527 (2009). 31 Kuchenbauer, F. et al. Comprehensive analysis of mammalian miRNA* species and their role in myeloid cells. Blood 118, 3350-3358, doi:10.1182/blood-2010-10-312454 (2011). 32 van Rooij, E. The art of microRNA research. Circulation research 108, 219-234, doi:10.1161/CIRCRESAHA.110.227496 (2011). 33 Pasquinelli, A. E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nature reviews. Genetics 13, 271-282, doi:10.1038/nrg3162 (2012). 34 Jackson, A. & Linsley, P. S. The therapeutic potential of microRNA modulation. Discovery medicine 9, 311-318 (2010). 35 Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nature reviews. Genetics 11, 597-610, doi:10.1038/nrg2843 (2010). 36 Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233, doi:10.1016/j.cell.2009.01.002 (2009). 37 Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124-1128, doi:10.1038/nature07299 (2008). 38 Shin, C. et al. Expanding the microRNA targeting code: functional sites with centered pairing. Molecular cell 38, 789-802, doi:10.1016/j.molcel.2010.06.005 (2010). 39 Mao, J., Chirala, S. S. & Wakil, S. J. Human acetyl-CoA carboxylase 1 gene: presence of three promoters and heterogeneity at the 5'-untranslated mRNA region. Proceedings of the National Academy of Sciences of the United States of America 100, 7515-7520, doi:10.1073/pnas.1332670100 (2003). 40 Lee, J. J. et al. Cloning of human acetyl-CoA carboxylase beta promoter and its regulation by muscle regulatory factors. The Journal of biological chemistry 276, 2576-2585, doi:10.1074/jbc.M007002200 (2001). 41 Zhu, M. et al. Up-regulation of microRNAs, miR21 and miR23a in human liver cancer cells treated with Coptidis rhizoma aqueous extract. Experimental and therapeutic medicine 2, 27-32, doi:10.3892/etm.2010.164 (2011). 42 Hu, H. Y. et al. Set9, NF-kappaB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells. Acta pharmacologica Sinica 34, 157-166, doi:10.1038/aps.2012.161 (2013). 43 Liu, L. Z. et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression. PloS one 6, e19139, doi:10.1371/journal.pone.0019139 (2011). 44 Liu, Z. L., Wang, H., Liu, J. & Wang, Z. X. MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN. Molecular and cellular biochemistry 372, 35-45, doi:10.1007/s11010-012-1443-3 (2013). 45 Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744, doi:10.1038/nature03868 (2005). 46 Benoit, M. P. et al. The RNA-binding region of human TRBP interacts with microRNA precursors through two independent domains. Nucleic acids research 41, 4241-4252, doi:10.1093/nar/gkt086 (2013). 47 Savage, D. B. et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. The Journal of clinical investigation 116, 817-824, doi:10.1172/JCI27300 (2006). 48 Keil, S. et al. Identification and synthesis of novel inhibitors of acetyl-CoA carboxylase with in vitro and in vivo efficacy on fat oxidation. Journal of medicinal chemistry 53, 8679-8687, doi:10.1021/jm101179e (2010). 49 Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annual review of biochemistry 79, 351-379, doi:10.1146/annurev-biochem-060308-103103 (2010). 50 Flowers, E., Froelicher, E. S. & Aouizerat, B. E. MicroRNA regulation of lipid metabolism. Metabolism: clinical and experimental 62, 12-20, doi:10.1016/j.metabol.2012.04.009 (2013). 51 Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896-899, doi:10.1038/nature06783 (2008). 52 Ceccarelli, S., Panera, N., Gnani, D. & Nobili, V. Dual Role of MicroRNAs in NAFLD. International journal of molecular sciences 14, 8437-8455, doi:10.3390/ijms14048437 (2013). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17537 | - |
| dc.description.abstract | 全球人類在日漸過重以及肥胖的趨勢之下,非酒精性脂肪肝已經成為了普遍的肝臟疾病之一。從廣泛的定義來說,當肝臟細胞中以三酸甘油脂為主要成份組成的脂肪累積重量超出了細胞總重量的百分之五時,就稱為非酒精性脂肪肝。非酒精性脂肪肝的疾病演變從初期細胞內病態性的脂肪與油滴累積,造成不同程度的發炎導致肝臟發炎與纖維化,在臨床病理學上肝纖維化會進一步惡化成肝硬化、肝癌、肝機能受損且伴隨著極高的死亡風險。然而,由於目前並無標準藥物亦沒有專一性的治療方法可以逆轉脂肪肝的發生。現今揭開肝臟中脂肪堆積的過程和預防脂肪肝的產生,已成為科學家的研究的課題。
小檗鹼是一種可以從諸多藥用植物如黃連中萃取出的異喹啉類生物鹼,具有廣泛的藥用效果:抗癌、抗菌、抗發炎與保肝。自從指出小檗鹼為新的降膽固醇藥物,研究小檗鹼與膽固醇、脂肪代謝是有趣且重要議題。更有研究相繼指出小檗鹼具有降血糖、降血脂與降低密度膽固醇的功能,甚者在動物實驗中的證據也說明了小檗鹼可以降低肝臟中的脂肪含量。 | zh_TW |
| dc.description.abstract | Nonalchoholic fatty liver disease (NAFLD) is rapidly becoming one of the most common liver disease because of growing prevalence of overweight and obesity. NAFLD is defined by fat accumulation, mainly triglycerides, in hepatocytes exceeding 5% of its weight. The term NAFLD includes a wide spectrum of liver abnormalities from simple steatosis, with intrahepatic lipid accumulation and growth of lipid droplets, to nonalcoholic steatohepatitis (NASH), with different degrees of inflammation and fibrosis. As the clinical pathologic spectrum, NASH may progress from steatohepatitis, to advanced cirrhosis, hepatocellular carcinoma, hepatic decompensation, and have increased all-cause mortality. Because of there are no standard drug treatment or specific therapy to reverse fatty liver disease. Nowadays, researchers are ongoing to uncover what processes may trigger fat build-up in the liver and how to prevent and treat the fatty liver disease.
Berberine (BBR), an isoquinoline alkaloid isolated from many medicinal herbs such as Coptidis Rhizoma, has a wide range of pharmacological effects. Previous studies have found that pharmacological effects including anti-cancer, anti-microbial, anti-inflammatory, and hepatoprotective effects. Since BBR has been reported as a novel cholesterol lowing drug, recent studies have focused on cholesterol and lipid metabolism related pharmacological effects of berberine. Some reports have shown that berberine has hypoglycemic, hypolipidemic and LDL-lowing effects. Increasingly evidences prove that berberine reduces the liver fat content in vivo, however, the detailed molecular mechanisms have not been systemic elucidated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:19:28Z (GMT). No. of bitstreams: 1 ntu-102-R00b46021-1.pdf: 2311987 bytes, checksum: 004c1b6b185c65ec271040eda2f37fca (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………… i
誌謝……………………………………………………………………………… ii中文摘要………………………………………………………………………… iii英文摘要…………………………………………………………………………. v 1. Introduction 3 1.1. Fatty Liver Disease 3 1.2 Lipid Metabolism and Fatty Liver Disease 4 1.3 Berberine And Lipid Metabolism 5 1.4 MicroRNAduplex : miRNA/miRNA* 6 1.5 MiRNA : function and target recognition 7 1.6 Specific Aims 8 2. Material and Methods 9 3. Results 16 3.1 Berberine induced miRNA reduces cellular lipid droplets in HepG2 cell 16 3.2 MiRNA reduces the lipid droplets in high lipid content HepG2 cells 17 3.3 MiRNA regulates lipid metabolic genes in HepG2 17 3.4 BBR regulates ACC1 18 3.4 BBR regulates ACC2 19 3.5 ACC1 20 3.6 microRNA and ACC1 21 3.7 microRNA and ACC2 22 3.8 MiRNA reduces the cellular malonyl-CoA concentration 22 4. Discussion 24 5. Conclusion 29 6. Figures 30 7. Table 56 8. References 57 | |
| dc.language.iso | en | |
| dc.title | 探討小檗鹼調控肝臟脂肪代謝機制 | zh_TW |
| dc.title | The study of berberibe and hepatic lipid metabolism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許金川,施嘉和 | |
| dc.subject.keyword | 小檗鹼,脂肪代謝, | zh_TW |
| dc.subject.keyword | berberine,lipid metabolism, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-07-25 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
