請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17526
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李伯訓 | |
dc.contributor.author | Wan-Ling Hsieh | en |
dc.contributor.author | 謝宛玲 | zh_TW |
dc.date.accessioned | 2021-06-08T00:18:35Z | - |
dc.date.copyright | 2013-09-24 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-26 | |
dc.identifier.citation | 1. Baker, P.J., The role of immune responses in bone loss during periodontal disease. Microbes Infect, 2000. 2(10): p. 1181-92.
2. Koike, H., K. Uzawa, W.J. Grzesik, N. Seki, Y. Endo, A. Kasamatsu, M. Yamauchi, and H. Tanzawa, GLUT1 is highly expressed in cementoblasts but not in osteoblasts. Connect Tissue Res, 2005. 46(3): p. 117-24. 3. Bosshardt, D.D., S. Zalzal, M.D. McKee, and A. Nanci, Developmental appearance and distribution of bone sialoprotein and osteopontin in human and rat cementum. Anat Rec, 1998. 250(1): p. 13-33. 4. Arzate, H., S.W. Olson, R.C. Page, A.M. Gown, and A.S. Narayanan, Production of a monoclonal antibody to an attachment protein derived from human cementum. FASEB J, 1992. 6(11): p. 2990-5. 5. Ivanovski, S., H. Li, H.R. Haase, and P.M. Bartold, Expression of bone associated macromolecules by gingival and periodontal ligament fibroblasts. J Periodontal Res, 2001. 36(3): p. 131-41. 6. Christner, P., P. Robinson, and C.C. Clark, A preliminary characterization of human cementum collagen. Calcif Tissue Res, 1977. 23(2): p. 147-50. 7. Birkedal-Hansen, H., W.T. Butler, and R.E. Taylor, Proteins of the periodontium. Characterization of the insoluble collagens of bovine dental cementum. Calcif Tissue Res, 1977. 23(1): p. 39-44. 8. Saygin, N.E., W.V. Giannobile, and M.J. Somerman, Molecular and cell biology of cementum. Periodontology 2000, 2000. 24: p. 73-98. 9. Solheim, E., Growth factors in bone. Int Orthop, 1998. 22(6): p. 410-6. 10. Saygin, N.E., W.V. Giannobile, and M.J. Somerman, Molecular and cell biology of cementum. Periodontol 2000, 2000. 24: p. 73-98. 11. D'Errico, J.A., R.L. MacNeil, T. Takata, J. Berry, C. Strayhorn, and M.J. Somerman, Expression of bone associated markers by tooth root lining cells, in situ and in vitro. Bone, 1997. 20(2): p. 117-26. 12. Cochran, D.L. and J.M. Wozney, Biological mediators for periodontal regeneration. Periodontol 2000, 1999. 19: p. 40-58. 13. Lekic, P. and C.A. McCulloch, Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. Anat Rec, 1996. 245(2): p. 327-41. 14. McCulloch, C.A., P. Lekic, and M.D. McKee, Role of physical forces in regulating the form and function of the periodontal ligament. Periodontol 2000, 2000. 24: p. 56-72. 15. Mariotti, A., The extracellular matrix of the periodontium: dynamic and interactive tissues. Periodontol 2000, 1993. 3: p. 39-63. 16. Cho, M.I. and P.R. Garant, Development and general structure of the periodontium. Periodontology 2000, 2000. 24: p. 9-27. 17. Pihlstrom, B.L., B.S. Michalowicz, and N.W. Johnson, Periodontal diseases. Vol. 366. 2005: Lancet. 18. Haffajee, A.D. and S.S. Socransky, Attachment level changes in destructive periodontal diseases. J Clin Periodontol, 1986. 13(5): p. 461-75. 19. Webber, W.L., F. Lago, C. Thanos, and E. Mathiowitz, Characterization of soluble, salt-loaded, degradable PLGA films and their release of tetracycline. Journal of Biomedical Materials Research, 1998. 41(1): p. 18-29. 20. Characterization of soluble, s.-l., R.K. degradable PLGA films and their release of tetracyclineAgarwal, D.H. Robinson, G.I. Maze, and R.A. Reinhardt, Development and Characterization of Tetracycline-Poly(Lactide Glycolide) Films for the Treatment of Periodontitis. Journal of Controlled Release, 1993. 23(2): p. 137-146. 21. Ignatius, A.A. and L.E. Claes, In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials, 1996. 17(8): p. 831-9. 22. Urist, M.R., Bone: formation by autoinduction. Science, 1965. 150(3698): p. 893-9. 23. Gottlow, J., S. Nyman, J. Lindhe, T. Karring, and J. Wennstrom, New attachment formation in the human periodontium by guided tissue regeneration. Case reports. J Clin Periodontol, 1986. 13(6): p. 604-16. 24. Nyman, S., J. Lindhe, T. Karring, and H. Rylander, New attachment following surgical treatment of human periodontal disease. J Clin Periodontol, 1982. 9(4): p. 290-6. 25. Wang, H.L., M. Miyauchi, and T. Takata, Initial attachment of osteoblasts to various guided bone regeneration membranes: an in vitro study. Journal of Periodontal Research, 2002. 37(5): p. 340-344. 26. Crigger, M., G.C. Bogle, S. Garrett, and B.G. Gantes, Repair following treatment of circumferential periodontal defects in dogs with collagen and expanded polytetrafluoroethylene barrier membranes. J Periodontol, 1996. 67(4): p. 403-13. 27. Milella, E., G. Barra, P.A. Ramires, G. Leo, P. Aversa, and A. Romito, Poly(L-lactide)acid/alginate composite membranes for guided tissue regeneration. J Biomed Mater Res, 2001. 57(2): p. 248-57. 28. Brookes, S.J., C. Robinson, J. Kirkham, and W.A. Bonass, Biochemistry and molecular biology of amelogenin proteins of developing dental enamel. Arch Oral Biol, 1995. 40(1): p. 1-14. 29. Hammarstrom, L., Enamel matrix, cementum development and regeneration. J Clin Periodontol, 1997. 24(9 Pt 2): p. 658-68. 30. Bajpai, A.K., S.K. Shukla, S. Bhanu, and S. Kankane, Responsive polymers in controlled drug delivery. Progress in Polymer Science, 2008. 33(11): p. 1088-1118. 31. Tabata, I.I., The importance of drug delivery systems in tissue engineering. Pharm Sci Technolo Today, 2000. 3(3): p. 80-89. 32. Limpongsa, E. and K. Umprayn, Preparation and evaluation of diltiazem hydrochloride diffusion-controlled transdermal delivery system. AAPS PharmSciTech, 2008. 9(2): p. 464-70. 33. Brohede, U., S. Valizadeh, M. Stromme, and G. Frenning, Percolative drug diffusion from cylindrical matrix systems with unsealed boundaries. J Pharm Sci, 2007. 96(11): p. 3087-99. 34. Singh, S.K. and L.T. Fan, A generalized model for swelling-controlled release systems. Biotechnol Prog, 1986. 2(3): p. 145-56. 35. Kim, C.J., A Linear Drug-Release from Erosion-Controlled Drug/Resin Complex-Systems. Journal of Applied Polymer Science, 1994. 54(8): p. 1179-1183. 36. Engineer, C., J. Parikh, and A. Raval, Effect of copolymer ratio on hydrolytic degradation of poly(lactide-co-glycolide) from drug eluting coronary stents. Chemical Engineering Research & Design, 2011. 89(3A): p. 328-334. 37. Anderson, J.M. and M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews, 1997. 28(1): p. 5-24. 38. Athanasiou, K.A., G.G. Niederauer, and C.M. Agrawal, Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid polyglycolic acid copolymers. Biomaterials, 1996. 17(2): p. 93-102. 39. Cutright, D.E., J.D. Beasley, and B. Perez, Histologic Comparison of Polylactic and Polyglycolic Acid Sutures. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 1971. 32(1): p. 165-173. 40. Kang, M.H., Y.W. Cho, and K. Park, PLGA-PEG block copolymers for drug formulations. Drug Delivery Technology, 2003. 3. 41. Gopferich, A., Mechanisms of polymer degradation and erosion. Biomaterials, 1996. 17(2): p. 103-114. 42. Zweers, M.L., G.H. Engbers, D.W. Grijpma, and J. Feijen, In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide). J Control Release, 2004. 100(3): p. 347-56. 43. Joshi, A. and K.J. Himmelstein, Dynamics of controlled release from bioerodible matrices. Journal of Controlled Release, 1991. 15: p. 95-104. 44. Alexis, F., Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polymer International, 2005. 54(1): p. 36-46. 45. Lu, L., Q.W. Zhang, D. Wootton, R. Chiou, D.C. Li, B.H. Lu, P. Lelkes, and J. Zhou, Biocompatibility and biodegradation studies of PCL/beta-TCP bone tissue scaffold fabricated by structural porogen method. Journal of Materials Science-Materials in Medicine, 2012. 23(9): p. 2217-2226. 46. Park, T.G., Degradation of Poly(D,L-Lactic Acid) Microspheres - Effect of Molecular-Weight. Journal of Controlled Release, 1994. 30(2): p. 161-173. 47. Vert, M., S. Li, and H. Garreau, More About the Degradation of La/Ga-Derived Matrices in Aqueous-Media. Journal of Controlled Release, 1991. 16(1-2): p. 15-26. 48. Dunne, M., I. Corrigan, and Z. Ramtoola, Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials, 2000. 21(16): p. 1659-68. 49. I, G., G. H, and L.S.a.V. M, Hydrolytic degradation of devices based on poly(DLlactic acid) size dependence. Biomaterials, 1995. 16: p. 305-311. 50. Fu, K., D.W. Pack, A.M. Klibanov, and R. Langer, Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharmaceutical Research, 2000. 17(1): p. 100-106. 51. Cohen, S., T. Yoshioka, M. Lucarelli, L.H. Hwang, and R. Langer, Controlled Delivery Systems for Proteins Based on Poly(Lactic Glycolic Acid) Microspheres. Pharmaceutical Research, 1991. 8(6): p. 713-720. 52. Siepmann, J., N. Faisant, J. Akiki, J. Richard, and J.P. Benoit, Effect of the size of biodegradable microparticles on drug release: experiment and theory. Journal of Controlled Release, 2004. 96(1): p. 123-134. 53. Brunner, A., K. Mader, and A. Gopferich, pH and osmotic pressure inside biodegradable microspheres during erosion. Pharm Res, 1999. 16(6): p. 847-53. 54. Bergsma, J.E., W.C. Debruijn, F.R. Rozema, R.R.M. Bos, and G. Boering, Late Degradation Tissue-Response to Poly(L-Lactide) Bone Plates and Screws. Biomaterials, 1995. 16(1): p. 25-31. 55. Taylor, M.S., A.U. Daniels, K.P. Andriano, and J. Heller, Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J Appl Biomater, 1994. 5(2): p. 151-7. 56. Uchida, T., A. Yagi, Y. Oda, Y. Nakada, and S. Goto, Instability of bovine insulin in poly(lactide-co-glycolide) (PLGA) microspheres. Chemical & Pharmaceutical Bulletin, 1996. 44(1): p. 235-236. 57. Zhu, G., S.R. Mallery, and S.P. Schwendeman, Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide). Nat Biotechnol, 2000. 18(1): p. 52-7. 58. Agrawal, C.M. and K.A. Athanasiou, Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res, 1997. 38(2): p. 105-14. 59. Shenderova, A., T.G. Burke, and S.P. Schwendeman, The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins. Pharm Res, 1999. 16(2): p. 241-8. 60. Zhu, G. and S.P. Schwendeman, Stabilization of proteins encapsulated in cylindrical poly(lactide-co-glycolide) implants: mechanism of stabilization by basic additives. Pharm Res, 2000. 17(3): p. 351-7. 61. Desai, M.P., V. Labhasetwar, E. Walter, R.J. Levy, and G.L. Amidon, The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res, 1997. 14(11): p. 1568-73. 62. Prabha, S., W.Z. Zhou, J. Panyam, and V. Labhasetwar, Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm, 2002. 244(1-2): p. 105-15. 63. Khor, E. and L.Y. Lim, Implantable applications of chitin and chitosan. Biomaterials, 2003. 24(13): p. 2339-2349. 64. Yuan, Y.L., B.M. Chesnutt, W.O. Haggard, and J.D. Bumgardner, Deacetylation of Chitosan: Material Characterization and in vitro Evaluation via Albumin Adsorption and Pre-Osteoblastic Cell Cultures. Materials, 2011. 4(8): p. 1399-1416. 65. Hejazi, R. and M. Amiji, Chitosan-based gastrointestinal delivery systems. J Control Release, 2003. 89(2): p. 151-65. 66. Nakano, M., Places of emulsions in drug delivery. Adv Drug Deliv Rev, 2000. 45(1): p. 1-4. 67. Orive, G., E. Anitua, J.L. Pedraz, and D.F. Emerich, Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci, 2009. 10(9): p. 682-92. 68. Arshady, R., Microspheres and Microcapsules, a Survey of Manufacturing Techniques .2. Coacervation. Polymer Engineering and Science, 1990. 30(15): p. 905-914. 69. Tamber, H., P. Johansen, H.P. Merkle, and B. Gander, Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Deliv Rev, 2005. 57(3): p. 357-76. 70. McGinity, J.W. and P.B. O'Donnell, Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev, 1997. 28(1): p. 25-42. 71. L.L., S., Emulsions, Foams, and Suspensions : Fundamentals and Applications. 2005: WILEY-VCH. 72. Tamber, H., P. Johansen, H.P. Merkle, and B. Gander, Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Advanced Drug Delivery Reviews, 2005. 57(3): p. 357-376. 73. Sah, H.K., R. Toddywala, and Y.W. Chien, Biodegradable microcapsules prepared by a w/o/w technique: effects of shear force to make a primary w/o emulsion on their morphology and protein release. J Microencapsul, 1995. 12(1): p. 59-69. 74. Bilati, U., E. Allemann, and E. Doelker, Sonication parameters for the preparation of biodegradable nanocapsules of controlled size by the double emulsion method. Pharm Dev Technol, 2003. 8(1): p. 1-9. 75. Nihant, N., C. Schugens, C. Grandfils, R. Jerome, and P. Teyssie, Polylactide Microparticles Prepared by Double Emulsion/Evaporation Technique .1. Effect of Primary Emulsion Stability. Pharmaceutical Research, 1994. 11(10): p. 1479-1484. 76. Yan, C.H., J.H. Resau, J. Hewetson, M. West, W.L. Rill, and M. Kende, Characterization and Morphological Analysis of Protein-Loaded Poly(Lactide-Co-Glycolide) Microparticles Prepared by Water-in Oil-in-Water Emulsion Technique. Journal of Controlled Release, 1994. 32(3): p. 231-241. 77. Lamprecht, A., N. Ubrich, M.H. Perez, C.M. Lehr, M. Hoffman, and P. Maincent, Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. International Journal of Pharmaceutics, 2000. 196(2): p. 177-182. 78. Rizkalla, N., C. Range, F.X. Lacasse, and P. Hildgen, Effect of various formulation parameters on the properties of polymeric nanoparticles prepared by multiple emulsion method. Journal of Microencapsulation, 2006. 23(1): p. 39-57. 79. Scholes, P.D., A.G.A. Coombes, L. Illum, S.S. Davis, M. Vert, and M.C. Davies, The Preparation of Sub-200 Nm Poly(Lactide-Co-Glycolide) Microspheres for Site-Specific Drug Delivery. Journal of Controlled Release, 1993. 25(1-2): p. 145-153. 80. Zambaux, M.F., F. Bonneaux, R. Gref, P. Maincent, E. Dellacherie, M.J. Alonso, P. Labrude, and C. Vigneron, Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. Journal of Controlled Release, 1998. 50(1-3): p. 31-40. 81. Prabha, S. and V. Labhasetwar, Critical determinants in PLGA/PLA nanoparticle-mediated gene expression. Pharm Res, 2004. 21(2): p. 354-64. 82. Sahoo, S.K., J. Panyam, S. Prabha, and V. Labhasetwar, Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. Journal of Controlled Release, 2002. 82(1): p. 105-114. 83. Bilati, U., E. Allemann, and E. Doelker, Poly(D,L-lactide-co-glycolide) protein-loaded nanoparticles prepared by the double emulsion method-processing and formulation issues for enhanced entrapment efficiency. Journal of Microencapsulation, 2005. 22(2): p. 205-214. 84. Chung, T.W., Y.Y. Huang, Y.L. Tsai, and Y.Z. Liu, Effects of solvent evaporation rate on the properties of protein-loaded PLLA and PDLLA microspheres fabricated by emulsion-solvent evaporation process. Journal of Microencapsulation, 2002. 19(4): p. 463-471. 85. Weinberg, M.A. and M. Bral, Tetracycline and its analogues: a therapeutic paradigm in periodontal diseases. Crit Rev Oral Biol Med, 1998. 9(3): p. 322-32. 86. Rifkin, B.R., A.T. Vernillo, and L.M. Golub, Blocking periodontal disease progression by inhibiting tissue-destructive enzymes: a potential therapeutic role for tetracyclines and their chemically-modified analogs. J Periodontol, 1993. 64(8 Suppl): p. 819-27. 87. Golub, L.M., H.M. Lee, M.E. Ryan, W.V. Giannobile, J. Payne, and T. Sorsa, Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res, 1998. 12(2): p. 12-26. 88. Blocking periodontal disease progression by inhibiting tissue-destructive enzymesGolub, L.M., N.S. Ramamurthy, T.F. McNamara, R.A. Greenwald, and B.R. Rifkin, Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med, 1991. 2(3): p. 297-321. 89. Goodson, J.M., Antimicrobial strategies for treatment of periodontal diseases. Periodontol 2000, 1994. 5: p. 142-68. 90. Goodson, J.M., A. Haffajee, and S.S. Socransky, Periodontal therapy by local delivery of tetracycline. J Clin Periodontol, 1979. 6(2): p. 83-92. 91. Goodson, J.M., D. Holborow, R.L. Dunn, P. Hogan, and S. Dunham, Monolithic tetracycline-containing fibers for controlled delivery to periodontal pockets. J Periodontol, 1983. 54(10): p. 575-9. 92. Friedman, M. and G. Golomb, New sustained release dosage form of chlorhexidine for dental use. I. Development and kinetics of release. J Periodontal Res, 1982. 17(3): p. 323-8. 93. Noguchi, T., K. Izumizawa, M. Fukuda, S. Kitamura, Y. Suzuki, and H. Ikura, New method for local drug delivery using resorbable base material in periodontal therapy. Bull Tokyo Med Dent Univ, 1984. 31(3): p. 145-53. 94. Minabe, M., K. Takeuchi, H. Tsujigami, S. Sato, T. Hori, T. Umemoto, K. Kamoi, Y. Numabe, H. Hayashi, K. Ikeda, and et al., [Application of local drug delivery system to periodontal therapy. 4. Comparison of the therapeutic effects of administration of a TC film or root debridement on human periodontal disease]. Nihon Shishubyo Gakkai Kaishi, 1989. 31(1): p. 266-77. 95. Golub, L.M., N.S. Ramamurthy, T.F. McNamara, R.A. Greenwald, and B.R. Rifkin, Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med, 1991. 2(3): p. 297-321. 96. Govender, S., D. Lutchman, V. Pillay, D.J. Chetty, and T. Govender, Enhancing drug incorporation into tetracycline-loaded chitosan microspheres for periodontal therapy. Journal of Microencapsulation, 2006. 23(7): p. 750-761. 97. Whang, K.M., E. Grageda, A. Khan, J. McDonald, M. Lawton, and N. Satsangi, A novel osteotropic biomaterial OG-PLG: In vitro efficacy. Journal of Biomedical Materials Research Part A, 2005. 74A(2): p. 247-253. 98. Mundy, G., R. Garrett, S. Harris, J. Chan, D. Chen, G. Rossini, B. Boyce, M. Zhao, and G. Gutierrez, Stimulation of bone formation in vitro and in rodents by statins. Science, 1999. 286(5446): p. 1946-1949. 99. Wang, P.S., D.H. Solomon, H. Mogun, and J. Avorn, HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients. JAMA, 2000. 283(24): p. 3211-6. 100. San Miguel, S.M., M. Goseki-Sone, E. Sugiyama, H. Watanabe, M. Yanagishita, and I. Ishikawa, The effects of retinoic acid on alkaline phosphatase activity and tissue-non-specific alkaline phosphatase gene expression in human periodontal ligament cells and gingival fibroblasts. Journal of Periodontal Research, 1998. 33(7): p. 428-433. 101. Meier, C.R., R.G. Schlienger, M.E. Kraenzlin, B. Schlegel, and H. Jick, HMG-CoA reductase inhibitors and the risk of fractures. JAMA, 2000. 283(24): p. 3205-10. 102. Maeda, T., T. Kawane, and N. Horiuchi, Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology, 2003. 144(2): p. 681-92. 103. Cummings, S.R. and D.C. Bauer, Do statins prevent both cardiovascular disease and fracture? JAMA, 2000. 283(24): p. 3255-7. 104. Halberstadt, C., P. Anderson, R. Bartel, R. Cohen, and G. Naughton, Physiological cultures skin substitutes for wound healing. Mater Res Soc Symp Proc, 1992. 252: p. 323-330. 105. Suresh, G., K. Manjunath, V. Venkateswarlu, and V. Satyanarayana, Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles. Aaps Pharmscitech, 2007. 8(1). 106. Garrett, I.R., G.E. Gutierrez, G. Rossini, J. Nyman, B. McCluskey, A. Flores, and G.R. Mundy, Locally delivered lovastatin nanoparticles enhance fracture healing in rats. Journal of Orthopaedic Research, 2007. 25(10): p. 1351-1357. 107. Lallier, T.E., A. Spencer, and M.M. Fowler, Transcript profiling of periodontal fibroblasts and osteoblasts. J Periodontol, 2005. 76(7): p. 1044-55. 108. Golub, E.E., G. Harrison, A.G. Taylor, S. Camper, and I.M. Shapiro, The Role of Alkaline-Phosphatase in Cartilage Mineralization. Bone and Mineral, 1992. 17(2): p. 273-278. 109. Du, C., G.B. Schneider, R. Zaharias, C. Abbott, D. Seabold, C. Stanford, and J. Moradian-Oldak, Apatite/amelogenin coating on titanium promotes osteogenic gene expression. Journal of Dental Research, 2005. 84(11): p. 1070-1074. 110. Barkhordarian, A., J. Sison, R. Cayabyab, N. Mahanian, and F. Chiappelli, Epigenetic regulation of osteogenesis: human embryonic palatal mesenchymal cells. Bioinformation, 2010. 5(7): p. 278-81. 111. Kondo, Y., K. Irie, M. Ikegame, S. Ejiri, K. Hanada, and H. Ozawa, Role of stromal cells in osteoclast differentiation in bone marrow. J Bone Miner Metab, 2001. 19(6): p. 352-8. 112. Ho, M.H., C.P. Chiang, Y.F. Liu, M.Y. Kuo, S.K. Lin, J.Y. Lai, and B.S. Lee, Highly efficient release of lovastatin from poly(lactic-co-glycolic acid) nanoparticles enhances bone repair in rats. J Orthop Res, 2011. 29(10): p. 1504-10. 113. Whang, K., J. McDonald, A. Khan, and N. Satsangi, A novel osteotropic biomaterial OG-PLG: Synthesis and in vitro release. J Biomed Mater Res A, 2005. 74(2): p. 237-46. 114. Wlodarski, K.H. and A.H. Reddi, Alkaline phosphatase as a marker of osteoinductive cells. Calcif Tissue Int, 1986. 39(6): p. 382-5. 115. Yokose, S., H. Kadokura, Y. Tajima, K. Fujieda, I. Katayama, T. Matsuoka, and T. Katayama, Establishment and characterization of a culture system for enzymatically released rat dental pulp cells. Calcif Tissue Int, 2000. 66(2): p. 139-44. 116. Mao, H.Q., K. Roy, V.L. Troung-Le, K.A. Janes, K.Y. Lin, Y. Wang, J.T. August, and K.W. Leong, Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release, 2001. 70(3): p. 399-421. 117. Yang, Z., X.G. Luo, X.F. Zhang, J. Liu, and Q. Jiang, Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles. Biomedical Materials, 2013. 8(2). 118. Wang, Q., L. Zhang, W. Hu, Z.H. Hu, Y.Y. Bei, J.Y. Xu, W.J. Wang, X.N. Zhang, and Q. Zhang, Norcantharidin-associated galactosylated chitosan nanoparticles for hepatocyte-targeted delivery. Nanomedicine-Nanotechnology Biology and Medicine, 2010. 6(2): p. 371-381. 119. de Bernard, B., Glycoproteins in the local mechanism of calcification. Clin Orthop Relat Res, 1982(162): p. 233-44. 120. Evseenko, D., Y. Zhu, K. Schenke-Layland, J. Kuo, B. Latour, S. Ge, J. Scholes, G. Dravid, X. Li, W.R. MacLellan, and G.M. Crooks, Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A, 2010. 107(31): p. 13742-7. 121. Kim, I.S., B.C. Jeong, O.S. Kim, Y.J. Kim, S.E. Lee, K.N. Lee, J.T. Koh, and H.J. Chung, Lactone form 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) stimulate the osteoblastic differentiation of mouse periodontal ligament cells via the ERK pathway. J Periodontal Res, 2011. 46(2): p. 204-13. 122. Parhami, F., N. Mody, N. Gharavi, A.J. Ballard, Y. Tintut, and L.L. Demer, Role of the cholesterol biosynthetic pathway in osteoblastic differentiation of marrow stromal cells. J Bone Miner Res, 2002. 17(11): p. 1997-2003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17526 | - |
dc.description.abstract | 牙周疾病是影響牙齒支持組織的發炎性疾病,由細菌感染相鄰牙齒的組織所引起的。牙周病會破壞牙齒周圍組織,減少牙齒周圍的支撐結構,最後導致牙齒的脫落,牙周病的治療從控制發炎及感染,擴展至再生治療的應用,進而恢復牙齒周遭的健康牙周組織。
本研究主要以可被生物降解性之聚乳酸-甘醇酸(PLGA)共聚物與幾丁聚醣(Chitosan)為材料,製備出可被生物降解的藥物,由聚乳酸聚甘醇酸混合幾丁聚醣當載體,控制洛伐他汀和四環黴素的釋放,以用來作為治療牙周病藥物的潛在應用。四環黴素會先釋放以抑制細菌生長,接著洛伐他汀再釋放以增加骨再生。在奈米顆粒的尺寸、組成以及結構性質分析上,我們使用了穿透式電子顯微鏡(TEM)、動態光散射粒徑分析儀(DLS)、紅外線光譜儀(FT-IR)來做測試。接下來,我們藉由最小抑制濃度和抑菌環比較藥物抗牙周病厭氧菌的效果。使用人類胚胎上顎間質細胞(HEPM)做生物相容性測試,以及鹼性磷酸酶試驗。實驗結果顯示,本研究中所製備出的0.3%濃度四環黴素的PLGA-chitosan-lovastatin-tetracycline藥物,其抑菌效果高於最小抑菌濃度,且其釋出的藥劑對於牙周病原菌A. actinomycemcomitans 和 P. nigrescens有抑菌效果,並且具有生物相容性,對細胞的活性不會產生影響,以及可以促進骨分化指標細胞鹼性磷酸酶(ALPase)的表現。 | zh_TW |
dc.description.abstract | Periodontal disease can cause destruction of periodontal tissue, reduce periodontal supporting structure, and finally lead to tooth loss. The development of periodontal therapy starts from infection control to tissue regeneration in order to regenerate the healthy tissue surrounding tooth structure.
This study used poly lactied-co-glycolic acid (PLGA) and chitosan to prepare the biodegradable PLGA-chitosan nanoparticles for controlled release of tetracycline and lovastatin as adjunctive treatment of periodontitis. Tetracycline has been proved to inhibit bacterial growth and lovastatin is able to induce bone regeneration. The particle size, morphology, and chemical stucture of the obtained nanoparticles were determined by transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier transform -infrared spectroscopy (FT-IR), respectively. Subsequently, the ability of the drug to inhibit the periodontal pathogens including A. actinomycemcomitans and P nigrescens was investigated by minimal inhibition concentration (MIC) and cup-plate method. Cell proliferation was examined by MTT assay. Cell differentiation and mineralization were evaluated by alkaline phosphatase activity quantitative assay. The results demonstrated that the PLGA-chitosan-lovastatin-tetracycline (0.3%) was the optimal concentration and showed a sustained release profile to inhibit the growth of periodontal pathogens. PLGA-chitosan-lovastatin-tetracycline (0.3%) is also biocompatible by the MTT assay and the ALPase activity in HEPM cells could be significantly stimulated by lovastatin carried in PLGA-chitosan-lovastatin-tetracycline (0.3%) nanoparticles. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:18:35Z (GMT). No. of bitstreams: 1 ntu-102-R00450017-1.pdf: 5496340 bytes, checksum: c0304a4c042af4b9759f70515deb4521 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract iv 目錄 v 圖目錄 IX 表目錄 XIII 第一章 前言 1 第二章 文獻回顧 3 2.1 牙齒周圍支持組織 3 2.1.1 牙齦(Gingiva) 4 2.1.2 齒槽骨(Alveolar bone) 4 2.1.3 牙骨質(Cementum) 4 2.1.4 牙周韌帶(Periodontal ligament) 6 2.2 牙周病及其治療 7 2.2.1 牙周病(Periodontal diseases) 7 2.2.2 牙周病原菌 9 2.2.3 牙周刮除術和根面整平術、牙周囊袋刮除術(Curettage) 9 2.2.4 局部藥物投遞系統 10 2.2.5 牙周組織再生醫療 12 2.3 藥物釋放系統及其應用 14 2.4 生物可分解性之高分子藥物載體 20 2.4.1 生物可分解性材料 20 2.4.2 甘醇酸共聚合物做藥物載體的應用 21 2.4.3 PLGA的降解機制 24 2.4.4 影響PLGA降解速率的因素 25 2.4.5 高分子奈米載體的應用及其製備方式 27 2.4.6 Chitosan 28 2.5 乳化法 31 2.5.1 雙重乳化法(Double emulsion) 34 2.5.2 雙重乳化法的機制 35 2.5.3 雙重乳化法中的變數影響 36 2.6 牙周病的治療藥物及其研究現況 38 2.6.1 Tetracycline的作用機制及應用 38 2.6.2 Lovastatin的發展及應用 39 2.7 鹼性磷酸酶(Alkaline phosphatase)與骨分化 41 第三章 材料與方法 42 3.1 實驗藥品 42 3.2 實驗儀器 46 3.3 實驗流程圖 48 3.4 製備聚乳酸甘醇酸-幾丁聚醣奈米球粒 49 3.4.1 PLGA-chitosan-lovastatin-tetracycline顆粒製備 49 3.5 觀察藥物顆粒的型態與定性 50 3.5.1 穿透式電子顯微鏡 50 3.5.2 動態光散射奈米粒徑分析儀 50 3.5.3 傅立葉轉換紅外線光譜儀(FT-IR) 51 3.6 藥物控制釋放 51 3.6.1 Lovastatin的檢量線及包覆率的計算 51 3.6.2 Tetracycline的檢量線及包覆率的計算 52 3.6.3 Tetracycline及Lovastatin的控制釋放 53 3.7 藥物的厭氧菌測試 54 3.7.1 菌株資料與培養保存方法 54 3.7.2 測定最低抑菌濃度(Minimal inhibition concentration) 55 3.7.3 抑菌環(cup-plate method) 57 3.8 藥物的細胞測試 58 3.8.1 細胞培養及培養液的配製 58 3.8.2 生物相容性測試(MTT assay) 59 3.8.3 鹼性磷酸酶測試(Alkaline phosphatase assay) 61 3.9 統計分析 64 第四章 結果 65 4.1 合成聚乳酸甘醇酸-幾丁聚醣奈米球粒 65 4.2 觀察藥物顆粒的結構與定性 66 4.2.1 穿透式電子顯微鏡與動態光散射奈米粒徑分析 66 4.2.2 傅立葉轉換紅外光譜儀(FTIR) 66 4.3 藥物控制釋放 67 4.3.1 Lovastatin和Tetracycline的檢量線及包覆率 67 4.3.2 Tetracycline及Lovastatin的控制釋放 68 4.4 藥物的厭氧菌測試 68 4.4.1 測定最低抑菌濃度(Minimal inhibition concentration) 68 4.4.2 抑菌環(cup-plate method) 69 4.5 藥物的細胞測試 70 4.5.1 生物相容性測試(MTT assay) 70 4.5.2 鹼性磷酸酶的活性測試(Alkaline phosphatase assay) 70 第五章 討論 91 5.1 合成聚乳酸甘醇酸-幾丁聚醣奈米球粒(PLGA-chitosan-lovastatin-tetracycline) 91 5.2 觀察藥物顆粒的結構與定性 91 5.2.1 穿透式電子顯微鏡與動態光散射奈米粒徑儀分析 91 5.2.2 傅立葉轉換紅外光譜儀(FTIR) 92 5.3 藥物控制釋放 93 5.3.1 Lovastatin和Tetracycline的檢量線及包覆率 93 5.3.2 Tetracycline及Lovastatin的控制釋放 94 5.4 藥物的厭氧菌測試 94 5.4.1 測定最低抑菌濃度(Minimal inhibition concentration) 94 5.4.2 抑菌環(cup-plate method) 95 5.5 藥物的細胞測試 96 5.5.1 生物相容性測試(MTT assay) 96 5.5.2 鹼性磷酸酶測試(Alkaline phosphatase assay) 96 第六章 結論 98 第七章 參考文獻 100 | |
dc.language.iso | zh-TW | |
dc.title | 研發生物可降解性奈米顆粒控制四環黴素和洛伐他汀之釋放以應用於牙周病治療 | zh_TW |
dc.title | Development of biodegradable nanoparticles to control the release of tetracycline and lovastatin for adjunctive treatment of periodontitis | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王大銘,陳漪紋 | |
dc.subject.keyword | 牙周病,四環黴素,洛伐他汀,聚乳酸-甘醇酸,幾丁聚醣, | zh_TW |
dc.subject.keyword | periodontitis,tetracycline,lovastatin,PLGA,chitosan, | en |
dc.relation.page | 112 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2013-07-26 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
顯示於系所單位: | 口腔生物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 5.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。