請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17520
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳昭瑩 | |
dc.contributor.author | Yun-Ting Ou | en |
dc.contributor.author | 歐昀庭 | zh_TW |
dc.date.accessioned | 2021-06-08T00:18:10Z | - |
dc.date.copyright | 2013-07-31 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-26 | |
dc.identifier.citation | 1. 羅秋雄。2005。作物施肥手冊。增修六版。台北:行政院農業委員會農糧署。
2. Adhikari, T. B. and Basnyat, R. 1999. Phenotypic characteristics of Xanthomonas campestris pv. campestris from Nepal. Eur. J. Plant Pathol. 105: 303-305. 3. Arias, R. S., Nelson, S. C. and Alvarez, A. M. 2000. Effect of soil-matric potential and phylloplanes of rotation-crops on the survival of a bioluminescent Xanthomonas campestris pv. campestris. Eur. J. Plant Pathol. 106: 109-116. 4. Ayala, S. and Rao, E. V. S. P. 2002. Perspective of soil fertility management with a focus on fertilizer use for crop productivity. Curr. Sci. 82: 797-807. 5. Bais, H. P., Fall, R. and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134: 307-319. 6. Bhardwaj, S. K. and Laura, J. S. 2009. Antibacterial activity of some plant-extracts against plant pathogenic bacteria Xanthomonas campestris pv. campestris. Indian J. Agr. Res. 43: 26-31. 7. Bittel, P. and Robatzek, S. 2007. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr. Opin. Plant Biol. 10: 335-341. 8. Black, R., Abubakar, Z. and Seal, S. 2000. Opportunities and constraints in the adaptation of technology for the diagnosis of bacterial plant diseases – experience from Tanzania. Bulletin OEPP 30: 367-374. 9. Bloemberg, G. V., and Lugtenberg, B. J. J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350. 10. Boller, T. and He, S. Y. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324: 742-744. 11. Bonmatin, J-M., Laprevote, O. and Peypoux, F. 2003. Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb. Chem. High T. Scr. 16: 541-556. 12. Brunner, K., Peterbauer, C. K., Mach, R. L., Lorito, M., Zeilinger, S. and Kubicek, C. P. 2003. The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr. Genet. 43: 289-295. 13. Bucio, J. L., Cuevas, J. C. C., Calderón, E. H., Becerra, C. V., Rodríguez, R. F., Rodríguez, L. I. M. and Cantero, E. V. 2007. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol. Plant- Microbe Interact. 20: 207-217. 14. Chet, I., Benhamou, N. and Haran, S. 1998. Trichoderma and Gliocladium. 1st ed. Taylor and Francis, London. 15. Chin-A-Woeng, T. F. C., Bloemberg, G. V. and Lugtenberg, B. J. J. 2003. Mechanisms of biological control of phytopathogenic fungi by Pseudomonas spp. Mol. Plant-Microbe Interact. 6: 173-224. 16. Chin-A-Woeng, T. F. C., Bloemberg, G. V., van der Bij, A. J., van der Drift, K. M. G. M. and Schripsema, J. 1998. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f.sp. radicis-lycopersici. Mol. Plant-Microbe Interact. 11: 1069-77. 17. Clayton, E. E. 1924. Control of black rot and black leg of cruciferous crop by seed and seed bed treatments. Phytopathology 14: 24-25. 18. Conrath, U. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19: 1062-1071. 19. Cook, A. A.,Walker, J. C. and Larson, R. H. 1952. Studies on the disease cycle of black rot of crucifers. Phytopathology 42: 162-167. 20. Dane, F. and Shaw, J. J. 1996. Survival and persistence of bioluminescent Xanthomonas campestris pv. campestris on host and non-host plants in the field environment. J. Appl. Bacteriol. 80: 73-80. 21. Dobbelaere, S., Croonenborghs, A., Thys, A., Broek, A. V. and Vanderleyden, J. 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212: 155-164. 22. Dunne, C., Mo¨enne-Loccoz, Y., McCarthy, J., Higgins, P., Powell, J., Dowling, D. N., O’Gara, F. 1998. Combining proteolytic and phloroglucinol-producing bacteria for improved control of Pythium-mediated dampingoff of sugar beet. Plant Pathol. 47: 299-307. 23. Emmert, E. A., Klimowicz, A. K., Thomas, M. G., Handelsman, J. 2004. Genetics of zwittermicin A production by Bacillus cereus. Appl. Environ. Microbiol. 70: 104-113. 24. Flors, V., Ton, J., Jakab, G. and Mani, B. M. 2005. Abscisic acid and callose: team players in defence against pathogens? J. Phytopathol. 153: 377-383. 25. Fravel, D.R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43: 337-359. 26. Gerhardson, B. 2002. Biological substitutes for pesticides. Trends Biotechnol. 20: 338-343. 27. Gest, H. and Mandelstam, J. 1987. Longevity of microorganisms in natural environments. Microbiol. Sci. 4: 69-71. 28. Haas, D. and Keel, C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41: 117-53. 29. Humaydan, H. S., Harman, G.. E., Nedrow, B. L. and DiNitto, L. V. 1980. Eradication of Xanthomonas campestris, the causal agent of black rot, from Brassica seeds with antibiotics and sodium hypochlorite. Phytopathology 70: 127-131. 30. Huszcza, E. and Burczyk, B. 2006. Surfactin isoforms from Bacillus coagulans. Z. Naturforsch. 61: 727-733. 31. Issazadeh, K., Rad, S. K., Zarrabi, S. and Rahimibashar, M. R. 2012. Antagonism of Bacillus species against Xanthomonas campestris pv. campestris and Pectobacterium carotovorum subsp. carotovorum. Afr. J. Microbiol. Res. 6: 1615-1620. 32. Jacques, P., Hbid, C., Destain, J., Razafindralambo, H., Paquot, M., Pauw, E. D. and Thonart, P. 1999. Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design. Appl. Biochem. Biotech. 77: 223-233. 33. Jensen, B. D., Massomo, S. M. S., Swai, I. S., Hockenhull, J. and Andersen, S. B. 2005. Field evaluation for resistance to the black rot pathogen Xanthomonas campestris pv. campestris in cabbage (Brassica oleracea). Eur. J. Plant Pathol. 113: 297-308. 34. Kennedy, M. J., Reader, S. L. and Swierczynski, L. M. 1994. Preservation records of micro-organisms: evidence of the tenacity of life. Microbiology 140: 2513-2519. 35. Kim, P. I. and Chung, K. C. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett. 234: 177-183. 36. Klisiewicz, J. M. and Pound, G.. S. 1961. Studies on control of black rot of crucifers by treating seeds with antibiotics. Phytopathology 51: 495-500. 37. Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266. 38. Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J. and Borriss, R. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186: 1084-1096. 39. Krauthausen, H. J., Laun, N. and Wohanka, W. 2011. Methods to reduce the spread of the black rot pathogen, Xanthomonas campestris pv. campestris, in brassica transplants. J. Plant Dis. Protect. 118: 7-16. 40. Lecle`re, V., B’echet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., Thonart, P., Gancel, F., Chollet-Imbert, M. and Jacques, P. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl. Environ. Microb. 71: 4577-4584. 41. Leifert, C., Li, H., Chidburee, S., Hampson, S., Workman, S., Sigee, D., Epton, H. A. S. and Harbour, A. 1995. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J. Appl. Bacteriol. 78: 97-108. 42. Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556. 43. Luna, E., Pastor, V., Robert, J., Flors, V., Mani, B. M. and Ton, J. 2011. Callose deposition: a multifaceted plant defense response. Mol. Plant-Microbe Interact. 24: 183-193. 44. Mandal, S. M., Barbosa, A. E. A. D. and Franco, O. L. 2013. Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol. Adv. 31: 338-345. 45. Massomo, S. M. S., Mortensen, C. N., Mabagala, R. B., Newman, M. A. and Hockenhull, J. 2004. Biological control of black rot (Xanthomonas campestris pv. campestris) of cabbage in Tanzania with Bacillus strains. J. Phytopathol. 152: 98-105. 46. Massomo, S. M. S., Nielsen, H., Mabagala, R. B., Mansfeld-Giese, K., Hockenhull, J. and Mortensen, C. N. 2003. Identification and characterization of Xanthomonas campestris pv. campestris strains from Tanzania by pathogenicity tests, Biolog, rep-PCR and fatty acid methyl ester analysis. Eur. J. Plant Pathol. 109: 775-789. 47. Mavrodi, D. V., Blankenfeldt, W. and Thomashow, L. S. 2006. Phenazine compounds in fluorescent Pseudomonas spp.: biosynthesis and regulation. Annu. Rev. Phytopathol. 44: 417-45. 48. Meier, D. 1934. A cytological study of the early infection stages of the black rot of cabbage. B. Torrey Bot. Club 61: 173-190. 49. Mgonja, A. P. and Swai, I. S. 1998. Importance of diseases and insect pests of vegetables in Tanzania and limitations in adopting the control methods. AVRDC-ARP Publication No. 2000-1: 28-34. 50. Mguni C. M. 1996. Bacterial black rot (Xanthomonas campestris pv. campestris) of vegetable brassicas in Zimbabwe. Ph.D thesis, The Royal Veterinary and Agricultural University and Danish Government Institute of Seed Pathology. 51. Mguni, C. M., Mortensen, C. N., Keswani, C. L. and Hockenhull, J. 1999. Detection of the black rot pathogen (Xanthomonas campestris pv. campestris) and other xanthomonads in Zimbabwean and imported Brassica seed. Seed Sci. Technol. 27: 447-454. 52. Milner, J., Silo-Suh, L., Lee, J. C., He, H., Clardy, J. and Handelsman, J. 1996. Production of kanosamine by Bacillus cereus UW85. Appl. Environ. Microb. 62: 3061-3065. 53. Mishra S. and Arora N. K. 2012. Evaluation of rhizospheric Pseudomonas and Bacillus as biocontrol tool for Xanthomonas campestris pv. campestris. World J. Microbiol. Biotechnol. 28: 693-702. 54. Monteiro, L., Mariano, R. L. R. and Souto-Maior, A. M. 2005. Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris. Braz. Arch. Biol. Techn. 48: 23-29. 55. Mukherjee, A. K. and Das, K. 2005. Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by Bacillus subtilis strains in a particular habitat. FEMS Microbiol. Ecol. 54: 479-489. 56. Nicholson, W. L. 2002. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59: 410-416. 57. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J. and Setlow, P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. R. : 548-572. 58. Nowak-Thompson, B., Chaney, N., Wing, J. S., Gould, S. J. and Loper, J. E. 1999. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J. Bacteriol. 181: 2166-2174. 59. Ongena, M., Jacques, P., Tour’e, Y., Destain, J., Jabrane, A. and Thonart, P. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biot. 69: 29-38. 60. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090. 61. Ongena, M. and Jacques, P. 2007. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125. 62. Peypoux, F., Bonmatin, J. M. and Wallach, J. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biot. 51: 553-563. 63. Potts, M. 1994. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58: 755-805. 64. Pozo, M. J. and Azcon-Aguilar, C. 2007. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10: 393-398. 65. Pozo, M. J., Van der Ent, S., Van Loon, L. C. and Pieterse, C. M. J. 2008. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol. 180: 511-523. 66. Raaijmakers, J., Vlami, M. and de Souza, J. 2002. Antibiotic production by bacterial biocontrol agents. A. Van Leeuw. J. Microb. 81: 537-547. 67. Reva, O. N., Dixelius, C., Meijer, J. and Priest, F. G. 2004. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiol. Ecol. 48: 249-259. 68. Risøen, P. A., Rønning, P., Hegna, I. K. and Kolstø, A. B. 2004. Characterization of a broad range antimicrobial substance from Bacillus cereus. J. Appl. Microbiol. 96: 648-655. 69. Roberts, S. J., Brough, J. and Hunter, P. J. 2007. Modelling the spread of Xanthomonas campestris pv. campestris in module-raised brassica transplants. Plant Pathol. 56: 391-401. 70. Romero D.,Vicente A. D., Rakotoaly R. H., Dufour S. E., Veening J. W., Arrebola E., Cazorla F. M., Kuipers O. P., Paquot M. and García A. P. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe Interact. 20: 430-440. 71. Rong, W., Feng, F., Zhou, J. and He, C. 2010. Effector-triggered innate immunity contributes Arabidopsis resistance to Xanthomonas campestris. Mol. Plant Pathol. 11: 783-793. 72. Ryu, C. M., Murphy, J. F., Mysore, K. S. and Kloepper, J. W. 2004. Plant growth-promoting rhizobacterial systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J. 39: 381-392. 73. Sauer, D. B. and Burroughs, R. 1986. Disinfection of seed surfaces with sodium hypochlorite. Phytopathology 76: 745-749. 74. Schaad, N. W. 1982. Detection of seedborne bacterial plant pathogens. Plant Dis. 66: 885-890. 75. Schaad, N. W., Gabrielson, R. L. and Mulanax, N. W. 1980. Hot acidified cupric acetate soaks for eradication of Xanthomonas campestris from crucifer seed. Appl. Environ. Microb. 39: 803-807. 76. Schaad, N. W. and White, W. C. 1974. Survival of Xanthomonas campestris in soil. Phytopathology 64: 1518-1520. 77. Scher F. M. and Baker R. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to fusarium wilt pathogens. Phytopathology 72: 1567-1573. 78. Schippers, B., Bakker, A. W. and Bakker, P. A. H. M. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25: 339-358. 79. Sharma, B. R., Vishnu, S. and Chatterjee, S. S. 1977. Resistance to black rot disease (Xanthomonas campestris) (Pam.) Dowson in cauliflower. Sci. Hortic-Amsterdam. 7: 1-7. 80. Sharma, S. R., Kapoor, K. S. and Gill, H. S. 1995. Screening against sclerotinia rot (Sclerotinia sclerotiorum), downy mildew (Peronospora parasitica) and black rot (Xanthomonas campestris) in cauliflower (Brassica oleracea var. botrytis subvar. cauliflora). Indian J. Agr. Sci. 65: 916-918. 81. Spadaro, D. and Gullino, M. L. 2005. Improving the efficacy of biocontrol agents against soil-borne pathogens. Crop Prot. 24: 601-613. 82. Staub, T. and Williams, P. H. 1972. Factors influencing black rot lesion development in resistant and susceptible cabbage. Phytopathology 62: 722-728. 83. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. 84. Sutton, M. D. and Bell, W. 1954. The use of aureomycin as a treatment of swede seed for the control of black rot (Xanthomonas campestris). Plant Dis. 38: 547-549. 85. Taylor, A. G. and Harman, G. E. 1990. Concepts and technologies of selected seed treatments. Annu. Rev. Phytopathol. : 28: 321-339. 86. Taylor, J. D., Conway, J., Roberts, S. J., Astley, D. and Vicente, J. G. 2002. Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92: 105-111. 87. Thomashow, L. S. and Weller, D. M. 1996. Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In Plant-Microbe Interact, pp. 187-235. Chapman and Hall, New York. 88. Tsuge, K., Ano, T., Hirai, M., Nakamura, Y. and Shoda, M. 1999. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob. Agents Chemother. 43: 2183-2192. 89. Validov, S., Kamilova, F., Qi, S., Stephan, D., Wang, J. J., Makarova, N. and Lugtenberg, B. 2007. Selection of bacteria able to control Fusarium oxysporum f. sp. radicis-lycopersici in stonewool substrate. J. Appl. Microbiol. 102: 461-471. 90. Van Loon, L. C., Bakker, P. A. H. M. and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483. 91. Van Peer, R., Niemann, G. J. and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81: 728-34. 92. Van Wees, S. C. M., Van der Ent, S. and Pieterse, C. M. J. 2008. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11: 443-448. 93. Vicente, J. G. and Holub, E. B. 2013. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol. Plant Pathol. 14: 2-18. 94. Whipps, J. 2001. Microbial interactions and growth in the rhizosphere. J. Exp. Bot. 52: 487-511. 95. Williams, P. H. 1980. Black rot: a continuing threat to world crucifers. Plant Dis. 64: 736-742. 96. Wilson C. L. 1997. Biological control and plant diseases-a new paradigm. J. Ind. Microbiol. Biot. 19: 158-159. 97. Wulff, E. G., Mguni, C. M., Mortensen, C. N., Keswani, C. L. and Hockenhull, J. 2002. Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. Eur. J. Plant Pathol. 108: 317-325. 98. Yu, G. Y., Sinclair, J. B., Hartman, G. L. and Bertagnolli, B. L. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34: 955-963. 99. Yun, M. H., Torres, P. S., Oirdi, M. E., Rigano, L. A., Lamothe, R. G., Marano, M. R., Castagnaro, A. P., Dankert, M. A., Bouarab, K. and Vojnov, A. A. 2006. Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol. 141: 178-187. 100. Zavaliev, R., Sagi, G., Gera, A. and Epel, B. L. 2010. The constitutive expression of Arabidopsis plasmodesmal-associated class 1 reversibly glycosylated polypeptide impairs plant development and virus spread. J. Exp. Bot. 61: 131-142. 101. Zhang, S., Reddy, M. S. and Kloepper, J. W. 2004. Tobacco growth enhancement and blue mold disease protection by rhizobacteria: Relationship between plant growth promotion and systemic disease protection by PGPR strain 90-166. Plant Soil 262: 277-288. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17520 | - |
dc.description.abstract | 甘藍黑腐病造成甘藍的減產,一直以來都是難以解決的問題。本研究測試生物防治方法,期能提供目前既有防治選項外的另一可行方案,以減輕黑腐病對甘藍的危害。首先以誘導系統抗性能力為篩選指標,同時搭配甘藍苗生長影響作綜合性評估,得知菌株28-5、AA2-3、37-1與M-2最具應用潛力。以此四個菌株進行田間應用試驗,比較涵蓋甘藍外部與內部病徵之罹病程度,顯示菌株37-1之生物防治效果最佳。在測試各菌株葉面保護能力時,菌株37-1之保護率亦最佳,故針對菌株37-1進行ISR與葉面保護特性之探討,包括菌株37-1之最適施用濃度。在病徵發展方面,根圈施用菌株37-1再接種病原細菌,12天後的罹病度與對照組之差異最為明顯,而葉內病原族群則於接種後7~9天呈現變化;觀察葉緣水孔癒傷葡聚醣累積情形,發現菌株37-1處理的甘藍植株於接種後第5天呈現與對照組不同的變化趨勢,顯示此菌株可經由誘導系統抗性之機制抑制甘藍黑腐病之病徵發展。 | zh_TW |
dc.description.abstract | Reduced production of cabbages caused by black rot has been a problem difficult to solve. In this study, biocontrol method as an alternative besides the present disease control measures was investigated to reduce the economic loss caused by cabbage black rot. At beginning, induced systemic resistance (ISR) of plants was used as a main screening index of potential biocontrol agents. In combination with the results of seedling growth, strains 28-5, AA2-3, 37-1 and M-2 showed good potentials for application. Field trial with these four strains showed that strain 37-1 had the best biocontrol activity according to the external and internal symptoms. On the other hand, strain 37-1 exhibited superior activity in foliar protection. Thus, the properties of ISR and foliar protection of strain 37-1 were further investigated, including the suitable concentration of application. In the aspect of disease development, disease severity of the plants pre-drenched with strain 37-1 were significantly reduced at 12 days after pathogen inoculation as compared with the control without bacterization. In addition, the pathogen populations in cabbage leaves fluctuated at 7 and 9 days post pathogen inoculation following drench application of strain 37-1. The examination of callose deposition on hydathode areas at leaf margin indicated the seedlings of cabbage drenched with strain 37-1 had defense reaction as compared with the control at 5 days after pathogen inoculation. Thus, drench application of strain 37-1 could suppress symptom development of cabbage black rot by a mechanism of ISR. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:18:10Z (GMT). No. of bitstreams: 1 ntu-102-R99633012-1.pdf: 1073885 bytes, checksum: cbc49c5429f7bbc7de4d6935bb3792c9 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 目錄
壹、中文摘要 1 貳、英文摘要 2 參、前言 3 肆、前人研究 5 一、甘藍黑腐病 5 二、植物病害生物防治 7 三、芽孢桿菌屬菌株於生物防治之應用潛力 8 四、芽孢桿菌屬菌株防治甘藍黑腐病之研究 10 伍、材料與方法 11 一、供試菌株之培養與保存 11 二、各芽孢桿菌屬菌株對甘藍之ISR作用 11 1. 甘藍黑腐病罹病嚴重度與統計方式 11 2. 室外網室初步篩選試驗 11 3. 植物生長室試驗 12 三、各芽孢桿菌屬菌株對甘藍幼苗生長之影響試驗 13 1. 植物生長室試驗 13 2. 無菌栽培試驗 13 四、通過篩選之四個菌株的田間試驗 14 1. 植物生長室植株育苗 14 2. 植株生長試驗 14 3. 病害防治試驗 15 五、各芽孢桿菌屬菌株對甘藍之葉面保護能力測試 15 1. 植物生長室試驗之植株栽培 15 2. 甘藍葉面保護試驗 15 六、各芽孢桿菌屬菌株拮抗甘藍黑腐病菌能力測試 16 七、菌株37-1對甘藍之葉面保護能力測試 16 1. 植物生長室試驗之植株栽培 16 2. 不同濃度菌液對甘藍之葉面保護 16 八、菌株37-1對甘藍之ISR作用測試 17 1. 植物生長室試驗之植株栽培 17 2. 不同濃度菌液對甘藍之ISR 17 九、菌株37-1對甘藍葉內黑腐病菌族群量影響試驗 17 1. 植物生長室試驗之植株栽培 17 2. 甘藍葉之黑腐病菌族群計量 17 十、菌株37-1對甘藍葉片癒傷葡聚醣累積影響試驗 18 1. 噴霧接種試驗 18 2. 注射接種試驗 19 陸、結果 20 一、各芽孢桿菌屬菌株對甘藍之ISR作用 20 1. 室外網室初步篩選試驗 20 2. 各芽孢桿菌屬菌株於不同處理時間對甘藍之ISR作用(植物生長室試驗) 20 二、各芽孢桿菌屬菌株對甘藍幼苗之生長影響 21 1. 各芽孢桿菌屬菌株懸浮液對甘藍幼苗生長之影響 21 2. 各芽孢桿菌屬菌株懸浮液對甘藍幼苗根部生長之影響 21 三、各芽孢桿菌屬菌株之綜合特性比較 21 四、芽孢桿菌屬菌株之田間試驗 22 五、各芽孢桿菌屬菌株對甘藍之葉面保護能力 22 六、各芽孢桿菌屬菌株拮抗甘藍黑腐病菌能力 23 七、菌株37-1對甘藍之葉面保護能力 23 八、菌株37-1對甘藍之ISR作用 24 九、菌株37-1對甘藍葉內黑腐病菌族群量影響 24 十、菌株37-1對甘藍葉片癒傷葡聚醣累積影響 24 1. 噴霧接種試驗 24 2. 注射接種試驗 25 柒、討論 26 捌、參考文獻 31 玖、圖表集 46 表一、芽孢桿菌屬菌株ISR特性綜合比較 47 圖一、各芽孢桿菌屬菌株對甘藍之ISR 作用(初步篩選) 48 圖二、各芽孢桿菌屬菌株對甘藍之ISR 作用(澆灌方式一) 49 圖三、各芽孢桿菌屬菌株對甘藍之ISR 作用(澆灌方式二) 50 圖四、各芽孢桿菌屬菌株對甘藍幼苗生長之影響 52 圖五、各芽孢桿菌屬菌株對甘藍幼苗根部生長之影響 53 圖六、田間試驗之芽孢桿菌屬菌株施用與黑腐病菌接種時間 54 圖七、田間甘藍黑腐病罹病度計量方式 55 圖八、田間測試芽孢桿菌屬菌株對甘藍黑腐病病徵發展之影響 56 圖九、田間測試芽孢桿菌屬菌株防治甘藍黑腐病效果 59 圖十、田間測試芽孢桿菌屬菌株對甘藍葉球產量之影響 60 圖十一、田間甘藍黑腐病防治試驗期間之溫度雨量圖 61 圖十二、各芽孢桿菌屬菌株對甘藍黑腐病之葉面防治效果 62 圖十三、菌株37-1菌液的界面活性 63 圖十四、各芽孢桿菌屬菌株在LB培養基上對黑腐病菌之拮抗作用 65 圖十五、不同濃度菌株37-1之葉面防治效果 66 圖十六、不同濃度菌株37-1之ISR作用 67 圖十七、菌株37-1對甘藍幼苗葉內黑腐病菌族群影響 68 圖十八、菌株37-1對噴霧接種黑腐病菌之甘藍葉部癒傷葡聚醣累積影響 70 圖十九、菌株37-1對注射接種黑腐病菌之甘藍葉部癒傷葡聚醣累積影響 71 | |
dc.language.iso | zh-TW | |
dc.title | 甘藍黑腐病之生物防治研究 | zh_TW |
dc.title | Biocontrol study of cabbage black rot | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭安秀,沈偉強,黃祥恩 | |
dc.subject.keyword | 生物防治菌,甘藍,黑腐病,誘導系統抗性,葉面保護, | zh_TW |
dc.subject.keyword | Biocontrol agent,cabbage,black rot disease,induced systemic resistance (ISR),foliar protection, | en |
dc.relation.page | 71 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2013-07-26 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 1.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。