請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17474完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 牟中原 | |
| dc.contributor.author | Yi-Ping Chen | en |
| dc.contributor.author | 陳奕平 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:15:12Z | - |
| dc.date.copyright | 2013-08-23 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-31 | |
| dc.identifier.citation | Chapter 1: General Introduction
1. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359(6397):710-712. 2. Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J: A New Property of MCM-41: Drug Delivery System. Chemistry of Materials 2000, 13(2):308-311. 3. Cai Q, Luo Z-S, Pang W-Q, Fan Y-W, Chen X-H, Cui F-Z: Dilute Solution Routes to Various Controllable Morphologies of MCM-41 Silica with a Basic Medium. Chemistry of Materials 2001, 13(2):258-263. 4. Nooney RI, Thirunavukkarasu D, Chen Y, Josephs R, Ostafin AE: Synthesis of Nanoscale Mesoporous Silica Spheres with Controlled Particle Size. Chemistry of Materials 2002, 14(11):4721-4728. 5. Lai C-Y, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VSY: A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society 2003, 125(15):4451-4459. 6. Lin Y-S, Wu S-H, Hung Y, Chou Y-H, Chang C, Lin M-L, Tsai C-P, Mou C-Y: Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous. Chemistry of Materials 2006, 18(22):5170-5172. 7. Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin C-H, Park J-G, Kim J et al: Magnetic Fluorescent Delivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals. Journal of the American Chemical Society 2005, 128(3):688-689. 8. Lin Y-S, Tsai C-P, Huang H-Y, Kuo C-T, Hung Y, Huang D-M, Chen Y-C, Mou C-Y: Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers. Chemistry of Materials 2005, 17(18):4570-4573. 9. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI: Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano 2008, 2(5):889-896. 10. Liu R, Zhao X, Wu T, Feng P: Tunable redox-responsive hybrid nanogated ensembles. Journal of the American Chemical Society 2008, 130(44):14418-14419. 11. Rosenholm JM, Peuhu E, Eriksson JE, Sahlgren C, Lindén M: Targeted Intracellular Delivery of Hydrophobic Agents using Mesoporous Hybrid Silica Nanoparticles as Carrier Systems. Nano Letters 2009, 9(9):3308-3311. 12. He Q, Zhang Z, Gao Y, Shi J, Li Y: Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. Small 2009, 5(23):2722-2729. 13. Wu SH, Lin YS, Hung Y, Chou YH, Hsu YH, Chang C, Mou CY: Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies. ChemBioChem 2008, 9(1):53-57. 14. Lee CH, Cheng SH, Wang YJ, Chen YC, Chen NT, Souris J, Chen CT, Mou CY, Yang CS, Lo LW: Near-Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution. Advanced Functional Materials 2009, 19(2):215-222. 15. He Q, Zhang Z, Gao F, Li Y, Shi J: In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small 2011, 7(2):271-280. 16. Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F: The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 2011, 5(7):5390-5399. 17. Lee S, Yun HS, Kim SH: The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials 2011, 32(35):9434-9443. 18. Li L, Tang F, Liu H, Liu T, Hao N, Chen D, Teng X, He J: In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano 2010, 4(11):6874-6882. 19. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T: Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984). Pure and Applied Chemistry 1985, 57(4):603-619. 20. Hoffmann F, Cornelius M, Morell J, Froba M: Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie International Ed In English 2006, 45(20):3216-3251. 21. Ryoo R, Jun S: Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process. The Journal of Physical Chemistry B 1997, 101(3):317-320. 22. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW: A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114(27):10834-10843. 23. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS: Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359(6397):710-712. 24. Vivero-Escoto JL, Huxford-Phillips RC, Lin W: Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev 2012, 41(7):2673-2685. 25. Coti KK, Belowich ME, Liong M, Ambrogio MW, Lau YA, Khatib HA, Zink JI, Khashab NM, Stoddart JF: Mechanised nanoparticles for drug delivery. Nanoscale 2009, 1(1):16-39. 26. Rosenholm JM, Sahlgren C, Linden M: Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles--opportunities & challenges. Nanoscale 2010, 2(10):1870-1883. 27. Lu F, Wu SH, Hung Y, Mou CY: Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009, 5(12):1408-1413. 28. Asefa T, Tao Z: Biocompatibility of mesoporous silica nanoparticles. Chemical Research in Toxicology 2012, 25(11):2265-2284. 29. Tang F, Li L, Chen D: Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 2012, 24(12):1504-1534. 30. Lu J, Liong M, Zink JI, Tamanoi F: Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 2007, 3(8):1341-1346. 31. Pan L, Liu J, He Q, Wang L, Shi J: Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials 2013, 34(11):2719-2730. 32. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, He H: Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 2009, 5(23):2673-2677. 33. Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE: Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 2009, 3(10):3273-3286. 34. Zhao Y, Vivero-Escoto JL, Slowing, II, Trewyn BG, Lin VS: Capped mesoporous silica nanoparticles as stimuli-responsive controlled release systems for intracellular drug/gene delivery. Expert Opin Drug Deliv 2010, 7(9):1013-1029. 35. Li LL, Tang FQ, Liu HY, Liu TL, Hao NJ, Chen D, Teng X, He JQ: In Vivo Delivery of Silica Nanorattle Encapsulated Docetaxel for Liver Cancer Therapy with Low Toxicity and High Efficacy (vol 4, pg 6874 2010). ACS Nano 2011, 5(1):679-679. 36. Sensenig R, Sapir Y, MacDonald C, Cohen S, Polyak B: Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine (Lond) 2012, 7(9):1425-1442. 37. Maham A, Tang Z, Wu H, Wang J, Lin Y: Protein-based nanomedicine platforms for drug delivery. Small 2009, 5(15):1706-1721. 38. Sood A, Panchagnula R: Peroral route: an opportunity for protein and peptide drug delivery. Chemical Reviews 2001, 101(11):3275-3303. 39. Slowing, II, Trewyn BG, Lin VS: Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. Journal of the American Chemical Society 2007, 129(28):8845-8849. 40. Na HK, Kim MH, Park K, Ryoo SR, Lee KE, Jeon H, Ryoo R, Hyeon C, Min DH: Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small 2012, 8(11):1752-1761. Chapter 2: A New Strategy for Intracellular Delivery of Enzyme Using Mesoporous Silica Nanoparticles: Superoxide Dismutase 1. Feve AP: Current Status of Tyrosine Hydroxylase in Management of Parkinson's Disease. Cns Neurol Disord-Dr 2012, 11(4):450-455. 2. Jeong HJ, Kim DW, Woo SJ, Kim HR, Kim SM, Jo HS, Park M, Kim DS, Kwon OS, Hwang IK et al: Transduced Tat-DJ-1 protein protects against oxidative stress-induced SH-SY5Y cell death and Parkinson disease in a mouse model. Mol Cells 2012, 33(5):471-478. 3. Vucic S, Kiernan MC: Pathophysiology of Neurodegeneration in Familial Amyotrophic Lateral Sclerosis. Curr Mol Med 2009, 9(3):255-272. 4. Dube KN, Bollini S, Smart N, Riley PR: Thymosin beta4 protein therapy for cardiac repair. Current pharmaceutical design 2012, 18(6):799-806. 5. Chung EJ, Lee HK, Jung SA, Lee SJ, Chee HY, Sohn YH, Lee JH: Transduction of PTEN proteins using the tat domain modulates TGF-beta1-mediated signaling pathways and transdifferentiation in subconjunctival fibroblasts. Investigative ophthalmology & visual science 2012, 53(1):379-386. 6. Kashio A, Sakamoto T, Kakigi A, Suzuki M, Suzukawa K, Kondo K, Sato Y, Asoh S, Ohta S, Yamasoba T: Topical application of the antiapoptotic TAT-FNK protein prevents aminoglycoside-induced ototoxicity. Gene therapy 2011. 7. Kalkanidis M, Pietersz GA, Xiang SD, Mottram PL, Crimeen-Irwin B, Ardipradja K, Plebanski M: Methods for nano-particle based vaccine formulation and evaluation of their immunogenicity. Methods 2006, 40(1):20-29. 8. Weissig V, Lasch J, Klibanov AL, Torchilin VP: A new hydrophobic anchor for the attachment of proteins to liposomal membranes. FEBS letters 1986, 202(1):86-90. 9. Torchilin VP, Levchenko TS, Lukyanov AN, Khaw BA, Klibanov AL, Rammohan R, Samokhin GP, Whiteman KR: p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochimica et biophysica acta 2001, 1511(2):397-411. 10. Heath TD, Martin FJ: The development and application of protein-liposome conjugation techniques. Chemistry and physics of lipids 1986, 40(2-4):347-358. 11. Babu P, Sinha S, Surolia A: Sugar-quantum dot conjugates for a selective and sensitive detection of lectins. Bioconjugate chemistry 2007, 18(1):146-151. 12. Howarth M, Takao K, Hayashi Y, Ting AY: Targeting quantum dots to surface proteins in living cells with biotin ligase. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(21):7583-7588. 13. Crowe J, Masone BS, Ribbe J: One-step purification of recombinant proteins with the 6xHis tag and Ni-NTA resin. Methods Mol Biol 1996, 58:491-510. 14. Porath J, Carlsson J, Olsson I, Belfrage G: Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258(5536):598-599. 15. Lata S, Reichel A, Brock R, Tampe R, Piehler J: High-affinity adaptors for switchable recognition of histidine-tagged proteins. Journal of the American Chemical Society 2005, 127(29):10205-10215. 16. Guignet EG, Hovius R, Vogel H: Reversible site-selective labeling of membrane proteins in live cells. Nature biotechnology 2004, 22(4):440-444. 17. Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, Ling EA, Moochhala S, Yang YY: Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials 2008, 29(10):1509-1517. 18. Vives E: Cellular uptake [correction of utake] of the Tat peptide: an endocytosis mechanism following ionic interactions. Journal of molecular recognition : JMR 2003, 16(5):265-271. 19. Frankel AD, Pabo CO: Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988, 55(6):1189-1193. 20. Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J: Tat-mediated delivery of heterologous proteins into cells. Proceedings of the National Academy of Sciences of the United States of America 1994, 91(2):664-668. 21. Wadia JS, Stan RV, Dowdy SF: Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature medicine 2004, 10(3):310-315. 22. Coupland PG, Briddon SJ, Aylott JW: Using fluorescent pH-sensitive nanosensors to report their intracellular location after Tat-mediated delivery. Integrative biology : quantitative biosciences from nano to macro 2009, 1(4):318-323. 23. Vallet-Regi M: Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry 2006, 12(23):5934-5943. 24. Slowing II, Trewyn BG, Giri S, Lin VSY: Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 2007, 17(8):1225-1236. 25. Sun X, Zhao Y, Lin VS, Slowing, II, Trewyn BG: Luciferase and luciferin co-immobilized mesoporous silica nanoparticle materials for intracellular biocatalysis. Journal of the American Chemical Society 2011, 133(46):18554-18557. 26. Mendez J, Monteagudo A, Griebenow K: Stimulus-responsive controlled release system by covalent immobilization of an enzyme into mesoporous silica nanoparticles. Bioconjugate chemistry 2012, 23(4):698-704. 27. Li C: Chiral synthesis on catalysts immobilized in microporous and mesoporous materials. Catal Rev 2004, 46(3-4):419-492. 28. Hoffmann F, Cornelius M, Morell J, Froba M: Periodic mesoporous organosilicas (PMOs): past, present, and future. J Nanosci Nanotechnol 2006, 6(2):265-288. 29. Slowing, II, Trewyn BG, Lin VS: Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. Journal of the American Chemical Society 2007, 129(28):8845-8849. 30. Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VS: A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. Journal of the American Chemical Society 2004, 126(41):13216-13217. 31. Torney F, Trewyn BG, Lin VS, Wang K: Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature nanotechnology 2007, 2(5):295-300. 32. Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS: A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. Journal of the American Chemical Society 2003, 125(15):4451-4459. 33. Wu SH, Hung Y, Mou CY: Mesoporous silica nanoparticles as nanocarriers. Chem Commun (Camb) 2011, 47(36):9972-9985. 34. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI: Mesoporous silica nanoparticles in biomedical applications. Chemical Society reviews 2012, 41(7):2590-2605. 35. Lin YS, Tsai CP, Huang HY, Kuo CT, Hung Y, Huang DM, Chen YC, Mou CY: Well-ordered mesoporous silica nanoparticles as cell markers. Chem Mater 2005, 17(18):4570-4573. 36. Huang DM, Hung Y, Ko BS, Hsu SC, Chen WH, Chien CL, Tsai CP, Kuo CT, Kang JC, Yang CS et al: Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2005, 19(14):2014-2016. 37. Chung TH, Wu SH, Yao M, Lu CW, Lin YS, Hung Y, Mou CY, Chen YC, Huang DM: The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 2007, 28(19):2959-2966. 38. Fridovich I: Superoxide radical and superoxide dismutases. Annual review of biochemistry 1995, 64:97-112. 39. Gottesman S, Wickner S, Maurizi MR: Protein quality control: triage by chaperones and proteases. Genes & development 1997, 11(7):815-823. 40. Schneider C, Sepp-Lorenzino L, Nimmesgern E, Ouerfelli O, Danishefsky S, Rosen N, Hartl FU: Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proceedings of the National Academy of Sciences of the United States of America 1996, 93(25):14536-14541. 41. Marklund S, Marklund G: Involvement of Superoxide Anion Radical in Autoxidation of Pyrogallol and a Convenient Assay for Superoxide-Dismutase. Eur J Biochem 1974, 47(3):469-474. 42. Lu F, Wu SH, Hung Y, Mou CY: Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009, 5(12):1408-1413. 43. Chou CM, Huang CJ, Shih CM, Chen YP, Liu TP, Chen CT: Identification of three mutations in the Cu,Zn-superoxide dismutase (Cu,Zn-SOD) gene with familial amyotrophic lateral sclerosis: transduction of human Cu,Zn-SOD into PC12 cells by HIV-1 TAT protein basic domain. Annals of the New York Academy of Sciences 2005, 1042:303-313. 44. Lin YC, Liang MR, Chen CT: Specifically and reversibly immobilizing proteins/enzymes to nitriolotriacetic-acid-modified mesoporous silicas through histidine tags for purification or catalysis. Chemistry 2011, 17(46):13059-13067. 45. Eum WS, Choung IS, Li MZ, Kang JH, Kim DW, Park J, Kwon HY, Choi SY: HIV-1 Tat-mediated protein transduction of Cu,Zn-superoxide dismutase into pancreatic beta cells in vitro and in vivo. Free radical biology & medicine 2004, 37(3):339-349. 46. Lee JA, Song HY, Ju SM, Lee SJ, Kwon HJ, Eum WS, Jang SH, Choi SY, Park JS: Differential regulation of inducible nitric oxide synthase and cyclooxygenase-2 expression by superoxide dismutase in lipopolysaccharide stimulated RAW 264.7 cells. Experimental & molecular medicine 2009, 41(9):629-637. 47. Messmer UK, Briner VA, Pfeilschifter J: Tumor necrosis factor-alpha and lipopolysaccharide induce apoptotic cell death in bovine glomerular endothelial cells. Kidney international 1999, 55(6):2322-2337. 48. Yang WL, Sun AY: Paraquat-induced free radical reaction in mouse brain microsomes. Neurochem Res 1998, 23(1):47-53. 49. Li X, Sun AY: Paraquat induced activation of transcription factor AP-1 and apoptosis in PC12 cells. J Neural Transm 1999, 106(1):1-21. 50. Bindokas VP, Jordan J, Lee CC, Miller RJ: Superoxide production in rat hippocampal neurons: Selective imaging with hydroethidine. J Neurosci 1996, 16(4):1324-1336. 51. Chuang CY, Chen TL, Cherng YG, Tai YT, Chen TG, Chen RM: Lipopolysaccharide induces apoptotic insults to human alveolar epithelial A549 cells through reactive oxygen species-mediated activation of an intrinsic mitochondrion-dependent pathway. Archives of toxicology 2011, 85(3):209-218. 52. Tusell JM, Saura J, Serratosa J: Absence of the cell cycle inhibitor p21Cip1 reduces LPS-induced NO release and activation of the transcription factor NF-kappaB in mixed glial cultures. Glia 2005, 49(1):52-58. 53. Vida TA, Emr SD: A New Vital Stain for Visualizing Vacuolar Membrane Dynamics and Endocytosis in Yeast. J Cell Biol 1995, 128(5):779-792. Chapter 3: Nanoparticles as Nuclear Translocation Blocker: Nuclear factor κB (NF-κB) 1. Giljohann DA, Mirkin CA: Drivers of biodiagnostic development. Nature 2009, 462(7272):461-464. 2. Ferrari M: Cancer nanotechnology: opportunities and challenges. Nature reviews Cancer 2005, 5(3):161-171. 3. Kaffman A, O'Shea EK: Regulation of nuclear localization: A key to a door. Annu Rev Cell Dev Bi 1999, 15:291-339. 4. Johnson HM, Subramaniam PS, Olsnes S, Jans DA: Trafficking and signaling pathways of nuclear localizing protein ligands and their receptors. BioEssays : news and reviews in molecular, cellular and developmental biology 2004, 26(9):993-1004. 5. Cyert MS: Regulation of nuclear localization during signaling. The Journal of biological chemistry 2001, 276(24):20805-20808. 6. Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH: Classical nuclear localization signals: definition, function, and interaction with importin alpha. The Journal of biological chemistry 2007, 282(8):5101-5105. 7. Lott K, Cingolani G: The importin beta binding domain as a master regulator of nucleocytoplasmic transport. Biochimica et biophysica acta 2011, 1813(9):1578-1592. 8. Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA: Importin alpha: a multipurpose nuclear-transport receptor. Trends in cell biology 2004, 14(9):505-514. 9. Karin M, Cao Y, Greten FR, Li ZW: NF-kappaB in cancer: from innocent bystander to major culprit. Nature reviews Cancer 2002, 2(4):301-310. 10. Hayden MS, Ghosh S: Shared principles in NF-kappaB signaling. Cell 2008, 132(3):344-362. 11. Jiang XR, Song A, Bergelson S, Arroll T, Parekh B, May K, Chung S, Strouse R, Mire-Sluis A, Schenerman M: Advances in the assessment and control of the effector functions of therapeutic antibodies. Nature reviews Drug discovery 2011, 10(2):101-111. 12. Davis ME, Chen ZG, Shin DM: Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature reviews Drug discovery 2008, 7(9):771-782. 13. Allen TM: Ligand-targeted therapeutics in anticancer therapy. Nature reviews Cancer 2002, 2(10):750-763. 14. Marcucci F, Lefoulon F: Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug discovery today 2004, 9(5):219-228. 15. Scheinberg DA, Villa CH, Escorcia FE, McDevitt MR: Conscripts of the infinite armada: systemic cancer therapy using nanomaterials. Nature reviews Clinical oncology 2010, 7(5):266-276. 16. Shi M, Lu J, Shoichet MS: Organic nanoscale drug carriers coupled with ligands for targeted drug delivery in cancer. J Mater Chem 2009, 19(31):5485-5498. 17. Cho IH, Paek EH, Lee H, Kang JY, Kim TS, Paek SH: Site-directed biotinylation of antibodies for controlled immobilization on solid surfaces. Analytical biochemistry 2007, 365(1):14-23. 18. Thanh NTK, Green LAW: Functionalisation of nanoparticles for biomedical applications. Nano Today 2010, 5(3):213-230. 19. Kamphuis MM, Johnston AP, Such GK, Dam HH, Evans RA, Scott AM, Nice EC, Heath JK, Caruso F: Targeting of cancer cells using click-functionalized polymer capsules. Journal of the American Chemical Society 2010, 132(45):15881-15883. 20. Byrne JD, Betancourt T, Brannon-Peppas L: Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced drug delivery reviews 2008, 60(15):1615-1626. 21. Zhou Y, Tian XL, Li YS, Pan FG, Zhang YY, Zhang JH, Yang L, Wang XR, Ren HL, Lu SY et al: An enhanced ELISA based on modified colloidal gold nanoparticles for the detection of Pb(II). Biosensors & bioelectronics 2011, 26(8):3700-3704. 22. Tian D, Duan C, Wang W, Cui H: Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling. Biosensors & bioelectronics 2010, 25(10):2290-2295. 23. Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S, Muders M, Wang S, Buhrow SA, Safgren SL et al: Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer research 2008, 68(6):1970-1978. 24. Jiang W, Kim BY, Rutka JT, Chan WC: Nanoparticle-mediated cellular response is size-dependent. Nature nanotechnology 2008, 3(3):145-150. 25. Dobrovolskaia MA, McNeil SE: Immunological properties of engineered nanomaterials. Nature nanotechnology 2007, 2(8):469-478. 26. Dobrovolskaia MA, Germolec DR, Weaver JL: Evaluation of nanoparticle immunotoxicity. Nature nanotechnology 2009, 4(7):411-414. 27. Yang HM, Park CW, Woo MA, Kim MI, Jo YM, Park HG, Kim JD: HER2/neu Antibody Conjugated Poly(amino acid)-Coated Iron Oxide Nanoparticles for Breast Cancer MR Imaging. Biomacromolecules 2010, 11(11):2866-2872. 28. McCarron PA, Marouf WM, Quinn DJ, Fay F, Burden RE, Olwill SA, Scott CJ: Antibody targeting of camptothecin-loaded PLGA nanoparticles to tumor cells. Bioconjugate chemistry 2008, 19(8):1561-1569. 29. Lu W, Zhang G, Zhang R, Flores LG, 2nd, Huang Q, Gelovani JG, Li C: Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer research 2010, 70(8):3177-3188. 30. Hattori Y, Sakaguchi M, Maitani Y: Folate-linked lipid-based nanoparticles deliver a NFkappaB decoy into activated murine macrophage-like RAW264.7 cells. Biological & pharmaceutical bulletin 2006, 29(7):1516-1520. 31. Kimura S, Egashira K, Chen L, Nakano K, Iwata E, Miyagawa M, Tsujimoto H, Hara K, Morishita R, Sueishi K et al: Nanoparticle-mediated delivery of nuclear factor kappaB decoy into lungs ameliorates monocrotaline-induced pulmonary arterial hypertension. Hypertension 2009, 53(5):877-883. 32. Garg A, Aggarwal BB: Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia 2002, 16(6):1053-1068. 33. Anto RJ, Mukhopadhyay A, Shishodia S, Gairola CG, Aggarwal BB: Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha): correlation with induction of cyclooxygenase-2. Carcinogenesis 2002, 23(9):1511-1518. 34. Darnell JE, Jr.: Transcription factors as targets for cancer therapy. Nature reviews Cancer 2002, 2(10):740-749. 35. Richmond A: Nf-kappa B, chemokine gene transcription and tumour growth. Nature reviews Immunology 2002, 2(9):664-674. 36. Duffey DC, Chen Z, Dong G, Ondrey FG, Wolf JS, Brown K, Siebenlist U, Van Waes C: Expression of a dominant-negative mutant inhibitor-kappaBalpha of nuclear factor-kappaB in human head and neck squamous cell carcinoma inhibits survival, proinflammatory cytokine expression, and tumor growth in vivo. Cancer research 1999, 59(14):3468-3474. 37. Duffey DC, Crowl-Bancroft CV, Chen Z, Ondrey FG, Nejad-Sattari M, Dong G, Van Waes C: Inhibition of transcription factor nuclear factor-kappaB by a mutant inhibitor-kappaBalpha attenuates resistance of human head and neck squamous cell carcinoma to TNF-alpha caspase-mediated cell death. British journal of cancer 2000, 83(10):1367-1374. 38. Jackson-Bernitsas DG, Ichikawa H, Takada Y, Myers JN, Lin XL, Darnay BG, Chaturvedi MM, Aggarwal BB: Evidence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway mediates constitutive NF-kappaB activation and proliferation in human head and neck squamous cell carcinoma. Oncogene 2007, 26(10):1385-1397. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17474 | - |
| dc.description.abstract | 中孔洞二氧化矽奈米粒子是一個具有多功能型的奈米材料,加上具有高表面積、孔體積、高熱穩定性以及容易在表面進行特殊官能基團修飾等優點的性質,所以廣泛的被應用在催化反應、離子交換等方面,具有相當高的應用價值。近幾年的研究發現,中孔洞二氧化矽奈米粒子具有相當好的生物相容性,以及可以有效率的被生物細胞進行吞噬,被認為是極具潛力的新穎材料,因此有許多的奈米生醫相關應用的研究被大量發表。例如傳遞藥物及基因的載體、醫學造影像以及生物偵測等等。
在本論文第一部分,主要是利用蛋白質工程結合中孔洞二氧化矽奈米粒子的概念,我們是第一個在中孔洞二氧化矽奈米粒子材料上證明變性的蛋白質可以藉由chaperones進行再折疊,成為一個具有生物活性的蛋白質,應用在蛋白質或酵素治療上之新穎研究。 主論文第二部分,在提出一個以奈米粒子作為細胞訊號傳遞的調控者之創新概念,我們設計了一個結合NF-κB p65抗體與HIV 1上TAT胜肽的聰穎中孔洞二氧化矽奈米粒子,藉由抗體辨識及奈米材料的物理性質(尺寸)所造成的立體障礙,直接有效抑制癌細胞內p65的活化更進一步抑制癌細胞的增生。我們同時證明了利用奈米粒子對細胞中核蛋白來進行調控之想法的可行性。 | zh_TW |
| dc.description.abstract | Mesoporous silica nanoparticle (MSN) is one of the promising nanoparticles to serve as a multifunctional vehicle due to its high surface area, uniform pore size, easy functionalization, and biocompatibility. Therefore, it becomes highly suitable for biological applications. In additional to traditional applications of mesoporous silica such as catalysis and chromatography, biomedical applications of MSN such as enzyme immobilization, gene transfection, bioimage and drug delivery agents have recently gained much attention.
In the first part of the thesis, the strategy is to combine an engineered protein with MSN to demonstrate the denature protein refolded back into its native form which is probably regulated by chaperones in cells. Our result is the first to report that the denature superoxide dismutase (SOD) enzyme carried by MSN has refolded in the cell and exhibits cellular SOD activity. This novel study can be applied to a protein or enzyme-base therapy in the future. In the second part, we proposed nanoparticles served as nuclear translocation blocker by conjugating antibody to interact with transcriptional activator in the cellular signaling pathways. We first designed a smart functionalized MSN to conjugate nuclear factor-κB (NF-κB) anti-p65 antibody and human immunodeficiency virus 1 (HIV 1) transactivating domain which associated with non-endocytosis and nuclear pore complex (NPC) trapping. This smart MSN particle did exhibit cellular penetration and bind NF-κB p65 when activation, via size hindrance to disrupt the p65 translocation, downstream gene transcription and cell proliferation. Unlike existing research, our results demonstrated a novel idea to use nanoparticles as nuclear translocation blocker for further signal regulation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:15:12Z (GMT). No. of bitstreams: 1 ntu-102-D96223202-1.pdf: 40436183 bytes, checksum: bac3d9e1996be017f7e583ab2df715a0 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Table of Contents
中文摘要……………………………………….…………………………………….I Abstract…………………………………………………..…………………………II Table of Contents………………………………...………………………………IV List of Figures………………………………………...………………………...VIII List of Schemes……………………………..…………………………………..XIII List of Tables……………………………………………………………………XIV Chapter 1: General Introduction .1 1.1 Introduction .2 1.1.1 Brief History of Mesoporous Silica Nanoparticles (MSN) .2 1.1.2 General Introduction of Porous Materials .4 1.1.2.1 Synthesis Mechanism and Pathway of Mesopores Silica Materials. 5 1.1.3 Mesoporous Silica Nanoparticles (MSN) .7 1.1.3.1 Synthesis of MSN.. ... 8 1.1.3.2 Functionalization of MSN. 12 1.1.4 Biological Research Application of MSN 15 1.1.4.1 MSN-Based Drug Delivery System………………………... 16 1.1.4.2 Drug Delivery. 18 1.1.4.3 Protein Delivery. 20 1.1.4.4 Gene Delivery. 21 1.2 References 23 Chapter 2: A New Strategy for Intracellular Delivery of Enzyme Using Mesoporous Silica Nanoparticles: Superoxide Dismutase .30 Abstract .31 2.1 Introduction 33 2.1.1 Protein-Base Therapy 33 2.1.1.1 Nanoparticles (NPs) as a Carrier for Delivery of Protein: 33 2.1.1.2 Fusogenic Peptides (TAT) to Increase Cell Uptake and Avoid Endosome Trapping: 36 2.1.2 Mesoporous Silica Nanoparticle (MSN) on Biomedicine 37 2.1.3 Reactive Oxygen Species (ROS) and Superoxide Dismutase (SOD) 37 2.1.4 Our Strategy: A New Method for Protein Delivery by MSN. 38 2.1.4.1 TAT-SOD Fusion Protein was Conjugated to FMSN 38 2.1.4.2 The Denature SOD could be Refolded by Intracellular Chaperones. 39 2.1.5 Summary 40 2.2 Experimental Section 42 2.2.1 Synthesis of Green Fluorescent Mesoporous Silica Nanoparticles 42 2.2.2 Synthetic Scheme for NTA-Silane Linker: 42 2.2.3 Conjugation of NTA-Silane and Ni(II) with MSN (FMSN-Ni-NTA) 43 2.2.4 Immobilization of His-TAT-SOD Proteins with FMSN-Ni-NTA 44 2.2.5 Cell Lines and Reagents 44 2.2.6 Isolation of the Full-Length Human Cu,Zn-SOD 45 2.2.7 Construction of Expression Clones 45 2.2.8 Expression and Purification of Recombinant Proteins 46 2.2.9 Cell Culture 46 2.2.10 Western Blot Analysis 47 2.2.11 Immunocytochemical Staining for TAT-SOD Expression 47 2.2.12 Determination of Superoxide Dismutase Activity 48 2.2.13 Cell Viability Assay 49 2.2.14 Superoxide detection 49 2.2.15 Powder X-ray Diffraction (XRD) 50 2.2.16 Nitrogen Adsorption-Desorption Isotherms 50 2.2.17 Transmission Electron Microscopy (TEM) 50 2.2.18 Flow Cytometry Analysis 51 2.2.19 Endosome Staining of HeLa cells 51 2.3 Results and Discussion 52 2.3.1 Characterization of TAT-SOD and TAT-SOD Bioconjugate Formation with MSN Nanoparticles. .52 2.3.2 Delivery of MSN-TAT-SOD into HeLa Cells and SOD Specific Enzymes Activity Assay. .57 2.3.3 MSN-TAT-SOD Decreases LPS-Induced Apoptosis Through the Inhibition of Caspase 9 and p21 in HeLa Cells 61 2.3.4 Effect of Metal Ion and TAT Peptide on the Delivery of MSN-TAT-SOD. 65 2.4 Conclusion 72 2.5 References 73 2.6 Appendix 83 Chapter 3: Nanoparticles as Nuclear Translocation Blocker: Nuclear Factor-κB (NF-κB) 85 Abstract 86 3.1 Introduction 88 3.1.1 Nuclear Translocation 88 3.1.2 NF-κB: A Good Target for Cancer Therapy 89 3.1.3 NF-κB Inactivation: Strategy for Cancer Therapy 90 3.1.4 Antibody Targeting as a Cancer Therapy 90 3.1.5 Nanoparticles and Tumors. 91 3.1.6 Conjugation Antibody to Nanoparticles. 92 3.1.7 Antibody-Conjugated Nanoparticles for Biomedical Applications. 93 3.1.8 Our Strategy: To Build Nanoparticles as p65 Nuclear Translocation Blockers through Antibody Targeting Associated with Non-Endocytosis and NPC Trapping 95 3.1.9 Summary .97 3.2 Experimental Section 98 3.2.1 Synthesis of Green Fluorescent Mesoporous Silica Nanoparticles (MSN) .98 3.2.2 Preparation of Amine-Functionalized MSN (MSN-APTMS) 98 3.2.3 Conjugation of PEGlLinker with MSN-APTMS (MSN-PEG2k, MSN-PEG3.4k) 99 3.2.4 Immobilization of p65 Antibody on MSN-PEG 3.4k 100 3.2.5 Synthesis of TAT Conjugated MSN-PEG 3.4k-Ab 100 3.2.6 Transmission Electron Microscopy (TEM) 100 3.2.7 Cell Culture 101 3.2.8 Western Blotting Analysis 101 3.2.9 Cytotoxicity of MSN-PEG2k, MSN-PEG3.4k and in Vitro Pull-Down Assay of MSN-PEG3.4k-Ab-TAT 102 3.2.10 Cell Viability Assay .102 3.2.11 Immunocytochemical Staining for p65 Expression 103 3.2.12 3D-Confocal Microscopy 103 3.3 Results and Discussion 105 3.3.1 Surface Functionalization and Chemical Characterization of MSN. 105 3.3.2 Cytotoxicity of MSN-PEG2k, MSN-PEG3.4k and in Vitro Pull-Down Assay of MSN-PEG3.4k-Ab-TAT. 109 3.3.3 MSN-PEG3.4k-Ab-TAT Blocks NF-κB p65 Nuclear Translocation. 110 3.3.4 MSN-PEG3.4k-Ab-TAT Blocks NF-κB p65 Translocation in a Dose Dependent Manner. 116 3.3.5 MSN-PEG3.4k-Ab(1:24)-TAT Inhibits the NF-κB p65 Downstream Protein Expression and the Proliferation in HeLa and HNSCC Cells……..……119 3.3.6 MSN-PEG3.4k-Ab(1:24)-TAT Highly Move toward Nucleus is may due to TAT Peptides Interacting with Importins and Enhancing the Blocking Nuclear Translocation………………………………………….. ………123 3.4. Conclusion 126 3.5. References 127 Chapter 4: Conclusin and Perspective 134 Abbreviations 138 | |
| dc.language.iso | en | |
| dc.title | 中孔洞二氧化矽奈米粒子於生物醫學上之應用:酵素輸送及標靶治療 | zh_TW |
| dc.title | Biomedical Application of Mesoporous Silica Nanoparticles:Enzymes Delivery and Target Therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 詹維康,陳建志,陳逸聰,陳 平 | |
| dc.subject.keyword | 中孔洞二氧化矽奈米粒子,超氧化物歧化酵素,立體障礙,癌細胞增生, | zh_TW |
| dc.subject.keyword | Mesoporous silica nanoparticle,superoxide dismutase,hindrance,cancer proliferation, | en |
| dc.relation.page | 141 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-07-31 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 39.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
