Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17461
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊顯
dc.contributor.authorMin-Jie Huangen
dc.contributor.author黃敏傑zh_TW
dc.date.accessioned2021-06-08T00:14:27Z-
dc.date.copyright2013-08-09
dc.date.issued2013
dc.date.submitted2013-07-31
dc.identifier.citation(1) Lortscher, E. Nature Nanotech. 2013, 8, 381-384.
(2) Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277-283.
(3) Ratner, M. Nature Nanotech. 2013, 8, 378-381.
(4) Liu, H. M.; Wang, N.; Zhao, J. W.; Guo, Y.; Yin, X.; Boey, F. Y. C.; Zhang, H. ChemPhysChem 2008, 9, 1416-1424.
(5) Chen, I.-W. P.; Fu, M.-D.; Tseng, W.-H.; Yu, J.-Y.; Wu, S.-H.; Ku, C.-J.; Chen, C.-h.; Peng, S.-M. Angew. Chem. Int. Ed. 2006, 45, 5814-5818.
(6) Mishchenko, A.; Vonlanthen, D.; Meded, V.; Burkle, M.; Li, C.; Pobelov, I. V.; Bagrets, A.; Viljas, J. K.; Pauly, F.; Evers, F.; Mayor, M.; Wandlowski, T. Nano Lett. 2010, 10, 156-163.
(7) Li, X. L.; He, J.; Hihath, J.; Xu, B. Q.; Lindsay, S. M.; Tao, N. J. J. Am. Chem. Soc. 2006, 128, 2135-2141.
(8) Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nature 2006, 442, 904-907.
(9) Ko, C.-H.; Huang, M.-J.; Fu, M.-D.; Chen, C.-h. J. Am. Chem. Soc. 2010, 132, 756-764.
(10) Tian, J. H.; Yang, Y.; Zhou, X. S.; Schollhorn, B.; Maisonhaute, E.; Chen, Z. B.; Yang, F. Z.; Chen, Y.; Amatore, C.; Mao, B. W.; Tian, Z. Q. ChemPhysChem 2010, 11, 2745-2755.
(11) Aradhya, S. V.; Venkataraman, L. Nature Nanotech. 2013, 8, 399-410.
(12) Ohnishi, H.; Kondo, Y.; Takayanagi, K. Nature 1998, 395, 780-783.
(13) Zhou, X.-S.; Wei, Y.-M.; Liu, L.; Chen, Z.-B.; Tang, J.; Mao, B.-W. J. Am. Chem. Soc. 2008, 130, 13228-13230.
(14) Moreland, J.; Ekin, J. W. J. Appl. Phys. 1985, 58, 3888-3895.
(15) Muller, C. J.; Vanruitenbeek, J. M.; Dejongh, L. J. Phys. Rev. Lett. 1992, 69, 140-143.
(16) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science 1997, 278, 252-254.
(17) Gonzalez, M. T.; Wu, S. M.; Huber, R.; van der Molen, S. J.; Schonenberger, C.; Calame, M. Nano Lett. 2006, 6, 2238-2242.
(18) Xu, B.; Tao, N. J. Science 2003, 301, 1221-1223.
(19) Xu, B. Q.; Xiao, X. Y.; Tao, N. J. J. Am. Chem. Soc. 2003, 125, 16164-16165.
(20) Guo, S. Y.; Hihath, J.; Diez-Perez, I.; Tao, N. J. J. Am. Chem. Soc. 2011, 133, 19189-19197.
(21) Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge 2001.
(22) Salomon, A.; Cahen, D.; Lindsay, S.; Tomfohr, J.; Engelkes, V. B.; Frisbie, C. D. Adv. Mater. 2003, 15, 1881-1890.
(23) Karthauser, S. J. Phys.: Condens. Matter 2011, 23, 013001.
(24) McCreery, R. L. Chem. Mater. 2004, 16, 4477-4496.
(25) Cuevas, J. C.; Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment; World Scientific: Singapore, 2010.
(26) Simmons, J. G. J. Appl. Phys. 1963, 34, 1793-1803.
(27) Selzer, Y.; Cabassi, M. A.; Mayer, T. S.; Allara, D. L. J. Am. Chem. Soc. 2004, 126, 4052-4053.
(28) Beebe, J. M.; Kim, B.; Gadzuk, J. W.; Frisbie, C. D.; Kushmerick, J. G. Phys. Rev. Lett. 2006, 97, 026801.
(29) Choi, S. H.; Kim, B.; Frisbie, C. D. Science 2008, 320, 1482-1486.
(30) Beebe, J. M.; Kim, B.; Frisbie, C. D.; Kushmerick, J. G. ACS Nano 2008, 2, 827-832.
(31) Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Nature 2009, 462, 1039-1043.
(32) Huisman, E. H.; Guedon, C. M.; van Wees, B. J.; van der Molen, S. J. Nano Lett. 2009, 9, 3909-3913.
(33) Park, Y. S.; Whalley, A. C.; Kamenetska, M.; Steigerwald, M. L.; Hybertsen, M. S.; Nuckolls, C.; Venkataraman, L. J. Am. Chem. Soc. 2007, 129, 15768-15769.
(34) Parameswaran, R.; Widawsky, J. R.; Vazquez, H.; Park, Y. S.; Boardman, B. M.; Nuckolls, C.; Steigerwald, M. L.; Hybertsen, M. S.; Venkataraman, L. J. Phys. Chem. Lett. 2010, 1, 2114-2119.
(35) Cheng, Z. L.; Skouta, R.; Vazquez, H.; Widawsky, J. R.; Schneebeli, S.; Chen, W.; Hybertsen, M. S.; Breslow, R.; Venkataraman, L. Nature Nanotech. 2011, 6, 353-357.
(36) Klausen, R. S.; Widawsky, J. R.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. J. Am. Chem. Soc. 2012, 134, 4541-4544.
(37) Yamada, R.; Kumazawa, H.; Noutoshi, T.; Tanaka, S.; Tada, H. Nano Lett. 2008, 8, 1237-1240.
(38) He, J.; Chen, F.; Li, J.; Sankey, O. F.; Terazono, Y.; Herrero, C.; Gust, D.; Moore, T. A.; Moore, A. L.; Lindsay, S. M. J. Am. Chem. Soc. 2005, 127, 1384-1385.
(39) Liu, K.; Li, G. R.; Wang, X. H.; Wang, F. S. J. Phys. Chem. C 2008, 112, 4342-4349.
(40) Wang, C. S.; Batsanov, A. S.; Bryce, M. R.; Martin, S.; Nichols, R. J.; Higgins, S. J.; Garcia-Suarez, V. M.; Lambert, C. J. J. Am. Chem. Soc. 2009, 131, 15647-15654.
(41) Schneebeli, S. T.; Kamenetska, M.; Cheng, Z. L.; Skouta, R.; Friesner, R. A.; Venkataraman, L.; Breslow, R. J. Am. Chem. Soc. 2011, 133, 2136-2139.
(42) Kiguchi, M.; Takahashi, T.; Takahashi, Y.; Yamauchi, Y.; Murase, T.; Fujita, M.; Tada, T.; Watanabe, S. Angew. Chem. Int. Ed. 2011, 50, 5707-5710.
(43) Sedghi, G.; Sawada, K.; Esdaile, L. J.; Hoffmann, M.; Anderson, H. L.; Bethell, D.; Haiss, W.; Higgins, S. J.; Nichols, R. J. J. Am. Chem. Soc. 2008, 130, 8582-8583.
(44) Kiguchi, M.; Inatomi, J.; Takahashi, Y.; Tanaka, R.; Osuga, T.; Murase, T.; Fujita, M.; Tada, T.; Watanabe, S. Angew. Chem. Int. Ed. 2013, 52, 6202-6205.
(45) Battacharyya, S.; Kibel, A.; Kodis, G.; Liddell, P. A.; Gervaldo, M.; Gust, D.; Lindsay, S. Nano Lett. 2011, 11, 2709-2714.
(46) Darwish, N.; Diez-Perez, I.; Da Silva, P.; Tao, N. J.; Gooding, J. J.; Paddon-Row, M. N. Angew. Chem. Int. Ed. 2012, 51, 3203-3206.
(47) Guedon, C. M.; Valkenier, H.; Markussen, T.; Thygesen, K. S.; Hummelen, J. C.; van der Molen, S. J. Nature Nanotech. 2012, 7, 304-308.
(48) Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Nature Nanotech. 2009, 4, 230-234.
(49) Kamenetska, M.; Quek, S. Y.; Whalley, A. C.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Nuckolls, C.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. J. Am. Chem. Soc. 2010, 132, 6817-6821.
(50) Aradhya, S. V.; Frei, M.; Hybertsen, M. S.; Venkataraman, L. Nature Mater. 2012, 11, 872-876.
(51) Chen, F.; Li, X. L.; Hihath, J.; Huang, Z. F.; Tao, N. J. J. Am. Chem. Soc. 2006, 128, 15874-15881.
(52) Frei, M.; Aradhya, S. V.; Hybertsen, M. S.; Venkataraman, L. J. Am. Chem. Soc. 2012, 134, 4003-4006.
(53) Hong, W. J.; Manrique, D. Z.; Moreno-Garcia, P.; Gulcur, M.; Mishchenko, A.; Lambert, C. J.; Bryce, M. R.; Wandlowski, T. J. Am. Chem. Soc. 2012, 134, 2292-2304.
(54) Kiguchi, M.; Miura, S.; Hara, K.; Sawamura, M.; Murakoshi, K. Appl. Phys. Lett. 2006, 89, 213104.
(55) Zotti, L. A.; Kirchner, T.; Cuevas, J. C.; Pauly, F.; Huhn, T.; Scheer, E.; Erbe, A. Small 2010, 6, 1529-1535.
(56) Kiguchi, M.; Tal, O.; Wohlthat, S.; Pauly, F.; Krieger, M.; Djukic, D.; Cuevas, J. C.; van Ruitenbeek, J. M. Phys. Rev. Lett. 2008, 101, 046801.
(57) Yelin, T.; Vardimon, R.; Kuritz, N.; Korytar, R.; Bagrets, A.; Evers, F.; Kronik, L.; Tal, O. Nano Lett. 2013, 13, 1956-1961.
(58) Chen, W. B.; Widawsky, J. R.; Vazquez, H.; Schneebeli, S. T.; Hybertsen, M. S.; Breslow, R.; Venkataraman, L. J. Am. Chem. Soc. 2011, 133, 17160-17163.
(59) Beebe, J. M.; Engelkes, V. B.; Miller, L. L.; Frisbie, C. D. J. Am. Chem. Soc. 2002, 124, 11268-11269.
(60) Engelkes, V. B.; Beebe, J. M.; Frisbie, C. D. J. Am. Chem. Soc. 2004, 126, 14287-14296.
(61) Kim, B.; Choi, S. H.; Zhu, X. Y.; Frisbie, C. D. J. Am. Chem. Soc. 2011, 133, 19864-19877.
(62) Kim, T.; Vazquez, H. c.; Hybertsen, M. S.; Venkataraman, L. Nano Lett. 2013, 13, 3358-3364.
(63) Kiguchi, M.; Takahashi, T.; Takahashi, Y.; Yamauchi, Y.; Murase, T.; Fujita, M.; Tada, T.; Watanabe, S. Angew Chem Int Edit 2011, 50, 5707-5710.
(64) Huber, R.; Gonzalez, M. T.; Wu, S.; Langer, M.; Grunder, S.; Horhoiu, V.; Mayor, M.; Bryce, M. R.; Wang, C. S.; Jitchati, R.; Schonenberger, C.; Calame, M. J. Am. Chem. Soc. 2008, 130, 1080-1084.
(65) Park, Y. S.; Widawsky, J. R.; Kamenetska, M.; Steigerwald, M. L.; Hybertsen, M. S.; Nuckolls, C.; Venkataraman, L. J. Am. Chem. Soc. 2009, 131, 10820-10821.
(66) Gorelsky, S. I. AOMix: Program for Molecular Orbital Analysis; University of Ottawa, 2009, http://www.sg-chem.net/.
(67) Costa-Kramer, J. L.; Garcia, N.; Garcia-Mochales, P.; Serena, P. A.; Marques, M. I.; Correia, A. Phys. Rev. B 1997, 55, 5416-5424.
(68) Rodrigues, V.; Bettini, J.; Silva, P. C.; Ugarte, D. Phys. Rev. Lett. 2003, 91, 096801.
(69) Kiguchi, M.; Murakoshi, K. Appl. Phys. Lett. 2006, 88, 253112.
(70) Li, J.; Kanzaki, T.; Murakoshi, K.; Nakato, Y. Appl. Phys. Lett. 2002, 81, 123-125.
(71) Matsuda, T.; Kizuka, T. Jpn. J. Appl. Phys. 2007, 46, 4370-4374
(72) Csonka, S.; Halbritter, A.; Mihaly, G.; Shklyarevskii, O. I.; Speller, S.; van Kempen, H. Phys. Rev. Lett. 2004, 93, 016802
(73) Olesen, L.; Laegsgaard, E.; Stensgaard, I.; Besenbacher, F.; Schiotz, J.; Stoltze, P.; Jacobsen, K. W.; Norskov, J. K. Phys. Rev. Lett. 1994, 72, 2251-2254.
(74) Sirvent, C.; Rodrigo, J. G.; Vieira, S.; Jurczyszyn, L.; Mingo, N.; Flores, F. Phys. Rev. B 1996, 53, 16086-16090.
(75) Pauly, F.; Dreher, M.; Viljas, J. K.; Hafner, M.; Cuevas, J. C.; Nielaba, P. Phys. Rev. B 2006, 74, 235106.
(76) Smogunov, A.; Dal Corso, A.; Tosatti, E. Phys. Rev. B 2008, 78, 014423
(77) Costa-Kramer, J. L. Phys. Rev. B 1997, 55, R4875-R4878.
(78) Jia, C.; Guo, X. Chem. Soc. Rev. 2013, 42, 5642-5660.
(79) Yaliraki, S. N.; Kemp, M.; Ratner, M. A. J. Am. Chem. Soc. 1999, 121, 3428-3434.
(80) Seminario, J. M.; De la Cruz, C. E.; Derosa, P. A. J. Am. Chem. Soc. 2001, 123, 5616-5617.
(81) Zhou, J. F.; Chen, F.; Xu, B. Q. J. Am. Chem. Soc. 2009, 131, 10439-10446.
(82) Yin, C.; Huang, G.-C.; Kuo, C.-K.; Fu, M.-D.; Lu, H.-C.; Ke, J.-H.; Shih, K.-N.; Huang, Y.-L.; Lee, G.-H.; Yeh, C.-Y.; Chen, C.-h.; Peng, S.-M. J. Am. Chem. Soc. 2008, 130, 10090-10092.
(83) Shih, K.-N.; Huang, M.-J.; Lu, H.-C.; Fu, M.-D.; Kuo, C.-K.; Huang, G.-C.; Lee, G.-H.; Chen, C.-h.; Peng, S.-M. Chem. Commun. 2010, 46, 1338-1340.
(84) Ramallo-Loez, J. M.; Giovanetti, L.; Craievich, A. F.; Vicentin, F. C.; Marin-Almazo, M.; Jose-Yacaman, M.; Requejo, F. G. Phys. B 2007, 389, 150-154.
(85) Yang, Z.; Klabunde, K. J.; Sorensen, C. M. J. Phys. Chem. C 2007, 111, 18143-18147.
(86) Fu, M.-D.; Chen, I.-W. P.; Lu, H.-C.; Kuo, C.-T.; Tseng, W.-H.; Chen, C.-h. J. Phys. Chem. C 2007, 111, 11450-11455.
(87) Kim, B.; Beebe, J. M.; Jun, Y.; Zhu, X. Y.; Frisbie, C. D. J. Am. Chem. Soc. 2006, 128, 4970-4971.
(88) Cohen, R.; Stokbro, K.; Martin, J. M. L.; Ratner, M. A. J. Phys. Chem. C 2007, 111, 14893-14902.
(89) Li, X. L.; Hihath, J.; Chen, F.; Masuda, T.; Zang, L.; Tao, N. J. J. Am. Chem. Soc. 2007, 129, 11535-11542.
(90) Bagrets, A.; Arnold, A.; Evers, F. J. Am. Chem. Soc. 2008, 130, 9013-9018.
(91) Hihath, J.; Arroyo, C. R.; Rubio-Bollinger, G.; Tao, N. J.; Agrait, N. Nano Lett. 2008, 8, 1673-1678.
(92) Boulas, C.; Davidovits, J. V.; Rondelez, F.; Vuillaume, D. Phys. Rev. Lett. 1996, 76, 4797-4800.
(93) Wu, S. M.; Gonzalez, M. T.; Huber, R.; Grunder, S.; Mayor, M.; Schonenberger, C.; Calame, M. Nature Nanotech. 2008, 3, 569-574.
(94) Zhou, X. S.; Chen, Z. B.; Liu, S. H.; Jin, S.; Liu, L.; Zhang, H. M.; Xie, Z. X.; Jiang, Y. B.; Mao, B. W. J. Phys. Chem. C 2008, 112, 3935-3940.
(95) Fujihira, M.; Suzuki, M.; Fujii, S.; Nishikawa, A. Phys. Chem. Chem. Phys. 2006, 8, 3876-3884.
(96) Li, C.; Pobelov, I.; Wandlowski, T.; Bagrets, A.; Arnold, A.; Evers, F. J. Am. Chem. Soc. 2008, 130, 318-326.
(97) Kaun, C. C.; Guo, H. Nano Lett. 2003, 3, 1521-1525.
(98) Crljen, Z.; Grigoriev, A.; Wendin, G.; Stokbro, K. Phys. Rev. B 2005, 71, 165316.
(99) Zhou, Y. X.; Jiang, F.; Chen, H.; Note, R.; Mizuseki, H.; Kawazoe, Y. J. Chem. Phys. 2008, 128.
(100) Malen, J. A.; Doak, P.; Baheti, K.; Tilley, T. D.; Segalman, R. A.; Majumdar, A. Nano Lett. 2009, 9, 1164-1169.
(101) Haiss, W.; Martin, S.; Leary, E.; van Zalinge, H.; Higgins, S. J.; Bouffier, L.; Nichols, R. J. J. Phys. Chem. C 2009, 113, 5823-5833.
(102) Basch, H.; Cohen, R.; Ratner, M. A. Nano Lett. 2005, 5, 1668-1675.
(103) Kaun, C. C.; Seideman, T. Phys. Rev. B 2008, 77, 033414.
(104) Sheng, W.; Li, Z. Y.; Ning, Z. Y.; Zhang, Z. H.; Yang, Z. Q.; Guo, H. J. Chem. Phys. 2009, 131, 244714.
(105) Xiao, X.; Xu, B.; Tao, N. J. Nano Lett. 2004, 4, 267-271.
(106) Landauer, R. Phys. Lett. A 1981, 85, 91-93.
(107) Nitzan, A. Annu. Rev. Phys. Chem. 2001, 52, 681-750.
(108) Diez-Perez, I.; Hihath, J.; Lee, Y.; Yu, L. P.; Adamska, L.; Kozhushner, M. A.; Oleynik, I. I.; Tao, N. J. Nature Chem. 2009, 1, 635-641.
(109) Ahn, S.; Aradhya, S. V.; Klausen, R. S.; Capozzi, B.; Roy, X.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Phys. Chem. Chem. Phys. 2012, 14, 13841-13845.
(110) Kaliginedi, V.; Moreno-Garcia, P.; Valkenier, H.; Hong, W. J.; Garcia-Suarez, V. M.; Buiter, P.; Otten, J. L. H.; Hummelen, J. C.; Lambert, C. J.; Wandlowski, T. J. Am. Chem. Soc. 2012, 134, 5262-5275.
(111) Nitzan, A. J. Phys. Chem. A 2001, 105, 2677-2679.
(112) Chen, F.; Tao, N. J. Acc. Chem. Res. 2009, 42, 573-573.
(113) Chen, I.-W. P.; Fu, M.-D.; Tseng, W.-H.; Chen, C.-h.; Chou, C.-M.; Luh, T.-Y. Chem. Commun. 2007, 3074-3076.
(114) Lu, Q.; Liu, K.; Zhang, H. M.; Du, Z. B.; Wang, X. H.; Wang, F. S. ACS Nano 2009, 3, 3861-3868.
(115) Hines, T.; Diez-Perez, I.; Nakamura, H.; Shimazaki, T.; Asai, Y.; Tao, N. J. Am. Chem. Soc. 2013, 135, 3319-3322.
(116) Hines, T.; Diez-Perez, I.; Hihath, J.; Liu, H. M.; Wang, Z. S.; Zhao, J. W.; Zhou, G.; Muellen, K.; Tao, N. J. J. Am. Chem. Soc. 2010, 132, 11658-11664.
(117) Liu, I. P.-C.; Benard, M.; Hasanov, H.; Chen, I.-W. P.; Tseng, W.-H.; Fu, M.-D.; Rohmer, M.-M.; Chen, C.-h.; Lee, G.-H.; Peng, S.-M. Chem. Eur. J. 2007, 13, 8667-8677.
(118) Kim, W. Y.; Choi, Y. C.; Min, S. K.; Cho, Y.; Kim, K. S. Chem. Soc. Rev. 2009, 38, 2319-2333.
(119) Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999, 286, 1550-1552.
(120) Xue, Y. Q.; Datta, S.; Hong, S.; Reifenberger, R.; Henderson, J. I.; Kubiak, C. P. Phys. Rev. B 1999, 59, R7852-R7855.
(121) Cornil, J.; Karzazi, Y.; Bredas, J. L. J. Am. Chem. Soc. 2002, 124, 3516-3517.
(122) Fan, F. R. F.; Lai, R. Y.; Cornil, J.; Karzazi, Y.; Bredas, J. L.; Cai, L. T.; Cheng, L.; Yao, Y. X.; Price, D. W.; Dirk, S. M.; Tour, J. M.; Bard, A. J. J. Am. Chem. Soc. 2004, 126, 2568-2573.
(123) Crivillers, N.; Paradinas, M.; Mas-Torrent, M.; Bromley, S. T.; Rovira, C.; Ocal, C.; Veciana, J. Chem. Commun. 2011, 47, 4664-4666.
(124) Taylor, J.; Brandbyge, M.; Stokbro, K. Phys. Rev. B 2003, 68, 121101.
(125) Seminario, J. M.; Zacarias, A. G.; Tour, J. M. J. Am. Chem. Soc. 2000, 122, 3015-3020.
(126) Galperin, M.; Ratner, M. A.; Nitzan, A. Nano Lett. 2005, 5, 125-130.
(127) Salomon, A.; Arad-Yellin, R.; Shanzer, A.; Karton, A.; Cahen, D. J. Am. Chem. Soc. 2004, 126, 11648-11657.
(128) Xiao, X. Y.; Nagahara, L. A.; Rawlett, A. M.; Tao, N. J. J. Am. Chem. Soc. 2005, 127, 9235-9240.
(129) Mahapatro, A. K.; Ying, J.; Ren, T.; Janes, D. B. Nano Lett. 2008, 8, 2131-2136.
(130) He, J.; Fu, Q.; Lindsay, S.; Ciszek, J. W.; Tour, J. M. J. Am. Chem. Soc. 2006, 128, 14828-14835.
(131) Zhou, J.; Samanta, S.; Guo, C.; Locklin, J.; Xu, B. Nanoscale 2013, 5, 5715-5719.
(132) Gorman, C. B.; Carroll, R. L.; Fuierer, R. R. Langmuir 2001, 17, 6923-6930.
(133) Muralidharan, B.; Datta, S. Phys. Rev. B 2007, 76, 035432.
(134) Migliore, A.; Nitzan, A. ACS Nano 2011, 5, 6669-6685.
(135) Georgiev, V. P.; Sameera, W. M. C.; McGrady, J. E. J. Phys. Chem. C 2012, 116, 20163-20172.
(136) Rohmer, M.-M.; Liu, I. P.-C.; Lin, J.-C.; Chiu, M.-J.; Lee, C.-H.; Lee, G.-H.; Benard, M.; Lopez, X.; Peng, S.-M. Angew. Chem. Int. Ed. 2007, 46, 3533-3536.
(137) Huang, G.-C.; Benard, M.; Rohmer, M.-M.; Li, L.-A.; Chiu, M.-J.; Yeh, C.-Y.; Lee, G.-H.; Peng, S.-M. Eur. J. Inorg. Chem. 2008, 11, 1767-1777.
(138) Liu, I. P. C.; Chen, C. H.; Chen, C. F.; Lee, G. H.; Peng, S. M. Chem. Commun. 2009, 577-579.
(139) Blum, A. S.; Ren, T.; Parish, D. A.; Trammell, S. A.; Moore, M. H.; Kushmerick, J. G.; Xu, G.-L.; Deschamps, J. R.; Pollack, S. K.; Shashidhar, R. J. Am. Chem. Soc. 2005, 127, 10010-10011.
(140) Ying, J.-W.; Liu, I. P.-C.; Xi, B.; Song, Y.; Campana, C.; Zuo, J.-L.; Ren, T. Angew. Chem. Int. Ed. 2010, 49, 954-957.
(141) Lin, S.-Y.; Chen, I.-W. P.; Chen, C.-h.; Hsieh, M.-H.; Yeh, C.-Y.; Lin, T.-W.; Chen, Y.-H.; Peng, S.-M. J. Phys. Chem. B 2004, 108, 959-964.
(142) Kozachuk, O.; Yusenko, K.; Noei, H.; Wang, Y. M.; Walleck, S.; Glaser, T.; Fischer, R. A. Chem. Commun. 2011, 47, 8509-8511.
(143) Estiu, G.; Cukiernik, F. D.; Maldivi, P.; Poizat, O. Inorg. Chem. 1999, 38, 3030-3039.
(144) Georgiev, V. P.; McGrady, J. E. J. Am. Chem. Soc. 2011, 133, 12590-12599.
(145) Georgiev, V. P.; Mohan, P. J.; DeBrincat, D.; McGrady, J. E. Coord. Chem. Rev. 2013, 257, 290-298.
(146) Michaelson, H. B. J. Appl. Phys. 1977, 48, 4729-4733.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17461-
dc.description.abstract在分子電子學的領域中,分子電性是在金屬-分子-金屬(metal-molecule-metal, MMM)的架構下進行量測。理想分子-電極接觸界面的建立與功能性分子導線的設計,對於實現分子電子元件而言是項重要的議題。良好的分子-電極接觸界面會提升電子在接合點的傳遞效率,可以提高分子導電性。為了要探究影響金屬-分子-金屬接合點的原因,以HOMO-LUMO能隙大的飽和烷為分子主體,兩端官能基為‒SH、‒NCS及‒CN,並以金、鈀和鉑三種金屬為電極材料。運用STM-bj (scanning tunneling microscopy break junction)量測單分子導電值,可得結果如下,使用鈀電極的單分子導電值較金電極提升2-3.5倍,且各種頭基與金屬電極的組合皆呈現兩組導電值。對於接觸導電值而言,以鈀作為電極較金電極增加2-5倍,顯示鉑電極的選用是有助於電子在接觸界面的傳遞。根據鍵結角度的計算與Mayer鍵序的分析,頭基與鈀和鉑的界面會形成pi特性,而與金的界面則是以sigma特性為主。在接觸界面處的pi特性形成額外通道提供電子的傳遞,因此對於量測到的單分子電性與接觸導電值而言,分子-電極接觸界面的電子耦合扮演重要的影響因素。此外,藉由Landauer方程式的拆解可獲得分子主體電阻值,對於相同分子主體而言,所推衍出的電阻值會與頭基和電極材料的種類無關。利用tight bonding 模型可說明,拆解出的電阻值只和分子主體的能階有關,並顯示出分子主體結構的導電能力。
為了調控金屬串的導電性,將具有強金屬-金屬作用力的雙核釕金屬和鎳串摻混,合成出Ni–Ru–Ru–Ni–Ni為骨架的異金屬串錯合物。由測量到的導電性顯示,[NiRu2Ni2(tpda)4(NCS)2]的導電值較[Ni5(tpda)4(NCS)2]增加4倍。藉由DFT/B3LYP的分析發現,Ru2的摻混可增加金屬串的平均鍵序並使HOMO-LUMO能隙變窄,故較五核鎳金屬串來得導電。此外,[NiRu2Ni2(tpda)4(NCS)2]在金、鈀和鉑電極上的I-V曲線皆呈現負微分電阻的特性,根據能階軌域的計算與NDR (negative differential resistance)波峰隨金、鈀和鉑電極功函數的位移,可推衍出產生負微分電阻的機制。由於Ru2所貢獻的能階會造成HOMO附近出現不連續能階分佈,電極費米能階與不連續能階間的能量匹配,會導致電子的傳遞由與分子能階匹配的共振穿隧至直接形式的穿隧,因而造成導電值的下降。因此,[NiRu2Ni2(tpda)4(NCS)2]產生負微分電阻的原因,是在HOMO附近的不連續能階分佈所導致。
zh_TW
dc.description.abstractThe development of ideal molecule−electrode contacts and the design of functional molecular wires are critical for the realization of molecular electronics. The good molecule−electrode contacts exhibit efficient charge transportation and thus confer large single-molecule conductance. To derive the intrinsic properties of the MMM contact, the conductance of a series of alkanes terminated with–SH, –NCS, and –CN on Au, Pd and Pt were carried out by using the method of STM-bj. The results show the single-molecule conductance via Pt contact is 2~5-fold superior to those via Au contact. Among the three headgroups, –SH bears the largest contact conductance and –CN is smallest. Such disparity in their conductance can be ascribed to the degree of the headgroup–electrode coupling. Simulated bond angles and Mayer bond order at the contact suggest that π characters are significantly involved at Pt and Pd contacts, while σ characters is preferably adopted at Au contacts. These findings demonstrate that the electronic coupling at the contact plays an important factor on contact conductance and on the measured single-molecule conductance. Moreover, we purpose that the resistance of molecular backbone can be extracted via Landauer formula. The resistance values for the same framework are found to be independent of teminal headgroup and electrode material, manifesting that this approach can evaluate quantitatively the resistance of functional moieties from the measured value.
To tune electric conductance of extended metal atom chains, the first pentametal EMAC (extended metal-atom chain) of heteronuclear backbone was synthesized by mixing a weakly coupled nickel-atom chain with an Ru2 unit, which has strong metal-metal interactions. The resulted Ni‒Ru‒Ru‒Ni‒Ni is 4-fold more conductive than that of its pentanickel analogue. DFT/UB3LYP analysis shows that the incorporation of the Ru2 unit enhances metal-metal interaction and thus results in the conductance superior to that of pentanickel EMAC. Single-molecule I-V characteristic of NiRu2Ni2(tpda)4(NCS)2 exhibits NDR (negative differential resistance) behavior, unobserved for pentanickel or pentaruthenium complexes. A plausible explanation is derived based on the simulation of energy level and the correlation of the NDR peak positions with the EFermi of Au, Pd, and Pt. The energy levels contributed by the Ru2 moiety make the frontier orbitals discrete such that the molecular conductance decreases upon ramping the electrode EFermi from where aligned with the MOs to nonresonant regimes. Thus, the discrete levels near HOMO are accounted for NDR phenomena.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:14:27Z (GMT). No. of bitstreams: 1
ntu-102-D96223115-1.pdf: 7950160 bytes, checksum: 1689ba674a5103ae8e2d068483b06e46 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents謝誌 i
中文摘要 iii
ABSTRACT iv
總目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 金屬量子接觸點的形成 2
1-3 單分子電性的測量方法 4
1-3.1 機械式控制破裂接點法 4
1-3.2 掃描穿隧顯微鏡破裂接點法 6
1-3.3 導電原子力顯微鏡破裂接點法 7
1-3.4 I-V曲線量測技術 8
1-4 導電機制的探討與分析 9
1-4.1 電子的傳遞機制 11
1-4.2 能障高度的分析與獲得 13
1-5 分子主體對單分子電性的影響 16
1-5.1 分子主體的衰減常數 16
1-5.2 分子主體的電阻 18
1-6 分子-電極接觸面對單分子電性的影響 20
1-6.1 鍵結構形 20
1-6.2 化學頭基類型 22
1-6.3 電極材料 26
1-7 研究目的 28
第二章 實驗部分 29
2-1 實驗藥品與耗材 29
2-2 實驗儀器與計算軟體 30
2-3 單分子電性的量測 32
2-3.1 金屬薄膜與探針電極的製備 32
2-3.2 STM break junction實驗方法 33
2-3.3 單分子I-V曲線的量測 35
2-4 氧化還原電位的量測 36
2-5 XPS的量測 36
2-6 拉曼光譜的量測 36
2-7 理論模擬計算 37
2-8 控制實驗 38
2-8.1 金屬原子串導電值 38
2-8.2 空白實驗 40
第三章 分子-電極界面耦合對單分子電性的影響 41
3-1 研究動機 41
3-2 二異硫氰酸基與雙硫醇飽和烷的單分子電性 42
3-2.1 二異硫氰酸基飽和烷和雙硫醇飽和烷在金、鈀和鉑電極上的導電值 42
3-2.2 二異硫氰酸基飽和烷和雙硫醇飽和烷的衰減常數與接觸導電值 43
3-2.3 單分子電性的模擬計算 46
3-2.4 頭基與電極間的鍵結位向與接觸界面的電子耦合 49
3-3 二氰基飽和烷的單分子電性 53
3-3.1 二氰基飽和烷分子在金、鈀和鉑電極上的導電值 53
3-3.2 二氰基飽和烷分子的衰減常數和接觸導電值 56
3-3.3 頭基‐電極界面的吸附能與電子耦合 58
3-3.4 分子電性與穿透函數的模擬計算 61
3-4 分子主體的電子傳遞效能 63
3-4.1 分子橋接系統的傳輸理論 64
3-4.2 分子主體的電阻值 65
3-4.3 以tight-binding model探討分子主體的傳遞效率 68
3-5 總結 72
第四章 五核異金屬串的單分子電性研究 73
4-1 金屬串分子電性簡介 73
4-2 負微分電阻的簡介與機制探討 77
4-3 實驗研究動機 84
4-4 金屬串分子的控制實驗 86
4-5 五核異金屬串的單分子電性量測 86
4-5.1 以金電極系統量測五核金屬串分子的導電值 86
4-5.2 五核金屬串分子的I-V曲線量測 92
4-5.3 以鈀和鉑電極量測NiRu2Ni2(tpda)4(NCS)2的導電值與I-V曲線 93
4-5.4 以分子軌域能階探究NiRu2Ni2(tpda)4(NCS)2的負微分電阻 95
總結 98
第五章 結論 99
參考文獻 100
附錄 106
dc.language.isozh-TW
dc.title五核異金屬串的單分子電性:
分子-電極間電子耦合與負微分電阻性質之探討
zh_TW
dc.titleSingle-Molecule Conductance of Heteropentanuclear Metal String Complexes: Electronic Coupling at Molecule-Electrode Contact and Negative Differential Resistance Behavioren
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee彭旭明,金必耀,鄭建鴻,陳益佳,葉鎮宇
dc.subject.keyword單分子電性,五核異金屬串,電子耦合,負微分電阻,zh_TW
dc.subject.keywordmolecular electronics,molecule?electrode contact,electronic coupling,heteropentanuclear metal string complexes,negative differential resistance,en
dc.relation.page108
dc.rights.note未授權
dc.date.accepted2013-07-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
7.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved