Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17454
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃國倉(Kuo-Tsang Huang)
dc.contributor.authorYu-Heng Chienen
dc.contributor.author簡裕恒zh_TW
dc.date.accessioned2021-06-08T00:14:03Z-
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.citation(2015). 溫室氣體減量及管理法. 中華民國.
Cabeza, L. F., D. Urge-Vorsatz, M. A. McNeil, C. Barreneche and S. Serrano (2014). 'Investigating greenhouse challenge from growing trends of electricity consumption through home appliances in buildings.' Renewable and Sustainable Energy Reviews 36: 188-193.
California Energy Commission (2019). California Titled 24 Alternative Calculation Method Mannual.
European Commission, J. R. C. J., PBL Netherlands Environmental Assessment Agency, (2013). 'Emission Database for Global Atmospheric Research (EDGAR), Release Version 4.2 FT2010.' http://edgar.jrc.ec.europa.eu.
Harvey, L. D. (2008). Energy savings by treating buildings as systems. AIP Conference Proceedings, American Institute of Physics.
Huang, K.-T. and R.-L. Hwang (2016). 'Future trends of residential building cooling energy and passive adaptation measures to counteract climate change: The case of Taiwan.' Applied Energy 184: 1230-1240.
International Energy Agency (1998). 'Mapping the energy future: energy modelling and climate change policy.'
International Energy Agency (2012). 'CO2 Emissions from Fuel Combustion. Beyond 2020 Online Database.' Available at: http://data.iea.org.
International Energy Agency (2012). 'Energy Technology Perspectives 2012: Pathways to a Clean Energy System.'
International Energy Agency (2013). 'IEA Online Data Services.' Available at http://data.iea.org/ieastore/statslisting.asp.
International Energy Agency and United Nations Environment Programme (2019). '2019 Global Status Report for Buildings and Construction.'
IPCC (2014). 'Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.'
Isaac, M. and D. P. Van Vuuren (2009). 'Modeling global residential sector energy demand for heating and air conditioning in the context of climate change.' Energy policy 37(2): 507-521.
Lucon O., D. Ü.-V., A. Zain Ahmed, H. Akbari, P. Bertoldi, L. F. Cabeza, N. Eyre, A. Gadgil, L. D. D. Harvey, Y. Jiang, E. Liphoto, S. Mirasgedis, S. Murakami, J. Parikh, C. Pyke, and M. V. Vilariño (2014). 'Buildings.' Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Shimoda, Y., T. Asahi, A. Taniguchi and M. Mizuno (2007). 'Evaluation of city-scale impact of residential energy conservation measures using the detailed end-use simulation model.' Energy 32(9): 1617-1633.
Shimoda, Y., T. Fujii, T. Morikawa and M. Mizuno (2004). 'Residential end-use energy simulation at city scale.' Building and environment 39(8): 959-967.
Shimoda, Y., Y. Yamaguchi, T. Okamura, A. Taniguchi and Y. Yamaguchi (2010). 'Prediction of greenhouse gas reduction potential in Japanese residential sector by residential energy end-use model.' Applied Energy 87(6): 1944-1952.
Swan, L. G. and V. I. Ugursal (2009). 'Modeling of end-use energy consumption in the residential sector: A review of modeling techniques.' Renewable and Sustainable Energy Reviews 13(8): 1819-1835.
van Ruijven, B. J., D. P. van Vuuren, B. J. De Vries, M. Isaac, J. P. van der Sluijs, P. L. Lucas and P. Balachandra (2011). 'Model projections for household energy use in India.' Energy Policy 39(12): 7747-7761.
內政部戶政司全球資訊網. '人口統計資料庫.' Retrieved 6/18, 2020, from https://www.ris.gov.tw/app/portal/674.
內政部建築研究所 (2014). 綠建築評估手冊-基本型.
內政部營建署 (2006). 臺閩地區住宅狀況調查.
台灣自來水全球資訊網. '每度用水排放二氧化碳(CO2)約當量.' Retrieved 6/18, 2020, from https://www.water.gov.tw/ch/Subject/Detail/2269?nodeId=813.
行政院主計總處 (2010). 人口及住宅普查.
行政院主計總處 (2016). '行業標準分類.'
行政院環境保護署 (2018). '溫室氣體減量推動方案.'
行政院環境保護署 (2019). '2019年中華民國國家溫室氣體排放清冊報告.'
何明錦 and 黃國倉 (2013). '臺灣建築能源模擬解析用逐時標準氣象資料TMY3之建置與研究.' 內政部建築研究所協同研究報告.
李孟杰 (2006). '住宅生活熱水使用耗能評估與節能方法之研究.' 國立臺灣科技大學博士論文.
林憲德 (2018). '建築產業碳足跡.'
林憲德 and 賴柏亨 (2010). '辦公大樓空調形式與耗能特性之研究.' 建築學報(74): 27-44.
郭柏巖 (2005). '住宅耗電實測解析與評估系統之研究.' 國立成功大學建築研究所博士論文.
郭瑾瑋, 周裕豐, 洪明龍 and 劉子衙 (2015). '應用臺灣TIMES模型進行我國長期電力供需規劃.' 臺灣能源期刊 第2卷第4期.
郭瑾瑋, 周裕豐, 溫珮伶, 李孟穎 and 徐昕煒 (2017). '臺灣 TIMES 能源工程模型指引.' 工研院綠能與環境研究所.
郭瑾瑋, 溫珮伶, 徐昕煒, 周裕豐 and 李孟穎 (2017). '臺灣能源工程模型:住服部門.' 工研院綠能與環境研究所.
經濟部 (2018). '能源部門溫室氣體排放管制行動方案(第一期階段)核定本.'
經濟部能源局 (2018). '107年(2018)能源平衡表.'
經濟部能源局 (2018). '2018非生產性質行業能源查核年報.'
經濟部能源局 (2019). 107年度電力碳排係數.
經濟部能源局 (2019). '108年 (2019) 能源平衡表.'
經濟部能源局 (2019). 2019非生產性質行業能源查核年報.
經濟部能源局 (2019). '我國燃料燃燒二氧化碳排放統計與分析.'
鄭凱文 (2004). 家用太陽能熱水器輔助電熱器耗能因子分析. 碩士, 國立成功大學.
羅時麒, 黃瑞隆 and 黃國倉 (2017). '基於未來氣候的住宅溫室氣體排放趨勢預測與調適策略.' 內政部建築研究所協同研究期末報告.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17454-
dc.description.abstract在國內溫室氣體減量及管理法通過後,規範各部會需針對未來可能的溫室氣體排放量進行管制及減量,而本研究之目的為探討在國內人口及經濟發展之情況下,並考慮未來氣候變遷之條件,商辦建築溫室氣體排放量的變化,以及在改善商辦建築外殼隔熱性能之策略下,其帶來之效益,供住商部門參考。
本研究採用由下而上之模擬方式,依照商辦建築之使用情形建立耗能模擬模型,模型包含空調、照明及事務設備之推估公式。在空調耗能模擬方面利用蒙地卡羅設計法及拉丁超立方抽樣設計1000個商辦建築案例,其參數包括外殼性能、空調設備、室內條件等,並將模型代入EnergyPlus進行模擬,氣象條件則採用標準氣象年與全球大氣環流模式所產製的未來逐時氣象年,藉以模擬未來空調耗能密度之分布,照明及事務設備則參考過去文獻設定其使用密度以及運轉時間以推求其耗能密度之分布,接著利用未來商辦之樓地板面積,即可求得未來商辦建築之空調、照明及事務設備之耗能。由於其餘設備之占比較少,因此擬採用比例推估之方式計算。
推估結果顯示,由於未來的氣溫將微幅上升,以及經濟發展之情況下,未來2035年之商辦建築總耗電量將比2000年上升31.3%,溫室氣體排放量參考溫管法以2005年為基準年,若發電結構維持現況,2025年之排放量可能增加10.4%;若未來發電結構改變,參考能源局公告之電力碳排係數推估,2025年之排放量預計減少18.3%。
本研究之商辦建築溫室氣體減量策略將改善建築外殼中的外牆U值與窗玻璃之日射透過率 (SHGC),並從原有的1000個案例中挑出外殼性能較差的案例進行改善,採EnergyPlus模擬的方式探討其改善計畫帶來之效益,結果顯示改善策略執行完畢時可為該年帶來3%的減量效益。
zh_TW
dc.description.abstractAfter the Greenhouse Gas Reduction and Management Act passed in Taiwan, it stipulates that government agencies have to establish strategies to reduce and manage greenhouse gas (GHG) emissions. The purpose of this study is to predict nationwide GHG emissions in commercial office buildings considering population growth, economic development and climate change in future and the benefits of the reduction strategies of improving the thermal performance of the building envelope.
This study developed a bottom-up simulation model based on the occupants’ behavior, including the energy consumption of cooling, lighting and equipment. In terms of cooling energy consumption simulation, 1000 cases were generated using Monte Carlo simulation and Latin hypercube sampling method. The parameters of cases include building envelope, HVAC systems, internal heat gains, etc. Then, annual cooling energy use intensity (EUI) can be obtained by using EnergyPlus to simulate these cases with future hourly weather data produced by morphing method which uses the changes in future weather monthly averages to stretch, shift, or stretch and shift existing TMY files. Regarding the annual lighting and equipment energy use intensity, it can be calculated by power level per floor area and operation schedule. Next, the future commercial office building energy consumption can be calculated by EUI and building floor area, and the other energy consumption will be estimated according to its proportion because it is not very significant.
The results show that the energy consumption of the commercial office buildings of 2035 was 31.1% up on that of 2000 because of increasing temperature and economic development. In terms of GHG emissions, if the composition of electricity source is maintained, the emissions of 2025 may increase by 10.4%; if changed with the energy policy, the emissions of 2025 may decrease by 18.3%, compared to 2005.
The GHG reduction strategies in this study will focus on improving U-value of exterior walls and solar heat gain coefficient (SHGC) of windows’ glass. Worse cases will be selected from original 1000 cases with U-value and SHGC and improved. The benefits of the strategies will be simulated by EnergyPlus. When all worse cases were improved, the GHG emissions can decrease by 3%, compared to business-as-usual scenario.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:14:03Z (GMT). No. of bitstreams: 1
U0001-0508202014024500.pdf: 3723462 bytes, checksum: b085338562e047c023b682f031f01715 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝誌 I
摘要 II
ABSTRACT III
目錄 V
圖目錄 VI
表目錄 VII
第1章 研究動機與目的 1
1-1 前言 1
1-2 研究目的 3
1-3 現況分析 3
1-4 相關文獻 7
第2章 文獻回顧 11
2-1 一般方法論 11
2-2 臺灣TIMES能源工程模型 14
2-3 住宅部門建築溫室氣體推估 19
第3章 研究方法 27
3-1 商辦建築溫室氣體推估理論 27
3-1-1 推估流程 27
3-1-2 商辦樓地板面積推估 28
3-1-3 商辦空調耗能推估 30
3-1-4 商辦照明耗能推估 38
3-1-5 商辦事務設備 39
3-1-6 商辦它項設備與總耗能量之推估 41
3-1-7 商辦耗水量之推估 42
3-1-8 商辦瓦斯與汽柴油碳排量之推估 43
3-1-9 商辦建築溫室氣體排放基線 43
3-2 減碳策略分析 45
第4章 商辦溫室氣體預測結果及減碳效益 47
4-1 商辦建築未來溫室氣體排放量預測 47
4-2 商辦建築減碳策略效益 51
第5章 結論 54
參考文獻 55

dc.language.isozh-TW
dc.title建築溫室氣體排放量預估及減量策略分析─以商辦建築為例zh_TW
dc.titlePrediction of greenhouse gas emissions and analysis of reduction strategy: a case study of commercial office buildingsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃瑞隆(Ruey-Lung Hwang),林子平(Tzu-Ping Lin)
dc.subject.keyword建築溫室氣體,建築耗能模擬,排放基線,溫室氣體減量,能源模型,zh_TW
dc.subject.keywordBuilding greenhouse gas,Building energy consumption,Business-as-usual emissions,Greenhouse gas reduction,Energy model,en
dc.relation.page57
dc.identifier.doi10.6342/NTU202002462
dc.rights.note未授權
dc.date.accepted2020-08-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
U0001-0508202014024500.pdf
  目前未授權公開取用
3.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved