請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17448
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 連雙喜(Shuang-Shii Lian) | |
dc.contributor.author | Sheng-Wen Chiang | en |
dc.contributor.author | 姜勝文 | zh_TW |
dc.date.accessioned | 2021-06-08T00:13:42Z | - |
dc.date.copyright | 2013-08-09 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-02 | |
dc.identifier.citation | [1] 衣寶廉, '燃料電池-原理與應用,' 2005.
[2] B. C. H. Steele and A. Heinzel, 'Materials for fuel-cell technologies,' Nature, vol. 414, pp. 345-352, Nov 2001. [3] S. C. Singhal, 'Advances in solid oxide fuel cell technology,' Solid State Ionics, vol. 135, pp. 305-313, Nov 2000. [4] L. Blum, W. A. Meulenberg, H. Nabielek, and R. Steinberger-Wilckens, 'Worldwide SOFC technology overview and benchmark,' International Journal of Applied Ceramic Technology, vol. 2, pp. 482-492, 2005 2005. [5] N. Q. Minh, 'Solid oxide fuel cell technology-features and applications,' Solid State Ionics, vol. 174, pp. 271-277, Oct 29 2004. [6] S. M. Haile, 'Fuel cell materials and components,' Acta Materialia, vol. 51, pp. 5981-6000, Nov 25 2003. [7] F. Tietz, H. P. Buchkremer, and D. Stover, 'Components manufacturing for solid oxide fuel cells,' Solid State Ionics, vol. 152, pp. 373-381, Dec 2002. [8] B. H. Kwak, H. K. Youn, and J. S. Chung, 'Ni and metal aluminate mixtures for solid oxide fuel cell anode supports,' Journal of Power Sources, vol. 185, pp. 633-640, 12/1/ 2008. [9] H. Kurokawa, G. Y. Lau, C. P. Jacobson, L. C. De Jonghe, and S. J. Visco, 'Water-based binder system for SOFC porous steel substrates,' Journal of Materials Processing Technology, vol. 182, pp. 469-476, Feb 2007. [10] A. Mineshige, K. Fukushima, S. Okada, T. Kikuchi, M. Kobune, T. Yazawa, et al., 'Porous Metal Tubular Support for Solid Oxide Fuel Cell Design,' Electrochemical and Solid-State Letters, vol. 9, pp. A427-A429, September 1, 2006 2006. [11] H. J. Cho and G. M. Choi, 'Fabrication and characterization of Ni-supported solid oxide fuel cell,' Solid State Ionics, vol. 180, pp. 792-795, Jun 2009. [12] Y. Kong, B. Hua, J. Pu, B. Chi, and L. Jian, 'A cost-effective process for fabrication of metal-supported solid oxide fuel cells,' International Journal of Hydrogen Energy, vol. 35, pp. 4592-4596, 5// 2010. [13] R. Hui, J. O. Berghaus, C. Deces-Petit, W. Qu, S. Yick, J.-G. Legoux, et al., 'High performance metal-supported solid oxide fuel cells fabricated by thermal spray,' Journal of Power Sources, vol. 191, pp. 371-376, 6/15/ 2009. [14] Q.-A. Huang, J. Oberste-Berghaus, D. Yang, S. Yick, Z. Wang, B. Wang, et al., 'Polarization analysis for metal-supported SOFCs from different fabrication processes,' Journal of Power Sources, vol. 177, pp. 339-347, 3/1/ 2008. [15] A. B. N. P. Brandon, D. Corcoran, D. Cumming, A. Duckett, K. El-Koury, D. Haigh, C. Kidd, R. Leah, G. Lewis, C. Matthews, N. Maynard, N. Oishi, T. McColm, R. Trezona, A. Selcuk, M. Schmidt and L. Verdugo, 'Development of Metal Supported Solid Oxide Fuel Cells for Operation at 500–600°C,' J. Fuel Cell Sci. Technol, vol. 1, p. 5, June 30 2004. [16] R. T. Leah, N. P. Brandon, and P. Aguiar, 'Modelling of cells, stacks and systems based around metal-supported planar IT-SOFC cells with CGO electrolytes operating at 500–600 degree C,' Journal of Power Sources, vol. 145, pp. 336-352, 8/18/ 2005. [17] P. Blennow, J. Hjelm, T. Klemenso, S. Ramousse, A. Kromp, A. Leonide, et al., 'Manufacturing and characterization of metal-supported solid oxide fuel cells,' Journal of Power Sources, vol. 196, pp. 7117-7125, Sep 1 2011. [18] E. Arahuetes, A. Bautista, F. Velasco, and M. E. Sotomayor, 'Manufacturing of metallic anodic supports for SOFC by powder metallurgy,' Revista De Metalurgia, vol. 44, pp. 406-417, Sep-Oct 2008. [19] T. Franco, M. Brandner, M. Ruttinger, G. Kunschert, A. Venskutonis, and L. Sigl, 'Recent Development Aspects of Metal Supported Thin-Film SOFC,' ECS Transactions, vol. 25, pp. 681-688, September 25, 2009 2009. [20] M. E. Sotomayor, B. Levenfeld, and A. Varez, 'Powder extrusion moulding of 430L stainless steel thin tubes for porous metal supported SOFCs,' Powder Metallurgy, vol. 54, pp. 103-107, Apr 2011. [21] M. C. Tucker, 'Progress in metal-supported solid oxide fuel cells: A review,' Journal of Power Sources, vol. 195, pp. 4570-4582, Aug 1 2010. [22] H. Kurokawa, K. Kawamura, and T. Maruyama, 'Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient,' Solid State Ionics, vol. 168, pp. 13-21, 3/15/ 2004. [23] J. W. Fergus, 'Metallic interconnects for solid oxide fuel cells,' Materials Science and Engineering: A, vol. 397, pp. 271-283, 4/25/ 2005. [24] J. Webber, 'Oxidation of FeCr alloys in O2/3% H2O,' Corrosion Science, vol. 16, pp. 499-506, // 1976. [25] A. Holt and P. Kofstad, 'Electrical conductivity and defect structure of Cr2O3. II. Reduced temperatures (<∼1000°C),' Solid State Ionics, vol. 69, pp. 137-143, 7// 1994. [26] I. Belogolovsky, P. Y. Hou, C. P. Jacobson, and S. J. Visco, 'Chromia scale adhesion on 430 stainless steel: Effect of different surface treatments,' Journal of Power Sources, vol. 182, pp. 259-264, 7/15/ 2008. [27] M. Tucker, T. Sholklapper, G. Lau, L. DeJonghe, and S. Visco, 'Progress in Metal-Supported SOFCs,' ECS Transactions, vol. 25, pp. 673-680, September 25, 2009 2009. [28] H. Itoh, T. Yamamoto, M. Mori, T. Horita, N. Sakai, H. Yokokawa, et al., 'Configurational and Electrical Behavior of Ni‐YSZ Cermet with Novel Microstructure for Solid Oxide Fuel Cell Anodes,' Journal of The Electrochemical Society, vol. 144, pp. 641-646, February 1, 1997 1997. [29] E. S. Hecht, G. K. Gupta, H. Zhu, A. M. Dean, R. J. Kee, L. Maier, et al., 'Methane reforming kinetics within a Ni–YSZ SOFC anode support,' Applied Catalysis A: General, vol. 295, pp. 40-51, 10/13/ 2005. [30] J. J. Haslam, A.-Q. Pham, B. W. Chung, J. F. DiCarlo, and R. S. Glass, 'Effects of the Use of Pore Formers on Performance of an Anode Supported Solid Oxide Fuel Cell,' Journal of the American Ceramic Society, vol. 88, pp. 513-518, 2005. [31] M. Kim, J. Lee, and J. H. Han, 'Fabrication of anode support for solid oxide fuel cell using zirconium hydroxide as a pore former,' Journal of Power Sources, vol. 196, pp. 2475-2482, Mar 2011. [32] G. Taylor, 'THE INSTABILITY OF LIQUID SURFACES WHEN ACCELERATED IN A DIRECTION PERPENDICULAR TO THEIR PLANES .1,' Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, vol. 201, pp. 192-196, 1950. [33] M. A., 'Continuous Fuel-Injection Systems with Rotating Fuel Chamber,' Engineering, vol. 165-166, pp. 316-317, 1948. [34] B. Champagne and R. Angers, 'FABRICATION OF POWDERS BY THE ROTATING ELECTRODE PROCESS,' International Journal of Powder Metallurgy, vol. 16, pp. 359-&, 1980. [35] R. P. Fraser, N. Dombrowski, and J. H. Routley, 'The filming of liquids by spinning cups,' Chemical Engineering Science, vol. 18, pp. 323-337, 6// 1963. [36] 狄馬克, '旋轉電極製粉之研製,' 國立台灣大學材料科學與工程學研究所碩士論文, 1995. [37] O. Costa-Nunes, R. J. Gorte, and J. M. Vohs, 'Comparison of the performance of Cu-CeO2-YSZ and Ni-YSZ composite SOFC anodes with H-2, CO, and syngas,' Journal of Power Sources, vol. 141, pp. 241-249, Mar 2005. [38] 石明倫, '雙自熔旋轉電極製造合金粉末研究,' 國立台灣大學材料科學與工程學研究所碩士學位論文, 2001. [39] K. Tabeshfar and G. A. Chadwick, 'Dimensional Changes During Liquid Phase Sintering of Fe–Cu Compacts,' Powder Metallurgy, vol. 27, pp. 19-24, // 1984. [40] A. Atkinson, 'TRANSPORT PROCESSES DURING THE GROWTH OF OXIDE-FILMS AT ELEVATED-TEMPERATURE,' Reviews of Modern Physics, vol. 57, pp. 437-470, 1985. [41] A. Bautista, E. Arahuetes, F. Velasco, C. Moral, and R. Calabres, 'Oxidation Behavior of Highly Porous Metallic Components,' Oxidation of Metals, vol. 70, pp. 267-286, Dec 2008. [42] I. Antepara, I. Villarreal, L. M. Rodriguez-Martinez, N. Lecanda, U. Castro, and A. Laresgoiti, 'Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs,' Journal of Power Sources, vol. 151, pp. 103-107, 10/10/ 2005. [43] S. Molin, B. Kusz, M. Gazda, and P. Jasinski, 'Evaluation of porous 430L stainless steel for SOFC operation at intermediate temperatures,' Journal of Power Sources, vol. 181, pp. 31-37, 6/15/ 2008. [44] S. Molin, M. Gazda, B. Kusz, and P. Jasinski, 'Evaluation of 316 L porous stainless steel for SOFC support,' Journal of the European Ceramic Society, vol. 29, pp. 757-762, 3// 2009. [45] D. S. Lee, J. H. Lee, J. Kim, H. W. Lee, and H. S. Song, 'Tuning of the microstructure and electrical properties of SOFC anode via compaction pressure control during forming,' Solid State Ionics, vol. 166, pp. 13-17, Jan 2004. [46] N. Light and O. Kesler, 'Air plasma sprayed Cu-Co-GDC anode coatings with various Co loadings,' Journal of Power Sources, vol. 233, pp. 157-165, Jul 1 2013. [47] C. H. Hsu, C. K. Lin, K. H. Huang, and K. L. Ou, 'Improvement on hardness and corrosion resistance of ferritic stainless steel via PVD-(Ti,Cr)N coatings,' Surface and Coatings Technology. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17448 | - |
dc.description.abstract | 傳統固態氧化物燃料電池(SOFC)是以Ni-YSZ複合材料作為陽極支撐,其缺點在於Ni的成本過高,而且以碳氫氣體作為燃料時,會有積碳的現象發生,造成能量轉換效率降低。而Fe-Cr合金或不鏽鋼,製造的陽極支撐材,其成本低,與Ni-YSZ陽極熱膨脹係數的匹配性佳,並有良好的高溫抗氧化性。
本研究的目的在於探討新發展的多孔支撐材之性質,材料以不鏽鋼為主,用旋轉電極製備的雙層金屬粉末,其內層是430不鏽鋼,外層是Cu以改善積碳能力。製備出來的粉末將與商業430不鏽鋼粉混和,並添加PMMA造孔劑,以粉末冶金的方式燒結。燒結後之燒結品作以下性質分析:孔隙率、高溫氧化實驗、高溫電阻實驗、透氣率實驗以及維氏硬度實驗。 | zh_TW |
dc.description.abstract | Conventional anode support of solid oxide fuel cell (SOFC) was made with Ni-YSZ cermet materials which had drawbacks of high cost and performance reduce due to carbon deposition with hydrocarbon fuel gas. The high chromium contained Fe-Cr alloy are good candidates for anode support due to its low cost and pretty well high temperature oxidation resistance. Besides, the coefficient of thermal expansion of Fe-Cr alloy is close to the solid electrolyte.
The aim of this research is to develop copper contained dual layer powders to improve porous substrate. The metal powders were made by rotating electrode process and the powder has a structure of dual layers. The inner layer is ss430 and the outer layer is copper to reduce carbon soot. We mixed the powders with commercial ss430 fine powders and PMMA pore formers. Porous substrates were prepared by die-pressing and sintered in hydrogen. The sintered specimens were then evaluated with high temperature oxidation resistance test, porosity, high temperature ASR test, permeability test and Vickers hardness test. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:13:42Z (GMT). No. of bitstreams: 1 ntu-102-R00527039-1.pdf: 12098288 bytes, checksum: 898dbe601b474fff47aa49586125f9fa (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書 #
謝誌 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xi 符號表 xii 第一章 序論 1 第二章 文獻回顧 3 2.1燃料電池理論 3 2.1.1 固態氧化物燃料電池(SOFC)簡介 3 2.1.2 固態氧化物燃料電池工作原理 4 2.1.3 固態氧化物燃料電池之陽極性質介紹 9 2.1.4 固態氧化物燃料電池之陽極支撐材發展現況 12 2.1.5 肥粒鐵系不鏽鋼陽極支撐材之工作溫度 16 2.2 常見陽極與陽極支撐材造孔劑 19 2.3 雙自熔旋轉電極理論 20 2.3.1 離心噴霧理論 20 2.3.2旋轉電極製粉方式與特性 25 第三章 實驗設計與分析 26 3.1 實驗設計 26 3.2 雙自熔旋轉電極製粉 27 3.2.1 旋轉電極簡介 27 3.2.2電極棒材料選擇 29 3.2.3 雙自熔旋轉電極製粉程序 30 3.3 雙層粉末性質分析 31 3.3.1 粉末粒徑分析 31 3.3.2 粉末高溫氧化增重實驗 32 3.3.3掃描穿透式電子顯微鏡(Scanning Electron Microscope, SEM)與能量分散光譜儀(Energy Dispersive Spectrometer, EDS)分析 33 3.4 粉末冶金燒結實驗 34 3.5 陽極支撐材性質分析 37 3.5.1 支撐材形貌及截面分析 37 3.5.2 孔隙率計算 38 3.5.3 高溫氧化增重實驗 38 3.5.4 維氏硬度實驗 39 3.5.5 四點探針電阻量測 40 3.5.6 透氣率量測 41 第四章 結果與討論 43 4.1 雙層粉末性質分析結果 43 4.2 陽極支撐材性質分析結果 48 4.2.1 陽極支撐材金相 48 4.2.2 陽極支撐材截面及孔隙率計算 57 4.2.3 高溫氧化增重 63 4.2.4 高溫氧化後試片形貌分析 66 4.2.5 高溫電阻量測結果 72 4.2.6 透氣率量測結果 73 4.2.7 維氏硬度試驗 74 第五章 結論 75 參考文獻 77 | |
dc.language.iso | zh-TW | |
dc.title | 以雙自熔旋轉電極製備多孔支撐材性質之探討 | zh_TW |
dc.title | Property of Porous Substrate Made with Double Consumable Rotating Electrode Powder Technology | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王錫福(Xi-Fu Wang),林立夫(Li-Fu Lin),李瑞益(Ruey-Yi Lee) | |
dc.subject.keyword | 固態氧化物燃料電池,陽極支撐材,粉末冶金,旋轉電極,PMMA造孔劑, | zh_TW |
dc.subject.keyword | solid oxide fuel cell,anode support,powder metallurgy,rotating electrode process,PMMA pore formers, | en |
dc.relation.page | 79 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2013-08-02 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 11.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。