Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17440
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周必泰(Pi-Tai Chou)
dc.contributor.authorYu-Xuan Linen
dc.contributor.author林鈺璇zh_TW
dc.date.accessioned2021-06-08T00:13:00Z-
dc.date.copyright2013-08-06
dc.date.issued2013
dc.date.submitted2013-08-02
dc.identifier.citation1. A. I. Ekimov, A. A. Onushchenko, JETP Lett. 34, 345 (1982).
2. M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, A. E. Wetsel, Phys. Rev. Lett., 60, 535 (1988).
3. T5日光燈VS LED燈VS 節能燈(省電燈泡)的比較與競爭http://tw.myblog.yahoo.com/jw!mTZ7iJyCQ0EriYE9aGci/article?mid=15894
4. M. D. Regulacio, and M. Y. Han, Accounts of Chemical Research, 43, 621 (2010).
5. G. W. Bryant, Physical Review B, 37, 8763 (1988).
6. Y. Wang and N. Herron, J. Phys. Chem, 95, 525 (1991).
7. Y. C. Liao, S. Y. Lin, S. C. Lee, and C. T. Chia, Applied Physics Letters, 77, 4328 (2008).
8. S. Horoz, L. Lu,Q. Dai, J. Chen, B. Yakami, J. M. Pikal, W. Wang, and J. Tang, Applied Physics Letters, 101, 223902 (2012).
9. C. N. R. Rao, V. V. Agrawal, K. Biswas, U. K. Gautam, M. Ghosh, A. Govindaraj, G. U. Kulkarni, K. P. Kalyankutty, K. Sardar, and S. R. C. Vivekchand, Pure Appl. Chem., 78, 1619 (2006).
10. C. B. Murray, D. J. Norris, and M. G. Baewndi, J. Am. Soc, 115, 8706 (1993).
11. P. Reiss, M. Protiere, and L. Li, small, 5, 154 (2009).
12. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science., 295, 2425 (2002).
13. C. Y. Zhang, L. W. Johnson, Anal. Chem., 81, 3051 (2009).
14. A. Valizadeh, H. Mikaeili, M. Samiei, S. M. Farkhani, N. Zarghami, M. Kouhi, A. Akbarzadeh, and S. Davaran, Nanoscale Research Letters, 7, 480 (2012).
15. H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi,
50
and J. V. Frangioni, Nature Biotechnology, 25, 1165 (2007).
16. D. Gerion, F. Q. Chen, B. Kannan, A. H. Fu, W. J. Parak, D. J. Chen, et al, Analytical Chemistry, 75, 4766 (2003).
17. T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim and K.Kim, Nature Photonics, 5, 176 (2011).
18. L. Zyga, Quantum dot LED approaches theoretical maximum efficiency, Optics and Photonics, May 14 (2013).
19. K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, Nature Photonics, 3, 341 (2009).
20. J. Zhang, R. Xie, and W. Yang, Chem. Mater, 23, 3357 (2011).
21. B. S. Mashford, M. Stevenson, A. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. C. Sullivan, and P. T. Kazlas, Nature Photonics, 7, 407 (2013).
22. F. B. Joyuncu, A. R. Davis, and K. R. Carter, Chem. Mater, 24, 4410 (2012).
23. Photopolymerization and Characterization of Thiol-enes and Thiourethanes. Qin Li. (2008).
24. Reactions of Radicals. Part XVIII.
25. Y. Zhao, C. Riemersma, F. pietra, F. Koole, C. M. Donega, and A. Meijerink, ACS Nano, 16, 9058 (2012).
26. X. Wang, W. Li, and K. Sun, Journal of Materials Chemistry, 21, 8558 (2011).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17440-
dc.description.abstract近年來,奈米技術蓬勃發展,當材料任一維度尺寸小於100奈米(nm)時,會具有量子侷限(quantum-confinement effect)現象,使之展現獨特的量子化效應。
其中,零維度之半導體奈米材料—量子點(quantum dot, QDs),具有獨特的光電特性,量子產率(quantum yield, QY)高且半高寬(full-width at half-maximum, FWHM)窄,依據其組成和尺寸大小不同,在紫外光激發下會發出不同顏色的螢光(Fluorescence),與一般染料相比,可以增加光穩定性,提高色飽和度以及螢幕解析度。
本研究分為兩部分。第一部分,利用熱注射法,將具有鎘(Cadmium)、硒(Selenium)、鋅(Zinc)和硫(Sulfur)元素的反應物先進行活化,形成錯合物,接著在高溫下反應,合成具有高亮度的CdSeZnS奈米粒子,依據調控組成比例得到放光位置在可見光的奈米粒子,量子產率可達70%以上,半高寬約35-50 nm,粒徑大小約在7-10 nm,並嘗試大量合成和降低成本。第二部分,將高亮度的CdSeZnS奈米粒子與具有四個硫醇基(-SH)的分子混合均勻,再加入聚合物單體和光起始劑(Photo initiator, PI),經過強烈的紫外光照射,進行thio-ene reaction,使之交聯聚合(cross-linked),量子點均勻分散在聚合物中,得到量子點-聚合物薄膜,另外,用熱起始劑(Thermal initiator)取代光起始劑,加溫使之交聯聚合,此方法可以避免光起始劑吸收波長與量子點吸收波長重疊問題,進而增加量子點的含量,其之後證明可應用在光電二極體(Light-Emitting Diode, LED)。
zh_TW
dc.description.abstractIn recent years, nanotechnology has received much attention. When length of the material is less than 100 nanometers (nm), the quantum-confinement effect and unique quantum properties were exhibited.
The zero-dimensional semiconductor nanomaterials (quantum dots) have an unique optical properties i.e. high quantum yield and narrow full-width at half-maximum. By a variety of quantum dots composition and size, the responding emission wavelengths of them are different. The light stability of sample shows better performance than conventional phosphors.
Herein, the main goal of our study is to focus within two parts as follows. First, the Cd1-xZnxSe1-ySy quantum dots were synthesized via hot-injection approach. The reactants of Cadmium, Selenium, Zinc and Sulfur are being activated and then form metal-complexes, easily to react with following reactant. Then, the reaction maintains at high temperature lasting proper reaction time. After completion of reaction, high brightness CdSeZnS nanoparticles are successfully prepared. With different reacted composition, we can repeatedly obtain blue to red QDs, of which quantum yield (QY) and full width at half maximum (fwhm) of a composition-tunable Cd1-xZnxSe1-ySy quantum dots are up to 70-95% and 30-50 nm, respectively. The diameter of QDs are 7-10 nm. Thus, we attempt to produce large-scale QDs and reduce production cost.
Second, the CdSeZnS QDs mixed with thio-modified monomer and then by adding other monomer and photo initiator for the photopolymerization of a thio crosslinker-encapsulated QDs and acrylate derivatives. After above-mentioned reaction, the thermal initiator reasonably replaces photo initiator and can slightly increase the concentration of QDs embedded in the resulting polymer. Finally, their latent potential as packaging materials for solid state light-emitting diode (LED) has preliminarily demonstrated.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:13:00Z (GMT). No. of bitstreams: 1
ntu-102-R00223111-1.pdf: 4452468 bytes, checksum: cf4f6ba8a8a054be99c16b1ff2982546 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
目錄 1
圖目錄 3
表目錄 5
1. 簡介 6
1.1 半導體種類 6
1.2 量子侷限效應(QUANTUM CONFINEMENT EFFECT) 7
1.3 合成方法 8
1.4 核層結構 (CORE/SHELL) 9
1.5 量子點的應用 10
1.6 發光二極體LED 13
1.7 光致發光 16
1.8 光聚合 17
1.9 熱聚合 18
2. 研究動機 19
3. 實驗 21
3.1 藥品 21
3.2 量子點合成 21
3.3 光聚合 22
3.4 熱聚合 22
3.5 量子產率測量 23
3.6 儀器 23
4. 結果與討論 24
4.1 調控元素比例得到不同放光的量子點 24
4.2 大量合成(高溫注射法) 30
4.3 降低溫度合成(熱注射法)34
4.4 降低溫度合成(一鍋化) 36
4.5 量子點應用在LED 39
4.6 光聚合 40
4.7 熱聚合 44
4.8 元件和穩定性 45
5. 結論 48
參考文獻 49
dc.language.isozh-TW
dc.titleCdSeZnS半導體奈米粒子合成、檢測及應用zh_TW
dc.titleSynthesis, Characterization and Application of CdSeZnS Semiconductor Nanoparticlesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee康佳正(Chia-Cheng Kang),賴志維(Chih-Wei Lai)
dc.subject.keyword量子點,合金,CdSeZnS,組成調控,LED,量子點-聚合物薄膜,zh_TW
dc.subject.keywordquantum dots,alloy,CdSeZnS,composition-tuble,LED,QDs-polymer film,en
dc.relation.page50
dc.rights.note未授權
dc.date.accepted2013-08-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
4.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved