Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17414
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣本基(Pen-Chi Chiang)
dc.contributor.authorKo-Hsin Linen
dc.contributor.author林可欣zh_TW
dc.date.accessioned2021-06-08T00:11:37Z-
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-08-06
dc.identifier.citation1. A.D. La Rosa,G. Cozzo, A. Latteri, A. Recca, A. Bjorklund, E. Parrinello, G. Cicala, (2013). Life cycle assessment of a novel hybrid glass-hemp/thermoset composite. Journal of Cleaner Production, Vol.44, pp.69–76.
2. A.I. Khuri, J.A. Cornell, (1987). Response Surfaces: Design and Analysis, 5th Ed., Marcel Dekker, New York.
3. A.M.G. Campan a, L.C. Rodriguez, A.L. Gonzaĺez, F.A. Barrero, M.R. Ceba, Anal,(1997). Chim. Acta 237.
4. Abanades J. C., Allam R., Lackner K. S., Meunier F., Rubin E., Sanchez J. C., Katsunori Y., Ron Z., (2007). Mineral carbonation and industrial uses of carbon dioxide.
5. Ali Akbar Eftekhari, Hedzer Van Der Kooi, Hans Bruining, (2012). Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy Vol ,45.pp729-745.
6. Ari C, Gogus N, Tokatli F, (2007). Optimization of biomass, pellet size and polygalacturonase production by Aspergillus sojae ATCC 20235 using response surface methodology. Enzyme Microbial. Tech. Vol,40.pp1108-1116.
7. B.P. Weidema, (2000). Increasing credibility of Life Cycle Assessment. International Journal of Life Cycle Assessment, Vol.5, pp.63–64.
8. Berner RA, Lasaga AC, Garrels RM, (1983). The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science Vol.283,pp641-683.
9. Bonenfant, D., Kharoune, L., Sauve, S., Hausler, R., Niquette, P., Mimeault, M., Kharoune, M., 2008. CO2 Sequestration Potential of Steel Slags at Ambient Pressure and Temperature. Ind Eng Chem Res Vol.47, pp7610-7616.
10. C. Ramshaw, (1979). Mass Transfer Process, Patent. No.0002568, European.
11. Chang, E. E.; Chen, C. H.; Chen, Y. H.; Pan, S. Y.; Chiang, P. C., (2011a). Performance evaluation for carbonation of steel-making slags in a slurry reactor. Journal of hazardous materials Vol.186, pp558-564.
12. Chang, E. E.; Pan, S. Y.; Chen, Y. H.; Chu, H. W.; Wang, C. F.; Chiang, P. C.,(2011b). CO(2) sequestration by carbonation of steelmaking slags in an autoclave reactor. Journal of hazardous materials, Vol.195, pp107-114.
13. Chang, E. E.; Pan, S. Y.; Chen, Y. H.; Tan, C.S.; Chiang, P. C.,(2012b).Accelerated carbonation of steelmaking slags ina high-gravity rotating packed bed. Journal of hazardous materials, Vol.227, pp97-106.
14. Chang, E. E.; Chiu A.C.; Pan, S. Y.; Chen, Y. H.;Tan, C.S.; Chiang, P. C.,(2013a). Carbonation of basic oxygen furnace slag with metalworking wasterwater in a slurry reactor. International Journal of Greenhouse Gas Control, Vol.12, pp382-389.
15. Chang, E. E.;Chen, T.L.; Pan, S. Y.; Chen, Y. H.; Chiang, P. C.,(2013b).Kinetic Modeling on CO2 capture Using Basic Oxygen Furnace Slag Coupled with Cold-Rolling Wastewater in a Rotating Packed Bed. Journal of hazardous materials.
16. Chen P, Chiang CJ, Chao YP, (2010). Medium optimization and production of secreted Renilla luciferase in Bacillus subtilis by fed- batch fermentation. Biochem. Eng. J., Vol. 49,pp395-400.
17. Cho J. S., Kim S. M., Chun H. D., Han G. W., Lee C. H., (2011).Carbon Dioxide capture with accelerated carbonation of industrial combustion waste, International Journal of Chemical Engineering and Applications, Vol. 2, No. 1.
18. Cleary, J., (2009). Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature. Environ intern. Vol. 35, pp.1256-1266.
19. Colin Jury, Benedetto Rugani, Paula Hild, Morgane May, Enrico Benetto, (2013). Analysis of complementary methodologies to assess the environmental impact of Luxembourg's net consumption. Environmental Science & Policy, Vol.27,pp.68–80.
20. Costa, G., Baciocchi, R., Polettini, A., Pomi, R., Hills, C.D., Carey, P.J., 2007. Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues. Environ Monit Assess 135, 55-75.
21. Eloneva, S., Teir, S., Salminen, J., Fogelholm, C.J., Zevenhoven, R., (2008). Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy Vol,33.pp1461-1467.
22. Eric H. Oelkers, Sigurdur R. Gislason, Juerg Matter, (2008). Mineral Carbonation of CO2. Elements, Vol,4.pp333-337.
23. Erin R. Bobicki, Qingxia Liu, Zhenghe Xu, Hongbo Zeng, (2012). Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science Vol.38,pp302-320.
24. Fernandez Bertos, M.; Simons, S. J.; Hills, C. D.; Carey, P. J. (2004) A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of hazardous materials, Vol.112,pp193-205.
25. Fredrik Moltu Johnsen, Soren Lokke, (2013). Review of criteria for evaluating LCA weighting methods. International Journal of Life Cycle Assessment, Vol.18, pp.840–849.
26. G.E.P. Box , K.B. Wilson, (1951). On the Experimental Attainment of Optimum Conditions. J. Royal Statistical Soc., Series B, pp1-45.
27. G.E.P. Box, D.W. Behnken, (1960). Technometrics Vol.2, pp455.
28. Gerdemann, S.J., O'Connor, W.K., Dahlin, D.C., Penner, L.R., Rush, H., 2007. Ex situ aqueous mineral carbonation. Environ Sci Technol Vol.41,pp2587-2593.
29. Gibbins J, Chalmers H. (2008). Carbon capture and storage. Energy Policy Vol.36, pp4317-4322.
30. Guido W. Sonnemann, Marta Schuhmacher, Francesc Castells, (2003). Uncertainty assessment by a Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator. Journal of Cleaner Production, Vol.17, pp.279–292.
31. Haug, T.A., Munz, I.A., Kleiv, R.A., 2011. Importance of dissolution and precipitation kinetics for mineral carbonation. Energy Procedia Vol,4. pp5029-5036.
32. He J, Zhen Q, Qiu N, Liu Z, Wang B, Shao Z, Yu Z, (2009). Medium optimization for the production of a novel bioflocculant from Halomonas sp.v3a using response surface methodology. Bioresource Technol., Vol.100, pp5922-5927.
33. Helen Kalavathy M., Iyyaswami Regupathi, Magesh Ganesa Pillai, Lima Rose Miranda, (2009). Modeling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM). Colloids and Surfaces B: Biointerfaces Vol.70, pp35-45.
34. Huijgen W.J.J., Comans R.N.J., Carbon dioxide sequestration by mineral carbonation Literature Review Update 2003-2004, Energy research Centre of the Netherlands 2005, ECN-C--05-022.
35. Huijgen W.J.J., Witkamp G.J., Comans R.N.J.,(2005a). Mineral CO2 sequestration by steel slag carbonation, Environmental Science & Technology, Vol. 39, No. 24.
36. Huijgen, W., Witkamp, G.J., Comans, R., (2005b). Mineral CO2 sequestration in alkaline solid residues. Greenhouse Gas Control Technologies Vol.7, pp.2415-2418.
37. International Organisation for Standardisation, (1997). Environmental management life cycle assessment principles and framework. Geneva, Switzerland.
38. IPCC, (2005). IPCC Special Report on Carbon dioxide Capture and Storage, in: Metz, B., Davidson, O., Coninck, H.d., Loos, M., Meyer, L. (Eds.). Intergovernmental Panel on Climate Change, Cambridge.
39. IPCC, (2007). Climate Change : The Physical Science Basis, in: Solomon, S., D., Q., M., M., Z., C., M., M., K.B., A., M., T., H.L., M. (Eds.), IPCC Fourth Assessment Report (AR4). Intergovernmental Panel on Climate Change, Cambridge, .
40. J.P.C. Kleijnen, (1993). Simulation and optimization in production planning: A case study, Decis. Support Syst. Vol.9, pp269–280.
41. JKMRC (Julius Kruttschnitt Mineral Research Centre), (2009). Comminution testing.
42. Johannes Jung, Niklas von der Assen, Andre Bardow, (2013). Comparative LCA of multi-product processes with non-common products: a systematic approach applied to chlorine electrolysis technologies. International Journal of Life Cycle Assessment, Vol.18, pp.828–839.
43. Kiran K. Vadde, Violet R. Syrotiuk, Douglas C. Montgomery, (2006). Optimizing Protocol Interaction Using Response Surface Methodology. IEEE Transactions on Mobile Computing, Vol. 5, No. 6.
44. Lackner K. S., (2003).A guide to CO2 sequestration, Science, New Series, Vol. 300, No. 5626, pp. 1677-1678.
45. Li, W.; Li, B.; Bai, Z. (2009) Electrolysis and heat pretreatment methods to promote CO2 sequestration by mineral carbonation. Chemical Engineering Research and Design, Vol.87, pp210-215.
46. Lim, M., Han, G.C., Ahn, J.W., You, K.S., (2010). Environmental remediation and conversion of carbon dioxide (CO2) into useful green products by accelerated carbonation technology. Int J Environ Res Public Health Vol.7, pp203-228.
47. Lo, S.C., Ma, H.W. and Lo, S.L., (2005). Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method. Sci Total Environ. Vol. 340, pp23-33.
48. M. Otto, Chemometrics, (1999). Statistics and Computer Application in Analytical Chemistry, Wiley–VCH, Weinheim.
49. Marsh, B.K., Day, R.L., (1988). Pozzolanic and Cementious Reactions of fly ash in blended cement pastes. Cement and Concrete Research Vol.18, pp301-310.
50. Metz B, Davidson O, de Coninck H, Loos M, Meyer L (eds), (2005). IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, New York 431 .
51. Michael Hitch, G.M. Dipple, (2012). Economic feasibility and sensitivity analysis of integrating industrial-scale mineral carbonation into mining operations. Minerals Engineering Vol.39, pp268–275.
52. Montgomery DC, (2001). Design and analysis of experiments. 5th Ed. New York: Wiley.
53. Montgomery DC,(1997). Design and analysis of experiments. 4th Ed. New York: Wiley.
54. Nan Zhang, Zemin Qi, Huiguo Duan, Yuhua Xie, Jian Yu, Changxu Lu,Xunli Liu, (2012). Optimization of medium composition for production of antifungal active substance from Streptomyces hygroscopicus BS-112. African Journal of Microbiology Research Vol. 6(1), pp71-80.
55. Nuran Bradley, (2007). The response surface methodology. Master of science in applied mathematics & computer science.
56. R.H. Myers and D.C. Montgomery,(2002). Response Surface Methodology. John Wiley & Sons, Inc.
57. R.H. Myers, D.C. Montgomery, G.G. Vining, C.M. Borror, S.M. Kowalski, (2004).Response Surface Methodology: A Retrospective and Literature Survey. J. Quality Technology, Vol. 36, No. 1, pp53-77.
58. Rao JK, Chul-Ho K, Rhee SK, (2000). Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Process Biochem, Vol. 35, pp 639-647.
59. Roland Hischier, Bo Weidema, Hans-Jorg Althaus, Christian Bauer, Gabor Doka, Roberto Dones, Rolf Frischknecht, Stefanie Hellweg, Sebastien Humbert, Niels Jungbluth, Thomas Kollner, Yves Loerincik, Manuele Margni, Thomas Nemecek, (2009). Implementation of Life Cycle Impact Assessment Methods Data v2.1, St. Gallen.
60. Rolf Frischknecht, Niels Jungbluth, Hans-Jorg Althaus, Gabor Doka, Roberto Dones, Thomas Heck, Stefanie Hellweg, Roland Hischier6, Thomas Nemecek, Gerald Rebitzer and Michael Spielmann, (2005). The ecoinvent Database: Overview and Methodological Framework. International Journal of Life Cycle Assessment, Vol.10, pp3–9.
61. S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandao, E.G.P. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, W.N.L. dos Santos, Anal, (2007). Chim. Acta 179.
62. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D. Saisana, M., and Tarantola, S., (2008). Global Sensitivity Analysis. The Primer, John Wiley & Sons.
63. Seifritz W.,(1990). CO2 disposal by means of silicates. Nature, 345-486.
64. Seyedeh F, Ghaemi O, Fatemeh T, (2008). Response surface optimization of medium composition for alkaline protease production by Bacillus clausii. Bioresource Technol., Vol.39,pp37-42.
65. Shu-Kai S. Fana, Kuo-Nan Huang, (2011). A new search procedure of steepest ascent in response surface exploration. Journal of Statistical Computation and Simulation, Vol. 81, No. 6, pp661–678.
66. Sipila J, Teir S, Zevenhoven R, (2008). Carbon dioxide sequestration by mineral carbonation: literature review update 2005-2007. Turku, Finland: Abo Akademi University; Faculty of Technology, Heat Engineering Laboratory.
67. Tai, C.Y., Chen, W.R., Shih, S.-M., (2006). Factors affecting wollastonite carbonation under CO2 supercritical conditions. AIChE Journal Vol.52, pp292-299.
68. Tan, C., Chen, J., (2006). Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed. Separation and Purification Technology Vol.49, pp174-180.
69. Tang XJ, He GQ, Chen QH, Zhang XY, Ali MA (2004). Medium optimization for the production of thermal stable beta-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology. Bioresource Technol., Vol.93,pp175-181.
70. Teir, S., (2008). Fixation of carbon dioxide by producing carbonates from minerals and steelmaking slags, Department of Energy Technology. Helsinki University of Technology.
71. Tiwary E, Gupta R, (2010). Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: biochemical characterization and application in feather degradation and dehairing of hides. Bioresource Technol., Vol.101,pp6103-6110.
72. Van Zomeren, A.; van der Laan, S. R.; Kobesen, H. B.; Huijgen, W. J.; Comans, R. N. (2011) Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste Manag, Vol.31, pp2236-2244.
73. Van Zomeren, A.; van der Laan, S. R.; Kobesen, H. B.; Huijgen, W. J.; Comans, R. N. (2011). Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste Management, Vol.31, pp2236-2244.
74. Venkateswarlu G., Davidson M J.,Tagore G R N.,(2012). Analysis of sheet metal formability studies of friction stri process Mg AZ31B alloy using response surface methodology. Procedia Engineering Vol.38, pp2228-2236.
75. Wang ZW, Liu XL, (2008). Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresource Technol., Vol,99.pp8245-8251.
76. Zhu CH, Lu FP, He YN, Zhang JK, Du LX, (2007). Statistical optimization of medium components for avilamycin production by Streptomyces viridochromogenes Tu57-1 using response surface methodology. J. Ind. Microbiol. Biotechnol., Vol.34,pp271-278.
77. 朱孝文 (2007),「以鹼性固體廢棄物碳酸化封存二氧化碳」,碩士論文,國立台灣大學環境工程研究所,台北。
78. 邱安家 (2011),「利用轉爐石與鋼鐵廢水在漿體反應槽中進行碳酸化反應」,碩士論文,國立台灣大學環境工程研究所,台北。
79. 陳駿華 (2008),「以流體化床進行濕式碳酸化反應之績效評量」,碩士論文,國立台灣大學環境工程研究所,台北。
80. 陳則綸 (2012),「以轉爐石與冷軋廢水於旋轉填充床捕捉二氧化碳之研究」,碩士論文,國立台灣大學環境工程研究所,台北。
81. 潘述元 (2011),「在超重力旋轉填充床中利用煉鋼爐石碳酸化反應進行二氧化碳捕捉」,碩士論文,國立台灣大學環境工程研究所,台北。
82. 魏文恩 (2012),「軟性薄膜電晶體類比電路的良率最佳化」,碩士論文,國立台灣大學電子工程學研究所,台北。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17414-
dc.description.abstract本研究於超重力旋轉填充床(RPB)及漿體反應器(Slurry reactor)中,利用煉鋼爐石進行進行二氧化碳之捕獲實驗,其中所使用之煉鋼爐石為中國鋼鐵公司提供之轉爐石(BOF),利用反應曲面法結合生命週期評估以了解系統最適化;首先使用反應曲面法軟體Design-expert 7.1.6進行實驗設計,由於超重力旋轉填充床之操作條件為溫度、轉速和反應時間,故使用三變數三階層的Box-Behnken designs (BBD)方法,漿體反應器操作條件為溫度和反應時間,使用二變數三階層的Full three-level factorial designs方法,試驗在不同的操作條件下,對於爐石碳酸化之影響,並將反應後之產物透過熱重分析儀(TGA)進行分析,並可計算出轉爐石之捕碳量,最後將所得之實驗數據輸入Design-expert 7.1.6各可得一最適反應曲面,其中在超重力旋轉填充床的反應曲面中,最高的轉化率為92.8%,在漿體反應器的反應曲面上,最高的轉化率為56.7%;接著以生命週期評估軟體Umberto 5.5,結合國際資料庫Ecoinvent 2.0與實際盤查數據針對兩個反應器共11個情境進行生命週期評估,佐以衝擊評估方法ReCiPe 2008計算各情境之環境衝擊,最後利用敏感性分析及不確定性分析研究找出關鍵影響因子。結果發現,超重力旋轉填充床之最適化條件為:溫度65℃、反應時間30分鐘、純二氧化碳流量0.1L/min,有轉化率92.8%;影響系統最適化之敏感性因子為實驗中所費之加熱能耗。zh_TW
dc.description.abstractIn this research, the experiments of mineral carbonation were conducted in an RPB and a slurry reactor using the BOFS provided by China Steel Corporation (CSC). The goal of this research is to combine the methods of response surface methodology and life cycle assessment to evaluate the systematic optimization. The RSM software and Design-expert 7.16 was used for experimental design of an RPB and a slurry reactor. The experiments of RPB, including the variables of temperature, rotating speed and reaction time, were designed by 3-level-3-factor Box-Behnken design (BBD). In addition, the experiments of slurry reactor, including the variables of temperature and reaction time, were designed by 3-level-2-factor Full three-level factorial design. Then the carbonated products were analyzed by TGA. The CO2 capture capacity was input to Design-expert 7.1.6 in order to analyze an optimal response surface. The results of RSM showed that the highest conversions are 92.8% and 67% in the RPB and a slurry reactor, respectively. The software of LCA, Umberto 5.5, was used for 11 scenarios with database built-in, Ecoinvent 2.0, and the actual inventory data. The ReCiPe 2008 was selected as valuation system to determine the sensitivity factors by sensitivity analysis and uncertainty analysis. The system optimization using an RPB combined of environmental impact and carbonation conversion is under these operating conditions : temperature of 65 ℃, reaction time of 30 min, particle size less 88 μm, CO2 gas flow rate is 2.5 L/min, which conversion is 92.84%. According to the analysis, the main sensitive factor for the systems is the energy consuming in the experiments.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:11:37Z (GMT). No. of bitstreams: 1
ntu-102-R00541208-1.pdf: 5506148 bytes, checksum: 5274b8dcaad3679681092ca6caf5a5da (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝 I
Abstract II
中文摘要 IV
Contents V
List of Figures IX
List of Tables XIII
Chapter 1 Introduction 1-1
1-1 Carbon Capture and Storage (CCS) Technology 1-2
1-2 Mineral carbon sequestration 1-6
1-3 Objectives 1-9
Chapter 2 Literature Review 2-1
2-1 Carbonation Process 2-1
2-1-1 Natural carbonation 2-1
2-1-2 Accelerated Carbonation 2-2
2-1-3 Feedstock for accelerated carbonation 2-4
2-1-3-1 Natural Minerals 2-4
2-1-3-2 Industrial Alkaline Solid Waste 2-5
2-1-4 Mineral Carbonation 2-6
2-2 Response Surface Methodology (RSM) 2-10
2-2-1 Steps for RSM application 2-12
2-2-2 First-Order Model 2-13
2-2-3 The least squares Method 2-14
2-2-4 Steepest-Ascent Method 2-17
2-2-5 Second-Order Model 2-19
2-2-6 Symmetrical second-order experimental designs 2-20
2-2-6-1 Full three-level factorial designs 2-20
2-2-6-2 Box-Behnken designs (BBD) 2-21
2-2-6-3 Central composite designs (CCD) 2-23
2-2-6-4 Doehlert designs 2-25
2-2-7 Analysis of variance Table (ANOVA) 2-28
2-3 Life-Cycle Assessment (LCA) 2-31
2-3-1 Definition of Goal and Scope 2-32
2-3-2 Life Cycle Inventory analysis (LCI) 2-33
2-3-2-1 Ecoinvent 2-34
2-3-3 The least squares Method 2-38
2-3-3-1 ReCiPe 2-41
Chapter 3 Materials and Methods 3-1
3-1 Research Flowchart 3-1
3-2 Accelerated Carbonation Process 3-2
3-2-1 Materials 3-2
3-2-2 Pre-treatment Process 3-2
3-2-3 Evaluation of carbonation conversion 3-4
3-3 Design of Experiment (DOE) 3-8
3-3-1 Carbonation in an RPB ( System I ) 3-9
3-3-2 Carbonation in a slurry reactor ( SystemⅡ) 3-10
3-3-3 RPB process 3-12
3-3-4 Slurry Reactor 3-14
3-4 Life-cycle assessment (LCA) 3-16
3-4-1 Goal definition 3-17
3-4-2 Life Cycle Inventory (LCI) 3-21
3-4-3 Life cycle impact Assessment (LCIA) 3-23
3-4-4 Interpretation 3-25
3-5 Uncertainty and Sensitivity Analysis 3-26
Chapter 4 Results and Discussions 4-1
4-1 Technical Assessment 4-1
4-1-1 Physico-chemical Properties of Feedstock 4-5
4-1-2 Process description for BOFS carbonation 4-6
4-1-3 Summary 4-9
4-2 Response Surface Methodology (RSM) 4-10
4-2-1 Effects of process parameters on conversion in an RPB using BOF slags 4-10
4-2-1-1 Statistical analysis 4-12
4-2-1-2 Response Surface Model 4-17
4-2-1-3 System maximization for carbonation conversion 4-20
4-2-2 Effects of process parameters on conversion in a slurry reactor using BOF slags 4-21
4-2-2-1 Statistical analysis 4-22
4-2-2-2 Response Surface Model 4-25
4-2-2-3 System maximization for carbonation conversion 4-28
4-2-3 Summary 4-28
4-3 Life-cycle assessment (LCA) 4-30
4-3-1 Goal definition 4-30
4-3-2 Life Cycle Inventory (LCI) 4-31
4-3-2-1 Energy Consumption 4-31
4-3-2-2 Inventory and energy/material flow analysis 4-33
4-3-3 Life cycle impact analysis (LCIA) 4-39
4-3-3-1 Mid-point assessment 4-39
4-3-3-2 End-point assessment 4-43
4-3-4 Interpretation 4-49
4-4 Uncertainty and Sensitivity Analysis 4-50
4-4-1 Uncertainty Analysis 4-50
4-4-2 Sensitivity Analysis 4-51
4-5 Optimization analysis 4-57
Chapter 5 Conclusions and Recommendations 5-1
5-1 Conclusions 5-1
5-2 Recommendations 5-2
Chapter 6 Reference 6-1
Appendix A-1
dc.language.isoen
dc.title利用RSM及LCA建立轉爐石捕獲二氧化碳之最適化研究zh_TW
dc.titleSystematic Approach to Optimization of CO2 Capture Using Steelmaking Slag via Response Surface Methodology (RSM) and Life-Cycle Assessment (LCA)en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顧洋(Young Ku),張怡怡(E-E Chang),陳奕宏(Yi-Hung Chen)
dc.subject.keyword轉爐石,二氧化碳捕獲,最適化,反應曲面法,生命週期評估,zh_TW
dc.subject.keywordBOFS,CO2 capture,Optimization,RSM,LCA,en
dc.relation.page156
dc.rights.note未授權
dc.date.accepted2013-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
5.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved