請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17407
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林新智(Hsin-Chih Lin) | |
dc.contributor.author | Chung-Chuan Ni | en |
dc.contributor.author | 倪忠川 | zh_TW |
dc.date.accessioned | 2021-06-08T00:11:13Z | - |
dc.date.copyright | 2013-08-16 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-06 | |
dc.identifier.citation | 1.Robert B. Mahoney, United States Securitys and Exchange Commision, Washington, (2010)
2.Peter Waite, A Technical Perspective on Molten Aluminum Processing, Alcan International Limited Arvida Research and Development Center 3.唐剑,铝合金熔炼与铸造技术,冶金工业出版社,(2009) 4.H.W.M. Phillips and P.C. Varley, J. Inst. Met, Vol. 69, (1943) 317 5.G. Phragmen, J. Inst. Met, Vol. 77, (1950) 339 6.J.N. Pratt and G. V.Raynor, J. Inst. Met, Vol. 79, (1951) 211 7.D. Munson, J. Inst. Met, Vol. 95, (1976) 217 8.Pradip K. Saha, Aluminum extrusion technology, United State, ASM International, (2000) 259 9.I Musulin, Homogenization of 6000 Series Alloys, American Society for Metals, (1949) 78 10.钟利、马英义、谢延翠,铝合金中厚板生产技术,冶金工业出版社,(2009) 11.侯波,铝合金连续铸轧和连铸连轧技术,冶金工业出版社,(2010) 12.William F. Smith, Structure and Properties of Engineering Alloys, 2nd Edition, McGraw-Hill International, USA, (1993) 206 13.N.Taşaltın, S.Öztürk, N.Kılınç, H.Yüzer, and Z.Z.Öztürk, Simple Fabrication of Hexagonally Well-Ordered AAO Template on Silicon Substrate in Two Dimensions, Applied Physics A, Vol. 95, (2009) 781-787 14.G.E.Thompson, H.Habazaki, K.Shimizu, M.Sakairi, P.Skeldon, K.Zhou, and G.C.Wood, Anodizing of Aluminium Alloys, Aircraft Engineering and Aerospace Technology, Vol. 71, (1999) 228-238 15.I.Vrublevsky, V.Parkoun, J.Schreckenbach, and W.A.Goedel, Dissolution Behaviour of the Barrier Layer of Porous Oxide Films on Aluminum Formed in Phosphoric Acid Studiedby a Re-Anodizing Technique, Applied Surface Science, Vol. 252, (2006) 5100-5108 16.T.Dimogerontakis and I.T.Kaplanoglou, The Role of Aluminum Anodizing Conditions on the Effect of the Additivelight Green, Thin Solid Films, Vol. 402, (2002) 121-125 17.S. Wernick, R. Pinner, and P.G. Sheasby, The Surface Treatment and Finishing Aluminum and its Alloys, 6th Edition, (1987) 427 18.K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, U. Gösele, and K. Schwirn, Long-Range Ordering in Anodic Alumina Films: a Microradian X-Ray Diffraction Study, (2008) 302-310 19.W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gösele, Nature Nanotechnology, No. 3, (2008) 234-239 20.G.E. Thompson and G.C. Wood, Nature, Vol. 290, (1981) 230-232 21.W. Lee, R. Ji, U. Gosele, K. Nielsch, Nature Materials, No. 5, (2006) 741-747 22.W. Lee, JOM, Vol. 62, (2010) 57-62 23.A. Santos, P. Formentín, J. Ferré-Borrull, J. Pallarès, and L.F. Marsal, Materials Letters, Vol. 67, (2012) 296-299 24.G.D. Sulka and W.J. Stępniowski, Electrochimica Acta, Vol. 54, (2009) 3683-3691 25.G.C.Wood, J.P.O’Sullivan, and B.Vaszko, The Direct Observation of Barrier Layers in Porous Anodic Oxide Films, Journal of the Electrochemical Society, Vol. 115, No. 6, (1968) 618-620 26.Hanshan Dong, Surface Engineering of Light Alloys, (2010) 5 27.J.A.González, V.López, E.Otero, and A.Bautista, Postsealing Changes in Porous Aluminum Oxide Films Obtained in Sulfuric Acid Solutions, Journal of the Electrochemical Society, Vol. 147, No. 3, (2000) 984-990 28.S.Feliu, J.Ma, J.Bartolomé, and J.A.González, XPS Characterization of Porous and Sealed Anodic Films on Aluminum Alloys, Journal of the Electrochemical Society, Vol. 154, No. 5, (2007) 241-248 29.M.J.Bartolome´, V.Lo´pez, E.Escudero, G.Caruana, and J.A.Gonza´lez, Changes in the Specific Surface Area of Porous Aluminium Oxide Films during Sealing, Surface and Coatings Technology, Vol. 200, (2006) 4530-4537 30.Y.Goueffon, L.Arurault, C.Mabru, C.Tonon, and P.Guigue, Black Anodic Coatings for Space Applications Study of the Process Parameters, Characteristics and Mechanical Properties, Journal of Materials Processing Technology, Vol. 209, (2009) 5145-5151 31.X.Zhao, W.Liu, Y.Zuo, and L.Yang, The Cracking Behaviors of Anodic Films on 1050 and 2024 Aluminum Alloys after Heating up to 300 °C, Journal of Alloys and Compounds, Vol. 479, (2003) 473-479 32.W.Liu, Y.Zuo, S.Chen, X.Zhao, and J.Zhao, The Effects of Sealing on Cracking Tendency of Anodic Films on 2024 Aluminum Alloy after Heating up to 300 °C, Surface and Coatings Technology, Vol. 203, (2004) 1244-1251 33.D. MacDonald and P. Butler, Corrosion Science, Vol. 13, (1973) 259-274 34.K.V. Heber and L.C. Grenoble, Electrochimica Acta, Vol. 23, (1978) 135-139 35.J.P. O'Sullivant, G.C. Wood, The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium, Proc. Roy. Soc. Lond. A, (1970) 511-543 36.G.E.Thompson, R.C.Furneaux, G.C.Wood, J.A.Richardson, and J.S. Goode, Nucleation and Growth of Porous Anodic Films on Aluminium, Nature, Vol. 272, No. 30, (1978) 433-435 37.Y.Xu, G.E.Thompson, and G.C.Wood, Mechanism of Anodic Film Growth on Aluminum, Transactions of the Institute of Metal Finishing, Vol. 63, (1985) 98-103 38.P.Skeldon, G.E.Thompson, S.J.Garcia-Vergara, L.I.Rubianes, and C.E.Blanco-Pinzon, A Tracer Study of Porous Anodic Alumina, Electrochemical and Solid-State Letters, Vol. 9, No. 11, (2006) 47-51 39.G.E. Thompson, Thin Solid Films, (1997) 192-201 40.P. Skeldon, H.W. Wang, and G.E. Thompson, Wear, (1997) 187-196 41.S. Wernick, R. Pinner, and P.G. Sheasby, The Surface Treatment and Finishing Aluminum and its Alloys, 6th Edition, (1987) 331 42.O. Jessensky, F. Muller, and U. Gosele, Applied Physics Leters, Vol. 72, (1998) 1173-1175 43.G. Patermarakis and K. Moussoutzanis, Electrochmica Acta, Vol. 40, (1995) 699-708 44.K. Shimizu, K. Kobayashi, G.E. Thompson, and G.C. Wood, Philosophical Magazine A, Vol. 66, (1992) 643-652 45.S.H.Su, C.S.Li, F.B.Zhang, and M.Yokoyama, Characterization of Anodic Aluminium Oxide Pores Fabricated on Aluminium Templates, Superlattices and Microstructure, Vol. 44, (2008) 514-519 46.P.S.Wei and T.S.Shih, Monitoring the Progressive Development of an Anodized Film on Aluminum, Journal of the Electrochemical Society, Vol. 154, No. 11, (2007) 678-683 47.I.Farnan, R.Dupree, A.J.Forty, Y.S.Jeong, G.E.Thompson, and G.C. Wood, Structural Information about Amorphous Anodic Alumina from Al MAS NMR, Philosophical Magazine Letters, Vol. 59, No. 4, (1989) 189-195 48.T.P.Hoar and J.Yahalom, The Initiation of Pores in Anodic Oxide Films Formed on Aluminum in Acid Solutions, Journal of the Electrochemical Society, Vol. 110, No. 6, (1963) 614-621 49.G.C.Wood and J.P.O’Sullivan, The Anodizing of Aluminum in Sulphate Solutions, Electrochimica Acta, Vol. 15, (1970) 1865-1876 50.L.E.Fratila-Apachitei, J.Duszczyk, and L.Katgerman, AlSi(Cu) Anodic Oxide Layers Formed in H2SO4 at Low Temperature Using Different Current Waveforms, Surface and Coatings Technology, Vol. 16, (2003) 5232-240 51.I.T.Kaplanoglou, S.Theohari ,T.Dimogerontakis, Y.M.Wang, H.H.Kuo, and S.Kia, Effect of Alloy Types on the Anodizing Process of Aluminum, Surface and Coatings Technology, Vol. 200, (2006) 2634-2641 52.G.Patermarakis and H.S.Karayannis, The Mechanism of Growth of Porous Anodic Al2O3 Films on Aluminium at High Film Thicknesses, 104 Electrochimica Acta, Vol. 40, No. 16, (1995) 2647-2656 53.M.A.Paez, O.Bustos, G.E.Thompson, P.Skeldon, K.Shimizu, and G.C.Wood, Porous Anodic Film Formation on an Al-3.5 wt % Cu alloy, Journal of the Electrochemical Society, Vol. 147, No. 3, (2000) 1015-1020 54.S. Wernick, R. Pinner, and P.G. Sheasby, The Surface Treatment and Finishing Aluminum and its Alloys, 6th Edition, (1987) 427 55.T.P. Hoar and G.C. Wood, Electrochimica Acta, No. 7, (1962) 333-353 56.V. López, M.J. Bartolomé, E. Escudero, E. Otero, and J.A. González, Journal of the Electrochemical Society, Vol. 153, (2006) B75-B82 57.L. Hao and B.R. Cheng, Metalast International Inc., (2000) 8-18 58.J.Y. Kim, Y.S. Won, C.H. Kim, J.C. Yoo, and H.T. Yum, Surface and Coatings Technology, (2003) 592-594 59.朱祖芳,鋁合金陽極氧化與表面處理技術,化學工業出版社,(2008) 60.劉志維,鋁鎂合金陽極處理技術之研發,國立中央大學,碩士論文,民國九十一年 61.吳翰英,化學拋光對於7075-T6鋁合金陽極膜層影響之研究,大同大學,碩士論文,民國一零一年 62.A. Dito and F.Tegiacchi, Cold Sealing of Anodized Aluminum with Nickel Salt Solutions, Plating and Surface Finishing, Vol. 72, (1985) 72-78 63.O.J.Murphy, J.S.Wainright, J.J.Lenczewski, J.H.Gibson, and M.W. Santana, Spectroscopic Investigations of Porous and Sealed Anodic Alumina Films, Journal of the Electrochemical Society, Vol. 136, No. 11, (1989) 3518-3525 64.J.W. Diggle, T.C. Downie, and C.W. Goulding, Anodic Oxide Films On Aluminum, (1968) 397-400 65.M.G.Fontana, Corrosion engineering, 3rd Edition, McGraw-Hill, New York, (1986) 53-67 66.J.M.Kolotyrkin, Effects of Aions on the Dssolution Knetics of Mtals, Journal of the Electrochemical Society, Vol.108, No.3, (1961) 209-216 67.T.P.Hoar and W.R.Jacob, Breakdown of Passivity of Stainless Steel by Halide Ions, Nature, Vol. 216, (1967) 1299-1301 68.T.P.Hoar, The Production and Breakdown of the Passivity of Metals, Corrosion Science, Vol. 7, (1967) 341-355 69.陳正義,不同製程參數對 AA1050 與AA5052陽極皮膜抗腐蝕能力的影響,國立中央大學,碩士論文,民國九十九年 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17407 | - |
dc.description.abstract | 6XXX系列鋁合金具有良好成型性,例如常用的6061-T6在常溫下可達到17 %的伸長率,而6066-T6也有12 %。在鍛造用鋁合金中,雖然強度不如2XXX系列和7XXX系列鋁合金,但6066鋁合金由於比6061鋁合金添加了更多的合金元素,在經過T6處理後,強度可達400 MPa左右,比常用的6061-T6鋁合金大了將近100 MPa,但所須成本卻差不多,對於在一些中高強度的使用上為一個不錯的選擇,因此本實驗選用6066鋁合金,並伴隨陽極處理在材料表面形成一層緻密保護層。實驗部分,為了在發生問題時能直接往回追溯,因此一開始是購買4 in.的鑄錠,先經過熱輥、製程退火、冷輥、及T6處理這些前段製程後,再將試片製備成固定尺寸後進行陽極處理。陽極處理部分,我們利用L9直交表,以硫酸鋁添加量、硫酸濃度、電流密度、及工作時間為影響陽極層耐蝕性的四個因子,每個因子取三個水準,進行二部分的實驗,並配合表面陽極層性質之分析。最後,可得到6066-T6鋁合金陽極層耐蝕性之最佳條件為在硫酸鋁添加量9 g/l、硫酸濃度17 wt%、電流密度1.2 A/dm2、及工作時間10 min下。經極化曲線分析,其腐蝕電流密度可達10-10 Scale,相較於未經陽極處理之原材,可提升3 ~ 4個,且經過1392 hr中性鹽霧試驗後,其腐蝕面積約只有2.7 %,確實具有良好耐蝕性,而硬度可達到554 Hv。依實驗結果研判,這些陽極層都已經具有相當好的絕緣性,但卻仍會有腐蝕發生。因此,除了陽極處理的理想條件外,試片本身的物理缺陷也佔了相當大的因素,若要獲得更好的陽極膜層,那麼在陽極處理前的試片,應該盡量減少其雜質的含量,以減少在陽極處理過程中在這些除了鋁之外的雜質處所造成的電荷集中,使陽極層產生裂縫而大大地降低了耐蝕性。 | zh_TW |
dc.description.abstract | 6XXX series aluminum alloys have excellent formability. For examples, the commonly used 6061-T6 alloy has maximum elongation of 17 %, and 6066-T6 alloy has maximum elongation of 12 % at room temperature. Although 6XXX alloys have lower strength than 2XXX and 7XXX alloys in as-wrought state, the strength of 6066-T6 alloy can be inceresed to near 400MPa after T6 treatment. Compared to 6061-T6, 6066-T6 has 100 MPa more increment in strength due to higher fraction of alloy elements, while these two alloys cost about the same. Therefore, it would be a good selection for aluminum plants. For this reason, we chose 6066 aluminum, and coated a protective film with anodic treatment. At first, we purchased 4 in. billet in order to solve problems directly during experiment. Experiments were proceeded in sequence with hot rolling, process annealing, cold rolling, and T6 treatment. Then, we prepared specimens identically for the following anodic treatment. For anodic treatment, we selected four important process parameters that influence the product quality (corrosion resistance) very much as four control factors in Taguchi's method. These four parameters are Al2O3•14 ~ 18H2O(s) addition, H2SO4(aq) concentration, current density, and working time. Furthermore, by selecting three appropriate levels for each factor, we can construct the L9 (34) matrix experiment. Then we proceeded two parts experiment and analysis of surface properties of anodic films. Eventually, we obtained an optimum condition of 6066-T6 aluminum anodic film for corrosion resistance at 9 g/l Al2O3•14 ~ 18H2O(s) addition, 17 wt% H2SO4(aq), 1.2 A/dm2 current density, and 10 min working time. Results from polarization curve and 1392-hour neutral salt spray test show that corrosion current density can reach 10-10 scale (3 ~ 4 order increased compared to raw material) and has just 2.7 % corrosion area. It can provide excellent corrosion resistance certainty and hardness of 554 Hv. On our results, the anodic films should have excellent corrosion resistance, but they were still corroded. Thus, if we would like to obtain better anodic film, we should also consider physical defects except for an optimum condition in practice. We should reduce the content of impurities in our specimens before anodic treatment, For example, lower content limit of impurities is required for better control of charge during anodic process. Hence we can obtain excellent anodic film with less cracks.
Keywords:6066 aluminum, anodic treatment, corrosion resistance, Taguchi method | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:11:13Z (GMT). No. of bitstreams: 1 ntu-102-R00527057-1.pdf: 15960120 bytes, checksum: 4cc337803f4247f7921be4e4a6d0f187 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 XIII 第一章 前言 1 第二章 文獻回顧 2 2-1 鋁合金的熔煉和鑄造[2 - 3] 2 2-1-1 熔煉目的 2 2-1-2 熔煉原料 3 2-1-3 熔煉方法 6 2-2 均質化 7 2-3 軋延[10 - 11] 9 2-3-1 軋延力學概述 9 2-3-2 軋延時潤滑狀況 15 2-4 退火處理 18 2-5 6XXX系列鋁合金的析出硬化 19 2-6 陽極處理 20 2-6-1陽極處理基本介紹 20 2-6-2 陽極處理過程中,電壓(或電流)和時間關係 26 2-6-3 陽極處理分類 29 2-6-4封孔處理 30 2-7 各實驗儀器原理 35 2-7-1 差示掃描量熱法(Differential Scanning Calorimetry, DSC) 35 2-7-2 渦電流膜厚計(Eddy Current Thickness Tester) 35 2-7-3 原子力顯微鏡(Atomic Force Microscope, AFM) 36 2-7-4 Tafel外插法和混合電位理論 39 2-7-5 鹽霧試驗 40 2-7-6 氯離子的腐蝕理論 42 第三章 實驗步驟 46 3-1實驗流程 46 3-2試片製備和前處理 47 3-2-1 As-Received Billet 47 3-2-2 Hot Rolling 48 3-2-3 Process Annealing 49 3-2-4 Cold Rolling 50 3-2-5 T6 Treatment 50 3-2-6 試片前處理 51 3-3 以田口實驗規劃法探討AA6066陽極層耐蝕性之最佳化條件 52 3-3-1 第一部分實驗 52 3-3-2 第二部分實驗 55 3-4 各階段微結構觀察 57 3-4-1金相觀察 57 3-4-2 SEM顯微組織觀察與成分分析 58 3-4-3 X光繞射分析 58 3-5 陽極處理後之表面陽極層性質分析 59 3-5-1 陽極膜層厚度分析 59 3-5-2 陽極膜層粗糙度分析 59 3-5-3 極化曲線分析 60 3-5-4 鹽霧試驗 61 3-5-5 硬度試驗 62 第四章 結果與討論 63 4-1各階段微結構觀察及X光繞射分析 63 4-2 第一部分實驗 72 4-3 Chemical Etching對陽極層的影響 89 4-3 第二部分實驗 96 4-5 中性鹽霧試驗 113 4-6 陽極層成長過程及粗糙度變化 127 第五章 結論 132 參考文獻 134 附錄 139 附錄一 6066鋁合金之自然時效 139 附錄二 7075鋁合金之掛鉤表面缺陷分析 140 | |
dc.language.iso | zh-TW | |
dc.title | 以田口法探討6066陽極層之耐蝕性 | zh_TW |
dc.title | A Study on Corrosion Resistance of 6066 Anodic Film with Taguchi Method | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊木榮,林招松,薛人愷 | |
dc.subject.keyword | 6066鋁合金,陽極處理,耐蝕性,田口法, | zh_TW |
dc.subject.keyword | 6066 aluminum,anodic treatment,corrosion resistance,Taguchi method, | en |
dc.relation.page | 142 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2013-08-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 15.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。