Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17384
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭建興,楊偉勛
dc.contributor.authorSung-Chun Tangen
dc.contributor.author湯頌君zh_TW
dc.date.accessioned2021-06-08T00:09:59Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-08
dc.identifier.citation參考資料
(1995). 'Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group.' N Engl J Med 333(24): 1581-1587.
(1997). 'CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. CAST (Chinese Acute Stroke Trial) Collaborative Group.' Lancet 349(9066): 1641-1649.
(1997). 'The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. International Stroke Trial Collaborative Group.' Lancet 349(9065): 1569-1581.
(2003). 'Therapy-based rehabilitation services for stroke patients at home.' Cochrane Database Syst Rev(1): CD002925.
Adams, H. P., Jr., B. H. Bendixen, E. Leira, et al. (1999). 'Antithrombotic treatment of ischemic stroke among patients with occlusion or severe stenosis of the internal carotid artery: A report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST).' Neurology 53(1): 122-125.
Ahmed, N., N. Wahlgren, M. Grond, et al. (2010). 'Implementation and outcome of thrombolysis with alteplase 3-4.5 h after an acute stroke: an updated analysis from SITS-ISTR.' Lancet Neurol 9(9): 866-874.
Akira, S. (2006). 'TLR signaling.' Curr Top Microbiol Immunol 311: 1-16.
Al'Qteishat, A., J. Gaffney, J. Krupinski, et al. (2006). 'Changes in hyaluronan production and metabolism following ischaemic stroke in man.' Brain 129(Pt 8): 2158-2176.
Alshekhlee, A., D. J. Pandya, J. English, et al. (2012). 'Merci mechanical thrombectomy retriever for acute ischemic stroke therapy: literature review.' Neurology 79(13 Suppl 1): S126-134.
Amaro, S., D. Canovas, M. Castellanos, et al. (2010). 'The URICO-ICTUS study, a phase 3 study of combined treatment with uric acid and rtPA administered intravenously in acute ischaemic stroke patients within the first 4.5 h of onset of symptoms.' Int J Stroke 5(4): 325-328.
Amaro, S. and A. Chamorro (2011). 'Translational stroke research of the combination of thrombolysis and antioxidant therapy.' Stroke 42(5): 1495-1499.
Amaro, S., V. Obach, A. Cervera, et al. (2009). 'Course of matrix metalloproteinase-9 isoforms after the administration of uric acid in patients with acute stroke: a proof-of-concept study.' J Neurol 256(4): 651-656.
Amaro, S., A. M. Planas and A. Chamorro (2008). 'Uric acid administration in patients with acute stroke: a novel approach to neuroprotection.' Expert Rev Neurother 8(2): 259-270.
Amaro, S., D. Soy, V. Obach, et al. (2007). 'A pilot study of dual treatment with recombinant tissue plasminogen activator and uric acid in acute ischemic stroke.' Stroke 38(7): 2173-2175.
Andrassy, M., H. C. Volz, J. C. Igwe, et al. (2008). 'High-mobility group box-1 in ischemia-reperfusion injury of the heart.' Circulation 117(25): 3216-3226.
Arumugam, T. V., M. Gleichmann, S. C. Tang, et al. (2006). 'Hormesis/preconditioning mechanisms, the nervous system and aging.' Ageing Res Rev 5(2): 165-178.
Arumugam, T. V., T. M. Phillips, A. Cheng, et al. (2010). 'Age and energy intake interact to modify cell stress pathways and stroke outcome.' Ann Neurol 67(1): 41-52.
Arumugam, T. V., J. W. Salter, J. H. Chidlow, et al. (2004). 'Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion.' Am J Physiol Heart Circ Physiol 287(6): H2555-2560.
Arumugam, T. V., S. C. Tang, J. D. Lathia, et al. (2007). 'Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death.' Proc Natl Acad Sci U S A 104(35): 14104-14109.
Barbieri, A., E. Giuliani, C. Carone, et al. (2013). 'Clinical severity of ischemic stroke and neural damage biomarkers In the acute setting: The STROke-MArkers (STROMA) Study.' Minerva Anestesiol.
Bierhaus, A., K. M. Haslbeck, P. M. Humpert, et al. (2004). 'Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily.' J Clin Invest 114(12): 1741-1751.
Bogiatzi, C., M. S. Cocker, R. Beanlands, et al. (2012). 'Identifying high-risk asymptomatic carotid stenosis.' Expert Opin Med Diagn 6(2): 139-151.
Brevetti, G., G. Giugliano, L. Brevetti, et al. (2010). 'Inflammation in peripheral artery disease.' Circulation 122(18): 1862-1875.
Broderick, J. P., Y. Y. Palesch, A. M. Demchuk, et al. (2013). 'Endovascular therapy after intravenous t-PA versus t-PA alone for stroke.' N Engl J Med 368(10): 893-903.
Broughton, B. R., D. C. Reutens and C. G. Sobey (2009). 'Apoptotic mechanisms after cerebral ischemia.' Stroke 40(5): e331-339.
Ciccone, A., L. Valvassori, M. Nichelatti, et al. (2013). 'Endovascular treatment for acute ischemic stroke.' N Engl J Med 368(10): 904-913.
Colhoun, H. M., D. J. Betteridge, P. Durrington, et al. (2011). 'Total soluble and endogenous secretory receptor for advanced glycation end products as predictive biomarkers of coronary heart disease risk in patients with type 2 diabetes: an analysis from the CARDS trial.' Diabetes 60(9): 2379-2385.
Cuccurullo, C., A. Iezzi, M. L. Fazia, et al. (2006). 'Suppression of RAGE as a basis of simvastatin-dependent plaque stabilization in type 2 diabetes.' Arterioscler Thromb Vasc Biol 26(12): 2716-2723.
Davis, S. M., G. A. Donnan, M. W. Parsons, et al. (2008). 'Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial.' Lancet Neurol 7(4): 299-309.
de Souza, A. W., J. Westra, P. C. Limburg, et al. (2012). 'HMGB1 in vascular diseases: Its role in vascular inflammation and atherosclerosis.' Autoimmun Rev 11(12): 909-917.
Department of Health, E. Y., Taiwan. (2010). 'Inpatient medical benefit claims of major illness/injury 2010.'
Department of Health, E. Y., Taiwan. (2000). 'Inpatient medical benefit
claims of major illness/injury 2000.'.
Devangelio, E., F. Santilli, G. Formoso, et al. (2007). 'Soluble RAGE in type 2 diabetes: association with oxidative stress.' Free Radic Biol Med 43(4): 511-518.
Dybdahl, B., A. Wahba, E. Lien, et al. (2002). 'Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4.' Circulation 105(6): 685-690.
Emanuele, E., A. D'Angelo, C. Tomaino, et al. (2005). 'Circulating levels of soluble receptor for advanced glycation end products in Alzheimer disease and vascular dementia.' Arch Neurol 62(11): 1734-1736.
Falcone, C., E. Emanuele, A. D'Angelo, et al. (2005). 'Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men.' Arterioscler Thromb Vasc Biol 25(5): 1032-1037.
Feigin, V. L., C. M. Lawes, D. A. Bennett, et al. (2003). 'Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century.' Lancet Neurol 2(1): 43-53.
Fens, M., T. Vluggen, J. C. van Haastregt, et al. (2013). 'Multidisciplinary care for stroke patients living in the community: a systematic review.' J Rehabil Med 45(4): 321-330.
Fisher, M. and B. Bastan (2008). 'Treating acute ischemic stroke.' Curr Opin Drug Discov Devel 11(5): 626-632.
Fisher, M. and T. Tatlisumak (2005). 'Use of animal models has not contributed to development of acute stroke therapies: con.' Stroke 36(10): 2324-2325.
Fitzgerald, K. A., E. M. Palsson-McDermott, A. G. Bowie, et al. (2001). 'Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction.' Nature 413(6851): 78-83.
Forbes, J. M., S. R. Thorpe, V. Thallas-Bonke, et al. (2005). 'Modulation of soluble receptor for advanced glycation end products by angiotensin-converting enzyme-1 inhibition in diabetic nephropathy.' J Am Soc Nephrol 16(8): 2363-2372.
Furlan, A., R. Higashida, L. Wechsler, et al. (1999). 'Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism.' JAMA 282(21): 2003-2011.
Garbuzova-Davis, S., M. C. Rodrigues, D. G. Hernandez-Ontiveros, et al. (2013). 'Blood-Brain Barrier Alterations Provide Evidence of Subacute Diaschisis in an Ischemic Stroke Rat Model.' PLoS One 8(5): e63553.
Geroldi, D., C. Falcone and E. Emanuele (2006). 'Soluble receptor for advanced glycation end products: from disease marker to potential therapeutic target.' Curr Med Chem 13(17): 1971-1978.
Geroldi, D., C. Falcone, E. Emanuele, et al. (2005). 'Decreased plasma levels of soluble receptor for advanced glycation end-products in patients with essential hypertension.' J Hypertens 23(9): 1725-1729.
Gohda, T., M. Tanimoto, J. Y. Moon, et al. (2008). 'Increased serum endogenous secretory receptor for advanced glycation end-product (esRAGE) levels in type 2 diabetic patients with decreased renal function.' Diabetes Res Clin Pract 81(2): 196-201.
Goldstein, R. S., M. Gallowitsch-Puerta, L. Yang, et al. (2006). 'Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia.' Shock 25(6): 571-574.
Grossin, N., M. P. Wautier, T. Meas, et al. (2008). 'Severity of diabetic microvascular complications is associated with a low soluble RAGE level.' Diabetes Metab 34(4 Pt 1): 392-395.
Hacke, W., A. J. Furlan, Y. Al-Rawi, et al. (2009). 'Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study.' Lancet Neurol 8(2): 141-150.
Hacke, W., M. Kaste, E. Bluhmki, et al. (2008). 'Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke.' N Engl J Med 359(13): 1317-1329.
Harari, O. A. and J. K. Liao (2010). 'NF-kappaB and innate immunity in ischemic stroke.' Ann N Y Acad Sci 1207: 32-40.
Hayakawa, K., J. Qiu and E. H. Lo (2010). 'Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke.' Ann N Y Acad Sci 1207: 50-57.
Heiss, W. D. (2012). 'The ischemic penumbra: how does tissue injury evolve?' Ann N Y Acad Sci 1268: 26-34.
Hermann, D. M. and M. Chopp (2012). 'Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation.' Lancet Neurol 11(4): 369-380.
Hermus, L., J. D. Lefrandt, R. A. Tio, et al. (2010). 'Carotid plaque formation and serum biomarkers.' Atherosclerosis 213(1): 21-29.
Hsieh, F. I., L. M. Lien, S. T. Chen, et al. (2010). 'Get With the Guidelines-Stroke performance indicators: surveillance of stroke care in the Taiwan Stroke Registry: Get With the Guidelines-Stroke in Taiwan.' Circulation 122(11): 1116-1123.
Hudson, B. I., E. Harja, B. Moser, et al. (2005). 'Soluble levels of receptor for advanced glycation endproducts (sRAGE) and coronary artery disease: the next C-reactive protein?' Arterioscler Thromb Vasc Biol 25(5): 879-882.
Iadecola, C. and J. Anrather (2011). 'The immunology of stroke: from mechanisms to translation.' Nat Med 17(7): 796-808.
Inoue, K., K. Kawahara, K. K. Biswas, et al. (2007). 'HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques.' Cardiovasc Pathol 16(3): 136-143.
Jandeleit-Dahm, K. and M. E. Cooper (2008). 'The role of AGEs in cardiovascular disease.' Curr Pharm Des 14(10): 979-986.
Janssens, S., K. Burns, E. Vercammen, et al. (2003). 'MyD88S, a splice variant of MyD88, differentially modulates NF-kappaB- and AP-1-dependent gene expression.' FEBS Lett 548(1-3): 103-107.
Jauch, E. C., J. L. Saver, H. P. Adams, Jr., et al. (2013). 'Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association.' Stroke 44(3): 870-947.
Jeng, J. S., T. K. Lee, Y. C. Chang, et al. (1998). 'Subtypes and case-fatality rates of stroke: a hospital-based stroke registry in Taiwan (SCAN-IV).' J Neurol Sci 156(2): 220-226.
Jiang, D., J. Liang and P. W. Noble (2011). 'Hyaluronan as an immune regulator in human diseases.' Physiol Rev 91(1): 221-264.
Kaczorowski, D. J., A. Tsung and T. R. Billiar (2009). 'Innate immune mechanisms in ischemia/reperfusion.' Front Biosci (Elite Ed) 1: 91-98.
Kalea, A. Z., A. M. Schmidt and B. I. Hudson (2009). 'RAGE: a novel biological and genetic marker for vascular disease.' Clin Sci (Lond) 116(8): 621-637.
Kalinina, N., A. Agrotis, Y. Antropova, et al. (2004). 'Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions: role of activated macrophages and cytokines.' Arterioscler Thromb Vasc Biol 24(12): 2320-2325.
Kalluri, H. S. and R. J. Dempsey (2008). 'Growth factors, stem cells, and stroke.' Neurosurg Focus 24(3-4): E14.
Kalousova, M., M. Hodkova, M. Kazderova, et al. (2006). 'Soluble receptor for advanced glycation end products in patients with decreased renal function.' Am J Kidney Dis 47(3): 406-411.
Kamel, H. and C. Iadecola (2012). 'Brain-immune interactions and ischemic stroke: clinical implications.' Arch Neurol 69(5): 576-581.
Kase, C. S., A. J. Furlan, L. R. Wechsler, et al. (2001). 'Cerebral hemorrhage after intra-arterial thrombolysis for ischemic stroke: the PROACT II trial.' Neurology 57(9): 1603-1610.
Kaste, M. (2005). 'Use of animal models has not contributed to development of acute stroke therapies: pro.' Stroke 36(10): 2323-2324.
Katakami, N., M. Matsuhisa, H. Kaneto, et al. (2007). 'Serum endogenous secretory RAGE levels are inversely associated with carotid IMT in type 2 diabetic patients.' Atherosclerosis 190(1): 22-23.
Kim, B. S., S. W. Lim, C. Li, et al. (2005). 'Ischemia-reperfusion injury activates innate immunity in rat kidneys.' Transplantation 79(10): 1370-1377.
Kim, J. B., J. Sig Choi, Y. M. Yu, et al. (2006). 'HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain.' J Neurosci 26(24): 6413-6421.
Kim, W., B. I. Hudson, B. Moser, et al. (2005). 'Receptor for advanced glycation end products and its ligands: a journey from the complications of diabetes to its pathogenesis.' Ann N Y Acad Sci 1043: 553-561.
Kislinger, T., N. Tanji, T. Wendt, et al. (2001). 'Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice.' Arterioscler Thromb Vasc Biol 21(6): 905-910.
Kitahara, T., Y. Takeishi, M. Harada, et al. (2008). 'High-mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice.' Cardiovasc Res 80(1): 40-46.
Kohman, R. A. and J. S. Rhodes (2013). 'Neurogenesis, inflammation and behavior.' Brain Behav Immun 27(1): 22-32.
Koyama, H., T. Shoji, H. Yokoyama, et al. (2005). 'Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis.' Arterioscler Thromb Vasc Biol 25(12): 2587-2593.
Koyama, Y., Y. Takeishi, T. Niizeki, et al. (2008). 'Soluble Receptor for advanced glycation end products (RAGE) is a prognostic factor for heart failure.' J Card Fail 14(2): 133-139.
Lakhan, S. E., A. Kirchgessner and M. Hofer (2009). 'Inflammatory mechanisms in ischemic stroke: therapeutic approaches.' J Transl Med 7: 97.
Lapchak, P. A. and D. M. Araujo (2003). 'Development of the nitrone-based spin trap agent NXY-059 to treat acute ischemic stroke.' CNS Drug Rev 9(3): 253-262.
Lathia, J. D., E. Okun, S. C. Tang, et al. (2008). 'Toll-like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation.' J Neurosci 28(51): 13978-13984.
Lees, K. R., E. Bluhmki, R. von Kummer, et al. (2010). 'Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials.' Lancet 375(9727): 1695-1703.
Lees, K. R., J. A. Zivin, T. Ashwood, et al. (2006). 'NXY-059 for acute ischemic stroke.' N Engl J Med 354(6): 588-600.
Lei, C., S. Lin, C. Zhang, et al. (2013). 'Effects of high-mobility group box1 on cerebral angiogenesis and neurogenesis after intracerebral hemorrhage.' Neuroscience 229: 12-19.
Leys, D. and C. Cordonnier (2012). 'rt-PA for ischaemic stroke: what will the next question be?' Lancet 379(9834): 2320-2321.
Limana, F., A. Germani, A. Zacheo, et al. (2005). 'Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation.' Circ Res 97(8): e73-83.
Lindsey, J. B., F. Cipollone, S. M. Abdullah, et al. (2009). 'Receptor for advanced glycation end-products (RAGE) and soluble RAGE (sRAGE): cardiovascular implications.' Diab Vasc Dis Res 6(1): 7-14.
Liu, K., S. Mori, H. K. Takahashi, et al. (2007). 'Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats.' FASEB J 21(14): 3904-3916.
Lotze, M. T. and K. J. Tracey (2005). 'High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal.' Nat Rev Immunol 5(4): 331-342.
Lyden, P. D., A. Shuaib, K. R. Lees, et al. (2007). 'Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: the CHANT Trial.' Stroke 38(8): 2262-2269.
Maples, K. R., A. R. Green and R. A. Floyd (2004). 'Nitrone-related therapeutics: potential of NXY-059 for the treatment of acute ischaemic stroke.' CNS Drugs 18(15): 1071-1084.
McCartney, M. (2012). 'Calorie restriction and longevity: fast and loose?' BMJ 345: e6872.
Messe, S. R., G. C. Fonarow, E. E. Smith, et al. (2012). 'Use of tissue-type plasminogen activator before and after publication of the European Cooperative Acute Stroke Study III in Get With The Guidelines-Stroke.' Circ Cardiovasc Qual Outcomes 5(3): 321-326.
Montaner, J., M. Mendioroz, M. Ribo, et al. (2011). 'A panel of biomarkers including caspase-3 and D-dimer may differentiate acute stroke from stroke-mimicking conditions in the emergency department.' J Intern Med 270(2): 166-174.
Montaner, J., M. Perea-Gainza, P. Delgado, et al. (2008). 'Etiologic diagnosis of ischemic stroke subtypes with plasma biomarkers.' Stroke 39(8): 2280-2287.
Muhammad, S., W. Barakat, S. Stoyanov, et al. (2008). 'The HMGB1 receptor RAGE mediates ischemic brain damage.' J Neurosci 28(46): 12023-12031.
Nakamura, K., S. Yamagishi, H. Adachi, et al. (2007). 'Elevation of soluble form of receptor for advanced glycation end products (sRAGE) in diabetic subjects with coronary artery disease.' Diabetes Metab Res Rev 23(5): 368-371.
Nakamura, K., S. Yamagishi, H. Adachi, et al. (2008). 'Circulating advanced glycation end products (AGEs) and soluble form of receptor for AGEs (sRAGE) are independent determinants of serum monocyte chemoattractant protein-1 (MCP-1) levels in patients with type 2 diabetes.' Diabetes Metab Res Rev 24(2): 109-114.
Nakamura, K., S. Yamagishi, Y. Nakamura, et al. (2005). 'Telmisartan inhibits expression of a receptor for advanced glycation end products (RAGE) in angiotensin-II-exposed endothelial cells and decreases serum levels of soluble RAGE in patients with essential hypertension.' Microvasc Res 70(3): 137-141.
Neeper, M., A. M. Schmidt, J. Brett, et al. (1992). 'Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins.' J Biol Chem 267(21): 14998-15004.
Nin, J. W., A. Jorsal, I. Ferreira, et al. (2010). 'Higher plasma soluble Receptor for Advanced Glycation End Products (sRAGE) levels are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: a 12-year follow-up study.' Diabetes 59(8): 2027-2032.
Onwuekwe, I. and B. Ezeala-Adikaibe (2012). 'Ischemic stroke and neuroprotection.' Ann Med Health Sci Res 2(2): 186-190.
Organization, W. H. (2010). 'World Health Report 2010.' Geneva. Switzerland. World Health Organization. 2010.
Pare, J. R. and J. H. Kahn (2012). 'Basic neuroanatomy and stroke syndromes.' Emerg Med Clin North Am 30(3): 601-615.
Park, H. Y., K. H. Yun and D. S. Park (2009). 'Levels of Soluble Receptor for Advanced Glycation End Products in Acute Ischemic Stroke without a Source of Cardioembolism.' J Clin Neurol 5(3): 126-132.
Parkkinen, J. and H. Rauvala (1991). 'Interactions of plasminogen and tissue plasminogen activator (t-PA) with amphoterin. Enhancement of t-PA-catalyzed plasminogen activation by amphoterin.' J Biol Chem 266(25): 16730-16735.
Pelisek, J., H. H. Eckstein and A. Zernecke (2012). 'Pathophysiological mechanisms of carotid plaque vulnerability: impact on ischemic stroke.' Arch Immunol Ther Exp (Warsz) 60(6): 431-442.
Pilakka-Kanthikeel, S., V. S. Atluri, V. Sagar, et al. (2013). 'Targeted Brain Derived Neurotropic Factors (BDNF) Delivery across the Blood-Brain Barrier for Neuro-Protection Using Magnetic Nano Carriers: An In-Vitro Study.' PLoS One 8(4): e62241.
Qiu, J., M. Nishimura, Y. Wang, et al. (2008). 'Early release of HMGB-1 from neurons after the onset of brain ischemia.' J Cereb Blood Flow Metab 28(5): 927-938.
Rahme, R., T. A. Abruzzo, R. H. Martin, et al. (2013). 'Is intra-arterial thrombolysis beneficial for M2 occlusions? Subgroup analysis of the PROACT-II trial.' Stroke 44(1): 240-242.
Ramasamy, R., S. F. Yan and A. M. Schmidt (2011). 'Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications.' Ann N Y Acad Sci 1243: 88-102.
Reeves, M. J., S. Arora, J. P. Broderick, et al. (2005). 'Acute stroke care in the US: results from 4 pilot prototypes of the Paul Coverdell National Acute Stroke Registry.' Stroke 36(6): 1232-1240.
Riccioni, G. and V. Sblendorio (2012). 'Atherosclerosis: from biology to pharmacological treatment.' J Geriatr Cardiol 9(3): 305-317.
Romanos, E., A. M. Planas, S. Amaro, et al. (2007). 'Uric acid reduces brain damage and improves the benefits of rt-PA in a rat model of thromboembolic stroke.' J Cereb Blood Flow Metab 27(1): 14-20.
Romi, F., G. Helgeland and N. E. Gilhus (2011). 'Heat-shock proteins in clinical neurology.' Eur Neurol 66(2): 65-69.
Rothman, S. M., K. J. Griffioen, R. Wan, et al. (2012). 'Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health.' Ann N Y Acad Sci 1264(1): 49-63.
Rouhiainen, A., J. Kuja-Panula, S. Tumova, et al. (2013). 'RAGE-mediated cell signaling.' Methods Mol Biol 963: 239-263.
Sakaguchi, T., S. F. Yan, S. D. Yan, et al. (2003). 'Central role of RAGE-dependent neointimal expansion in arterial restenosis.' J Clin Invest 111(7): 959-972.
Sakurai, S., Y. Yamamoto, H. Tamei, et al. (2006). 'Development of an ELISA for esRAGE and its application to type 1 diabetic patients.' Diabetes Res Clin Pract 73(2): 158-165.
Sandercock, P., J. M. Wardlaw, R. I. Lindley, et al. (2012). 'The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial.' Lancet 379(9834): 2352-2363.
Santilli, F., L. Bucciarelli, D. Noto, et al. (2007). 'Decreased plasma soluble RAGE in patients with hypercholesterolemia: effects of statins.' Free Radic Biol Med 43(9): 1255-1262.
Saver, J. L., R. Jahan, E. I. Levy, et al. (2012). 'Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial.' Lancet 380(9849): 1241-1249.
Scherrer, U., P. Turini, S. Thalmann, et al. (2006). 'Pulmonary hypertension in high-altitude dwellers: novel mechanisms, unsuspected predisposing factors.' Adv Exp Med Biol 588: 277-291.
Schmidt, A., J. Minnerup and C. Kleinschnitz (2013). 'Emerging neuroprotective drugs for the treatment of acute ischaemic stroke.' Expert Opin Emerg Drugs.
Schmidt, A. M., S. D. Yan, J. L. Wautier, et al. (1999). 'Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis.' Circ Res 84(5): 489-497.
Schroder, K., M. J. Sweet and D. A. Hume (2006). 'Signal integration between IFNgamma and TLR signalling pathways in macrophages.' Immunobiology 211(6-8): 511-524.
Schwarzbach, C. J., A. Schaefer, A. Ebert, et al. (2012). 'Stroke and cancer: the importance of cancer-associated hypercoagulation as a possible stroke etiology.' Stroke 43(11): 3029-3034.
Shantha, G. P., B. Wasserman, B. C. Astor, et al. (2013). 'Association of blood lactate with carotid atherosclerosis: The Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study.' Atherosclerosis 228(1): 249-255.
Shenhar-Tsarfaty, S., E. B. Assayag, I. Bova, et al. (2008). 'Early signaling of inflammation in acute ischemic stroke: clinical and rheological implications.' Thromb Res 122(2): 167-173.
Shishido, T., N. Nozaki, S. Yamaguchi, et al. (2003). 'Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction.' Circulation 108(23): 2905-2910.
Shuaib, A., K. R. Lees, P. Lyden, et al. (2007). 'NXY-059 for the treatment of acute ischemic stroke.' N Engl J Med 357(6): 562-571.
Simon, D. I. (2012). 'Inflammation and vascular injury: basic discovery to drug development.' Circ J 76(8): 1811-1818.
Sly, W. S. and C. Vogler (2013). 'The final frontier - crossing the blood-brain barrier.' EMBO Mol Med 5(5): 655-657.
Smith, W. S., G. Sung, J. Saver, et al. (2008). 'Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial.' Stroke 39(4): 1205-1212.
Takahashi, M. (2008). 'High-mobility group box 1 protein (HMGB1) in ischaemic heart disease: beneficial or deleterious?' Cardiovasc Res 80(1): 5-6.
Tan, K. C., W. S. Chow, A. W. Tso, et al. (2007). 'Thiazolidinedione increases serum soluble receptor for advanced glycation end-products in type 2 diabetes.' Diabetologia 50(9): 1819-1825.
Tang, S. C., T. V. Arumugam, R. G. Cutler, et al. (2007). 'Neuroprotective actions of a histidine analogue in models of ischemic stroke.' J Neurochem 101(3): 729-736.
Tang, S. C., T. V. Arumugam, X. Xu, et al. (2007). 'Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits.' Proc Natl Acad Sci U S A 104(34): 13798-13803.
Tang, S. C., J. D. Lathia, P. K. Selvaraj, et al. (2008). 'Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal.' Exp Neurol 213(1): 114-121.
Tang, S. C., Y. C. Wang, Y. I. Li, et al. (2013). 'Functional role of soluble receptor for advanced glycation end products in stroke.' Arterioscler Thromb Vasc Biol 33(3): 585-594.
Turner, R. C., B. Lucke-Wold, N. Lucke-Wold, et al. (2013). 'Neuroprotection for ischemic stroke: moving past shortcomings and identifying promising directions.' Int J Mol Sci 14(1): 1890-1917.
Vabulas, R. M., P. Ahmad-Nejad, S. Ghose, et al. (2002). 'HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway.' J Biol Chem 277(17): 15107-15112.
Wardlaw, J. M., V. Murray, E. Berge, et al. (2012). 'Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis.' Lancet 379(9834): 2364-2372.
Wendt, T. M., N. Tanji, J. Guo, et al. (2003). 'RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy.' Am J Pathol 162(4): 1123-1137.
Woodruff, T. M., J. Thundyil, S. C. Tang, et al. (2011). 'Pathophysiology, treatment, and animal and cellular models of human ischemic stroke.' Mol Neurodegener 6(1): 11.
Xu, M., Y. Bi, Y. Chen, et al. (2013). 'Increased C-reactive Protein Associates with Elevated Carotid Intima-Media Thickness in Chinese Adults with Normal Low Density Lipoprotein Cholesterol Levels.' J Atheroscler Thromb.
Yamagishi, S., K. Nakamura and T. Imaizumi (2005). 'Advanced glycation end products (AGEs) and diabetic vascular complications.' Curr Diabetes Rev 1(1): 93-106.
Yilmaz, G., T. V. Arumugam, K. Y. Stokes, et al. (2006). 'Role of T lymphocytes and interferon-gamma in ischemic stroke.' Circulation 113(17): 2105-2112.
Yip, P. K., J. S. Jeng, T. K. Lee, et al. (1997). 'Subtypes of ischemic stroke. A hospital-based stroke registry in Taiwan (SCAN-IV).' Stroke 28(12): 2507-2512.
Yokota, C., K. Minematsu, Y. Tomii, et al. (2009). 'Low levels of plasma soluble receptor for advanced glycation end products are associated with severe leukoaraiosis in acute stroke patients.' J Neurol Sci 287(1-2): 41-44.
Zhang, Z. G., L. Zhang, Q. Jiang, et al. (2000). 'VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain.' J Clin Invest 106(7): 829-838.
Zhou, Y., K. L. Xiong, S. Lin, et al. (2010). 'Elevation of high-mobility group protein box-1 in serum correlates with severity of acute intracerebral hemorrhage.' Mediators Inflamm 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17384-
dc.description.abstract背景及目的
腦中風是造成全球死亡的第三大原因及永久傷殘的首要原因。一旦發生急性缺血性腦中風,經由靜脈注射血栓溶解劑是唯一被證實有效的治療。然而考慮治療的時間限制以及可能的出血併發症,目前臨床上只有很小比例的急性腦中風病患能夠接受此項治療。因此,研究急性缺血性腦中風的病生理機制,並發展可能的治療方式是相當重要及迫切的課題。當腦血管阻塞引起急性缺血性腦中風時,處於缺血中心的腦組織會立即梗塞壞死,周圍受到較輕微缺血影響的腦細胞則進入缺血連鎖反應,並可能因而凋零死亡。在複雜的缺血連鎖反應中,腦神經系統的發炎反應包括上游的接受器及下游的訊息產物扮演相當關鍵的角色。
晚期糖基化終末產物接受器(receptor for advanced glycation end-products, RAGE)是一種橫跨細胞膜,在細胞表面表現的細胞激素接受器。RAGE及RAGE配合子[如AGE、high mobility group box 1(HMGB1)及S100等]調控的發炎反應被認為與心腦血管的慢性動脈硬化及急性缺血性傷害的病程密切相關。但除了細胞上的RAGE,還有循環的可溶性RAGE異構體(soluble RAGE,sRAGE)。sRAGE可以藉由RAGE的mRNA產生選擇性剪貼(alternative splicing)或者在完整的RAGE蛋白上,藉由蛋白溶解脢(protease)的作用,將細胞外RAGE切除而游離至細胞外。
循環的sRAGE具有與細胞上的RAGE競爭配合子的特性,藉由與RAGE配合子產生連結,抑制細胞內RAGE下游的相關訊息傳遞活化。相關的研究顯示,血液中的sRAGE可以作為臨床上各種慢性發炎,免疫疾病及心血管動脈硬化疾病的生物指標,且重組的sRAGE在上述疾病也可能具有治療的潛力。但sRAGE是否在急性腦中風具有類似的重要功能仍屬未知。本研究從臨床與基礎的角度,同時探討sRAGE在急性缺血性腦中風的重要生理意義與可能的治療潛力。
研究對象與方法
(1)臨床研究:
本研究為多中心臨床研究設計。急性腦中風病患的收案條件為缺血性腦中風發病後24小時內入院並在48小時內接受第一次抽血。急性腦中風病患共接受三次抽血,抽血的時間點分別為腦中風發生後小於48小時,2到3天(48-72小時),以及5到7天,對照組則接受一次抽血。血漿中的sRAGE及HMGB1濃度以酵素免疫分析法,(Enzyme-linked immunosorbent assay,ELISA)的方式測量,並與臨床的腦中風嚴重程度及三個月的功能性預後做相關分析。
(2)基礎研究:
小鼠接受中大腦動脈缺血-再灌流之損傷模式後,同時收集缺血側的腦組織及周邊血液來分析(s)RAGE及HMGB1表現。並在缺血再灌流傷害後3小時靜脈注射重組的sRAGE、HMGB1或生理食鹽水,之後評估24,48及72小時的行為功能,腦梗塞範圍及死亡率。我們也使用初級皮質神經細胞培養,研究缺氧缺糖模式傷害下細胞的RAGE表現量,並外加重組的sRAGE或HMGB1以觀察神經細胞的存活率。同時評估重組sRAGE對於腦組織及神經細胞在缺血傷害下的NFκB活性,磷酸化JNK及斷裂性caspase3蛋白的影響。
結果
本研究從2008年七月到2010七月,總共有72位急性缺血性腦中風個案及同樣個案數的對照組符合收案條件。腦中風病患於急性腦中風發生後,小於48小時的血中sRAGE及HMGB1的濃度皆顯著提高(p<0.01),sRAGE之後呈現逐漸下降的趨勢,並且5-7天的血中濃度與第一個抽血時間點(小於48小時)相比顯著較低(p<0.05)。此外,腦中風後小於48小時的sRAGE濃度不但與NIHSS的數值呈顯著正相關(γ=0.36, p=0.002),並且濃度較高與三個月的功能性預後不好顯著相關(p=0.037, OR=18.22)。
動物實驗顯示,小鼠血漿中的sRAGE及HMGB1濃度在發生缺血性腦傷害後,在sRAGE的部分可以見到急性缺血性傷害發生後明顯增加,並在較延遲的時間點轉而顯著降低的變化。而HMGB1則持續維持在相較對照組為顯著較高的濃度。免疫沈澱法的結果進一步顯示,不論是小鼠或者臨床病患,血中HMGB1與sRAGE結合的量在腦中風發生後,明顯隨著時間而增加。此外,外加重組的sRAGE可以減少缺血傷害後的腦組織周圍的免疫細胞浸潤,改善小鼠中風後的預後,減少缺氧缺糖培養環境的神經細胞死亡,以及逆轉外加重組HMGB1對小鼠及神經細胞在腦中風模式下的不良反應。
討論
我們的臨床研究部分得到了幾個重要的結果。第一個是急性缺血性腦中風的發生會引發血中的sRAGE以及HMGB1濃度明顯增高。第二個是缺血性腦中風發生後小於48小時的血中sRAGE的數值與腦中風的嚴重程度成正相關,且可以作為三個月後的功能性預後指標(數值越高,預後越差)。第三個是缺血性腦中風發生後,血中sRAGE的數值一開始顯著增高,但在往後的時間點卻逐漸下降。這樣的臨床研究結果,尤其是血中sRAGE的數值在腦中風發生後的快速動態性變化,讓我們進一步推論sRAGE不僅僅是能夠做為急性缺血性腦中風後有意義的生物指標(反應腦中風嚴重程度與預後),可能也參與了急性缺血性腦中風的重要病生理機制。基礎實驗的結果除了驗證了臨床研究所觀察到的,血中的sRAGE以及HMGB1在發生急性缺血性腦中風後的變化趨勢,也提供了HMGB1在急性腦中風後與sRAGE結合增加的直接證據。除此之外,外加重組的sRAGE能夠改善小鼠缺血性腦傷害模式的梗塞範圍及預後,可能的機制包括直接的神經保護作用,以及減少受傷腦組織的發炎細胞浸潤。
結論
我們的研究顯示循環性sRAGE在臨床上可以作為急性缺血性腦中風病患嚴重程度及預後的生物指標,並且外加重組sRAGE可能成為急性缺血性腦中風的治療方式。我們的研究結果支持後續進行更多的相關基礎與臨床實驗來研究(s)RAGE及RAGE配合子在急性腦中風的病生理機制中的重要角色,及驗證靜脈注射sRAGE在急性缺血性腦中風的治療果效。
zh_TW
dc.description.abstractBackground and purpose:
Stroke is the 3rd major cause of death worldwide. Nowadays, only intravenous administration of recombinant tissue plasminogen activator has been shown effective in management of acute ischemic stroke (IS). However, its clinical use remains limited mainly due to the short therapeutic window and an increased incidence of hemorrhagic stroke. There is an urgent need for novel therapies in acute IS patients.
Theoretically, acute occlusion of the cerebral arteries results in immediate loss of oxygen and glucose to the core region of the affected brain tissue. Hence, a complex of ischemic cascades involving a series of biochemical reactions is rapidly activated, and delayed inflammatory mechanisms are among the critical mediators causing further cell death and functional deficits.
The receptor for advanced glycation end products (RAGE) is located on the plasma membrane of many types of cells and ligands [such as AGE, high mobility group box 1 (HMGB1), and S100 protein] binding to RAGE leads to the activation of several intracellular inflammatory pathways, such as nuclear factor-κB. There are soluble isoforms of RAGE (sRAGE), which form either by alternative splicing of RAGE mRNA or by proteolytic cleavage of full-length RAGE protein. Biological studies have shown that circulating sRAGE can function as a decoy to compete with the mRAGE for ligand binding and consequently blocks RAGE-associated intracellular signaling. There is growing evidence implicating the participation of RAGE-ligand interactions in the development and progression of various immune-mediated disorders, including vascular diseases.
However, little is known about the involvement of the soluble form of RAGE (sRAGE) in acute IS. Here, we aim to identify the role of plasma sRAGE and HMGB1 in IS patients, as well as mice subjected to focal ischemic injury.
Subjects and Methods:
In clinical part, seventy-two acute IS patients and the same number of controls were recruited and plasma samples were collected at <48 hours (H), 2-3 days (D) and 5-7 D after stroke. The levels of sRAGE and HMGB1 were measured via enzyme-linked immuno sorbent assay. The data were correlated with the clinical parameters including 3 months functional outcome after stroke.
In basic part, expression levels of (s)RAGE and HMGB1 in plasma and ischemic brain tissues were investigated in mice model of focal ischemic injury. Behavior score, infarct volume and mortality in mice receiving recombinant sRAGE、HMGB1 or saline 3H after ischemic reperfusion injury (I/R) were evaluated at 24, 48 and 72H post stroke. Primary cortical neurons subjected to oxygen and glucose deprivation (OGD) were used to evaluate the cellular RAGE expression and the changes of cell viability with recombinant sRAGE and HMGB1. The impacts of recombinant sRAGE on NFκB activity, and expressions of phosphor JNK and cleaved caspase 3 in brain tissue and cultured neuron receiving ischemic injury were also evaluated.
Results:
In clinical part, levels of sRAGE and HMGB1 were both significantly increased at <48 H after IS, but sRAGE then decreased significantly at 5-7 D (p<0.05). sRAGE <48 H correlated well with baseline NIH stroke scale(γ=0.36, p=0.002) and was an independent predictor of poor functional outcome(p=0.037, OR=18.22).
In basic part, mice I/R injury markedly increased levels of RAGE and HMGB1 in the affected brain tissues as early as 3H and even higher at 24 and 72H after I/R compared with the controls. Importantly, the dynamic expression patterns of plasma sRAGE and HMGB1 in I/R injury were similar to our clinical data from IS patients. Immuno-precipitation assays revealed that the binding of plasma HMGB1 to sRAGE increased progressively after IS both in patients and mice. Administration of recombinant sRAGE significantly reduced infiltrating immune cells, improved the outcome of injury in mice, protected cultured neurons against OGD-induced cell death and ameliorated the detrimental effect of recombinant HMGB1.
Discussion:
Our study shows that the plasma levels of sRAGE and HMGB1 both were increased within 48 h after stroke onset, and the level of sRAGE was positively correlated with the stroke severity and as an independent outcome predictor. Considering the data from 3 time points of acute IS, there was a dynamic pattern of plasma sRAGE, from initial high to low within a short period of time after stroke. These characteristics indicate that plasma sRAGE is not only a surrogate maker for acute IS, but may also play some functional roles in the pathogenesis of acute IS.
Our basic study not only confirmed the dynamic expression patterns of plasma sRAGE and HMGB1 in I/S patients, but also provided the direct evince of increasing sRAGE and HMGB1 complexes after I/S. In addition, possible mechanisms from recombinant sRAGE in protecting mice I/R regarding to the infarct volume and outcome, include direct neuron protection and reducing infiltration of inflammatory cells in brain tissue status post ischemic injury.
Conclusion:
Early post-stroke plasma sRAGE may play a protective role in IS by capturing HMGB1. Hence, recombinant sRAGE is a potential therapeutic agent in acute IS. Our results supported further studies from both basic and clinical aspects to investigate the role of (s)RAGE and RAGE ligands in the pathophysiological mechanism of I/S and the therapeutic effect of intravenous injection of recombinant sRAGE in acute I/S.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:09:59Z (GMT). No. of bitstreams: 1
ntu-102-D97421017-1.pdf: 12949450 bytes, checksum: 5e8e9e784dfc7ec3ad657a9ee4ba41b2 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………… i
誌謝……………………………………………………………………………… ii
中文摘要……………………………………………………………………… iii
英文摘要………………………………………………………………………… iv
1. 緒論………………………………………………………………………………1
(1) 腦中風的流行病學與臨床表現……………………………………………1
(2) 急性腦中風與血拴溶解及再灌流治療……………………………………2
(3) 急性腦中風與神經保護治療………………………………………………4
(4) 急性缺血性腦中風的已知病生理機制……………………………………5
(5) 急性缺血性腦中風與發炎反應……………………………………………6
(6) 類鐸受體與神經系統疾病………………………………………………8
(7) 類鐸受體與相關的內部配合子……………………………………………10
(8) 高遷移率族蛋白(HMGB1)與心血管疾病………………………………12
(9) 晚期糖基化終末產物接受器(RAGE)……………………………………15
(10) RAGE 與可溶性RAGE(sRAGE)………………………………………18
(11) 血中的sRAGE 濃度當成疾病的生物指標………………………………19
(12) 重組sRAGE 與疾病治療………………………………………………21
(13) 研究的假說與特定目的………………………………………………22
2. 研究方法………………………………………………………………………23
(1) 受試者……………………………………………………………………23
(2) 臨床研究流程……………………………………………………………23
(3) 血漿收集及測量…………………………………………………………24
(4) 小鼠中大腦動脈缺血-再灌流之損傷模式………………………………24
(5) 小鼠血漿及腦組織收集及分析…………………………………………25
(6) 初級大腦皮質神經細胞培養……………………………………………25
(7) 細胞存活分析……………………………………………………………26
(8) 流式細胞技術……………………………………………………………26
(9) 西方點墨法………………………………………………………………27
(10) 免疫細胞及組織染色……………………………………………………27
(11) 免疫沈澱法………………………………………………………………28
(12) 核質分離及NFκB 表現分析……………………………………………28
(13) 抗體………………………………………………………………………28(14) 人類白血球收集及RNA 萃取……………………………………………29
(15) 定量聚合酶鏈鎖反應分析………………………………………………29
(16) 缺血性中風病患腦組織分析及個案簡史………………………………30
(17) 統計分析…………………………………………………………………30
3. 結果……………………………………………………………………………31
(1) 急性缺血性腦中風病患血漿中的sRAGE 及 HMGB1 濃度…………31
(2) 小鼠腦中風模式下血漿中的sRAGE and HMGB1 濃度變化…………32
(3) 外加重組的sRAGE 可以減少小鼠在缺血再灌流模式的腦部損傷以及
缺氧缺糖培養環境的神經細胞死亡… … … … … … … … … … … 3 3
4. 討論……………………………………………………………………………36
(一)臨床研究部分:
(1) 血中sRAGE 與急性腦中風的過去相關文獻……………………………37
(2) 本研究在臨床部分的特點與重要發現……………………………………42
(二)基礎研究部分:
(1) 小鼠中風模式的研究結果與臨床的研究結果相符……………………47
(2) 體內平衡(homeostasis)與RAGE……………………………………48
(3) 驗證重組sRAGE 在急性缺血性腦中風的可能治療效果………………51
(4) 重組sRAGE 治療急性缺血性腦中風的可能機制………………………53
5. 展望……………………………………………………………………………57
(1) 急性缺血性腦中風的可能治療方式與限制……………………………57
(2) 生物指標在急性缺血性腦中風治療的重要性…………………………61
(3) 血中sRAGE 為急性缺血性腦中風的預後指標…………………………62
(4) 重組sRAGE 為急性缺血性腦中風的可能治療藥物……………………63
(5) 本研究的限制……………………………………………………………65
(6) 結論………………………………………………………………………67
6. 參考資料………………………………………………………………………68
7. 論文英文簡述…………………………………………………………………85
8. 圖表……………………………………………………………………………95
表一. 非中風對照組與缺血性腦中風病患收案時的基本資料
表二. 缺血性腦中風病患不同亞型的臨床資料與血漿生物指標的檢驗結果
表三. 缺血性腦中風病患預後好及不好的臨床資料與血漿生物指標比較表
表四. 多變項分析顯示腦中風發生後三個月預後不佳的相關變項
表五. 比較過去以血中可溶性RAGE 為急性中風生物指標的相關臨床研究
圖一. 急性缺血性腦中風發生後巨觀與微觀下的病生理機制圖(A & B),
免疫細胞上的類鐸受體(C)及RAGE(D)相關的訊息傳遞路徑
圖二. 急性缺血性腦中風病患及對照組血漿中的sRAGE及HMGB1濃度
圖三. 小鼠接受中大腦動脈缺血再灌流後的RAGE及HMGB1表現圖四. 免疫沈澱法驗證中風病患及小鼠血漿中RAGE及HMGB1的交互作用
圖五. 中風病患血球細胞的RAGE及HMGB1的基因表現及腦組織染色
圖六. 重組sRAGE保護腦中風引起的腦組織缺血性傷害及改善神經學預後
圖七. 小鼠的腦組織神經細胞在中風傷害後表現RAGE,且外加重組sRAGE
可以減少腦部在中風發生後的發炎細胞浸潤
圖八. 小鼠的腦組織細胞在中風傷害後的磷酸化P65在細胞質及核的分佈,
磷酸化JNK以及斷裂性caspase3的蛋白表現量
圖九. 培養神經細胞在缺氧缺糖傷害下合併重組RAGE或HMGB1的細胞存
活率,磷酸化P65在細胞質及核的分佈,磷酸化JNK以及斷裂性
caspase3的蛋白表現量
9. 附錄……………………………………………………………………………108
博士學位修業期間發表論文
dc.language.isozh-TW
dc.title可溶性晚期糖基化終末產物接受器在急性腦中風的功能性角色zh_TW
dc.titleFunctional Role of Soluble Receptor for Advanced Glycation End Products in Acute Strokeen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃怡萱,謝松蒼,邱銘章,葉炳強
dc.subject.keyword腦中風,發炎反應,晚期糖基化終末產物接受器,高遷移率族蛋白,zh_TW
dc.subject.keywordstroke,inflammation,Receptor for Advanced Glycation End Products,high mobility group box 1,en
dc.relation.page110
dc.rights.note未授權
dc.date.accepted2013-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
12.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved