請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17375完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂良鴻(Liang-Hung Lu) | |
| dc.contributor.author | Kuan-Yu Shih | en |
| dc.contributor.author | 施冠宇 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:09:31Z | - |
| dc.date.copyright | 2013-08-14 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-08 | |
| dc.identifier.citation | [1] Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc. Updated 1 July 2013, 09:14 UTC. Encyclopedia on-line. Available from http://en.wikipedia.org/wiki/Attenuation. Internet. Retrieved 10 July 2012
[2] E. Brunner, Ultrasound system consideration and their impact on front-end components, Norwood, MA: Analog Devices, Inc., 2002 [Online]. Available: http://www.analog.com/library/analogdialogue/archives/36-03/ultrasound/ultrasoundfrontend.pdf [3] LM96550 Ultrasound Transmit Pulser, Texus Instrument, Inc., [Online]. Available: http://www.ti.com/lit/ds/symlink/lm96550.pdf [4] LM96570 Ultrasound Configurable Transmit Beamformer, Texus Instrument, Inc., [Online]. Available:http://www.ti.com/lit/ds/symlink/lm96570.pdf [5] K. K. Shung, Diagnostic Ultrasound: Imaging and Blood Flow Measurements. New York: Taylor & Francis, 2006. [6] High Speed Ultrasound Beamforming Source Driver, Supertex, Inc., [Online]. Available: http://www.supertex.com/pdf/datasheets/MD2130.pdf [7] C. H. Lin and K. Bult, “A 10-b 500-MSample/s CMOS DAC in 0.6-mm2,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1948–1958, Dec. 1998. [8] D. A. Mercer, “Low-power approaches to high-speed current-steering digital-to-analog converters in 0.18- m CMOS,” IEEE J. Solid-State Circuits, vol. 42, pp. 1688–1698, Aug. 2007. [9] K. Bult and C. H. Lin, “Digital to analog converter with reduced ringing,” U.S. 6,191,719, Feb. 20, 2001. [10] A. S. Sedra, and K. C. Smith, Microelectronic Circuits, New York: Oxford University Press, 2011. [11] R. C. Jaeger, “Comments on ‘An optimized output stage for MOS integrated circuits,”’ IEEE J. Solid-State Circuits, vol. 10, pp. 185-1 86, June 1975. [12] B. Herman and G. Harris, Models and regulatory considerations for the transient temperature rise during diagnostic ultrasound pulses. Ultrasound in Medicine and Biology, 28(9):1217-1224, 2002. [13] Four-Channel, High Speed, ±65V 750mA Ultrasound Pulser, Supertex, Inc., [Online]. Available: http://www.supertex.com/pdf/datasheets/HV738.pdf [14] 8-Channel, Programmable T/R Switch for Ultrasound, Texus Instrument, Inc., [Online]. Available: http://www.ti.com/lit/ds/symlink/tx810.pdf [15] Fully Integrated, 8-Channel Ultrasound Analog Front End with Passive CW Mixer, 1.05 nV/rtHz, 12-Bit, 80 MSPS, 117 mW/CH, Texus Instrument, Inc., [Online]. Available: http://www.ti.com/lit/ds/symlink/afe5807.pdf [16] J. Y. Park, C. H. Hu, X. Li, Q. F. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 59, pp. 825-832, Apr. 2012. [17] D. Bianchi, F. Quaglia, A. Mazzanti, F. Svelto, “A 90VPP 720MHz GBW Linear Power Amplifier for Ultrasound Imaging Transmitters in BCD6-SOI,” in IEEE International Solid-State Conference Digest of Technical Papers, Feb. 2012, pp. 370-371. [18] J. Borg, and J. Johansson, “An Ultrasonic Transducer Interface IC With Integrated Push-Pull 40 Vpp, 400 mA Current Output, 8-bit DAC and Integrated HV Multiplexer,” IEEE Journal of Solid-State Circuits, vol. 46, pp. 475-484, Feb. 2011. [19] C. H. Lin, F. M. L. van der Goes, J. R. Westra, J. Mulder, Y. Lin, E. Arslan, E. Ayranci, X. D. Liu, and K. Bult, “A 12 bit 2.9 GS/s DAC With IM3 −60 dBc Beyond 1 GHz in 65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 3285-3293, Dec. 2009. [20] B. Razavi, Principles of Data Conversion System Design, New York: IEEE, Inc., 1995. [21] K. Hara, J. Sakano, M. Mori, S. Tamano, R. Sinomura, and K. Yamazaki, ”A New 80V 32x32ch Low Loss Multiplexer LSI for a 3D Ultrasound Imaging System,” Proceedings of the 17th International Symposium on Power Semiconductor Devices & IC’s, May 23-26, 2005 Santa Barbara, CA. [22] M. O’Donnell, “Coded excitation system for improving the penetration of real-time phased-array imaging systems,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 39, no. 3, pp. 341–351, 1992. [23] T. X. Misaridis and J. A. Jensen, “An effective coded excitation scheme based on a Tukey-windowed FM signal and an optimized digital filter,” in Proc. IEEE Ultrason. Symp., pp. 1589–1593, 1999. [24] A. V. Bosch, M. A. F. Borremans, M. S. J. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s Nyquist Current-Steering CMOS D/A Converter,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 315-324, Mar. 2001. [25] N. H. E. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 3rd ed., Boston, MA, Pearson Education, Inc., 2005. [26] Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc. Updated 1 July 2013, 09:14 UTC. Encyclopedia on-line. Available from http://en.wikipedia.org/wiki/Pulse-width_modulation. Internet. Retrieved 10 July 2012 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17375 | - |
| dc.description.abstract | 由於安全性及低成本的考量,超音波影像一直是醫師在臨床診斷中的一大利器。近年來隨著高速電路的技術愈趨成熟,高頻超音波的系統也漸漸的被實作出來。為了提高系統整合度、降低成本及減少寄生效應,必須發展CMOS超音波前端發射電路。在此論文中,使用了0.25-μm高電壓互補式金氧半導體製程實現兩個超音波前端發射電路。第一章對超音波成像系統進行基本的介紹,第二章則對超音波前端發射電路的設計流程及背景知識進行說明。
第三章提出了一個以0.25-μm高電壓互補式金氧半導體製程實現超音波前端發射電路,包含了脈衝發射器和發/收切換開關。為了達到高速的需求,脈衝發射器直接從電源供應器對探頭進行充放電以產生高頻超音波,發/收切換開關則使用以電晶體為主的開關並針對高線性度及低功耗進行設計。 第四章實作了一個高速高電壓數位類比轉換器可提供任意波型激發探頭,架構上使用了電流模式的數位類比轉換器以達到高速的需求,並使用單位元切換方式及共質心對稱式佈局降低靜態與切換的誤差。最後,在第五章會進行本論文的總結。 | zh_TW |
| dc.description.abstract | In diagnostic medicine, ultrasound imaging is one of the most widely used diagnostic tools due to its safety and relatively low cost. Recently, as the progress of high-speed electronic circuits, high frequency ultrasound imaging has become realizable. To facilitate system-on-chip implementation to minimize the cost and the parasitic effects, the development of CMOS ultrasound transmitter front-end is essential. By using 0.25-μm high-voltage CMOS process, two circuits are implemented in this thesis. The first chapter introduces the fundamentals of an ultrasound imaging system, including a brief introduction to the whole system and the architecture of the transmitter/receiver. Chapter 2 illustrates the basics and challenges in ultrasound transmitter design and the link budget calculation is demonstrated for system optimization.
In Chapter 3, an interface circuit, including a high-speed pulser and a highly linear low-power T/R switch, is implemented by using a 0.25-μm high-voltage CMOS process. With the direct-drive technique, the transducer can be charged/discharged fast to produce high frequency acoustic wave. In order to improve the linearity, a bootstrapped, MOS-based switch is proposed, which consumes only dynamic power. In Chapter 4, a 6-bit, 150 MS/s high-voltage digital-to-analog converter with an output swing of 31.5 VPP is implemented in 0.25-μm high-voltage CMOS technology. For high-speed operation and area reduction, a current-steering DAC is proposed by using only one high-voltage device per unit cell. Unary switching scheme and common centroid layout are utilized to minimize the static and switching errors. Finally, a conclusion of this thesis is made in Chapter 5. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:09:31Z (GMT). No. of bitstreams: 1 ntu-102-R00943025-1.pdf: 6667352 bytes, checksum: 651b6485074fa7c09a45a38b983a19ef (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 III
誌謝 V 摘要 VII Abstract IX Table of Contents XI List of Figures XIV List of Tables XVIII Chapter 1 Introduction 1 1.1 INTRODUCTION TO MEDICAL ULTRASOUND IMAGING 1 1.1.1 Application Types of Sonography 1 1.1.2 Pulse Compression 3 1.1.3 Imaging Quality of B-mode 4 1.1.4 Introduction to Ultrasound Imaging System 7 1.2 ARCHITECTURES OF THE ULTRASOUND TRANSMITTER 8 Chapter 2 Background 10 2.1 MASON MODEL FOR TRANSDUCER 10 2.2 PULSED EXCITATION 13 2.3 ARBITRARY WAVEFORM EXCITATION 15 2.4 FUNDAMENTALS OF CURRENT-STEERING DAC 16 2.4.1 Finite Output Resistance 16 2.4.4 Decoder Feed-through 19 2.4.5 Switch Driver Mismatch 20 2.5 EFFICIENCY 20 2.5.1 Pulser 20 2.5.2 Class-A and Class-B Amplifier 22 2.6 BUFFER 23 2.7 DYNAMIC RANGE 24 2.8 LINK BUDGET 25 Chapter 3 A High-voltage Interface Circuit for Ultrasonic Imaging Applications 28 3.1 INTRODUCTION 28 3.2 PROPOSED ARCHITECTURE 30 3.3 CIRCUIT IMPLEMENTATION OF PROPOSED INTERFACE CIRCUITS 31 3.3.1 Pulser 31 3.3.2 T/R Switch 35 3.3.3 Controller 39 3.4 EXPERIMENTAL RESULTS 39 3.5 CONCLUSION 45 Chapter 4 A High-speed Driver for Ultrasonic Imaging Applications 47 4.1 INTRODUCTION 48 4.2 PROPOSED ARCHITECTURE 49 4.3 CIRCUIT IMPLEMENTATION OF PROPOSED INTERFACE CIRCUITS 52 4.3.1 High-voltage DAC 52 4.3.2 Latches and Buffers 61 4.3.3 Level Shifter 62 4.3.4 Digital Controller 63 4.4 EXPERIMENTAL RESULTS 66 4.5 CONCLUSION 68 Chapter 5 Conclusion 70 Bibliography 72 | |
| dc.language.iso | en | |
| dc.title | 應用於醫用超音波影像前端發射電路之研製 | zh_TW |
| dc.title | Development of CMOS Transmitter Front-ends for Ultrasound Imaging Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 闕河鳴,魏駿愷 | |
| dc.subject.keyword | 超音波,脈衝發射器,切換開關,數位類比轉換器,高速,高電壓, | zh_TW |
| dc.subject.keyword | Ultrasound,Pulser,Switch,Digital-to-analog Converter,High Speed,High Voltage, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
