Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17372
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊彬
dc.contributor.authorYen-Liang Chenen
dc.contributor.author陳彥良zh_TW
dc.date.accessioned2021-06-08T00:09:20Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-09
dc.identifier.citationAhmad M, Roy RA, Kamarudin AG, Safar M (1993). The vibratory pattern of ultrasonic files driven piezoelectrically. International endodontic journal 26(2):120-124.
Arabaci T, Cicek Y, Canakci CF (2007). Sonic and ultrasonic scalers in periodontal treatment: a review. International journal of dental hygiene 5(1):2-12.
Asmussen E, Peutzfeldt A (2008). Class I and Class II restorations of resin composite: an FE analysis of the influence of modulus of elasticity on stresses generated by occlusal loading. Dental materials : official publication of the Academy of Dental Materials 24(5):600-605.
Bimstein E, Chen S, Fuks AB (1989). Histologic evaluation of the effect of different cutting techniques on pulpotomized teeth. American journal of dentistry 2(4):151-155.
Carvalho CA, Fagundes TC, Barata TJ, Trava-Airoldi VJ, Navarro MF (2007). The use of CVD diamond burs for ultraconservative cavity preparations: a report of two cases. Journal of esthetic and restorative dentistry : official publication of the American Academy of Esthetic Dentistry [et al] 19(1):19-28; discussion 29.
Cheng R, Zhou XD, Liu Z, Hu T (2007). Development of a finite element analysis model with curved canal and stress analysis. Journal of endodontics 33(6):727-731.
Crippa B, Salzano FA, Mora R, Dellepiane M, Salami A, Guastini L (2011). Comparison of postoperative pain: piezoelectric device versus microdrill. Eur Arch Otorhinolaryngol 268(9):1279-1282.
Eliades T, Viazis AD, Eliades G (1991). Bonding of ceramic brackets to enamel: morphologic and structural considerations. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 99(4):369-375.
Farah JW, Craig RG (1975). Distribution of stresses in porcelain-fused-to-metal and porcelain jacket crowns. Journal of dental research 54(2):255-261.
Friedlander AH, Freymiller EG (2003). Detection of radiation-accelerated atherosclerosis of the carotid artery by panoramic radiography. A new opportunity for dentists. J Am Dent Assoc 134(10):1361-1365.
Granath LE, Hagman G (1971). Experimental pulpotomy in human bicuspids with reference to cutting technique. Acta odontologica Scandinavica 29(2):155-163.
Green GH, Sanderson AD (1965). Ultrasonics and Periodontal Therapy--a Review of Clinical and Biologic Effects. Journal of periodontology 36(232-238.
He G, Liu P, Tan Q (2012). Porous titanium materials with entangled wire structure for load-bearing biomedical applications. Journal of the mechanical behavior of biomedical materials 5(1):16-31.
Horton JE, Tarpley TM, Jr., Wood LD (1975). The healing of surgical defects in alveolar bone produced with ultrasonic instrumentation, chisel, and rotary bur. Oral surgery, oral medicine, and oral pathology 39(4):536-546.
Jeiroudi MT (1991). Enamel fracture caused by ceramic brackets. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 99(2):97-99.
Jepsen S, Ayna M, Hedderich J, Eberhard J (2004). Significant influence of scaler tip design on root substance loss resulting from ultrasonic scaling: a laserprofilometric in vitro study. Journal of clinical periodontology 31(11):1003-1006.
Khalilia RKM, S. Gharibi Kalibara (2005). A study of the mechanical properties of steel/aluminium/GRP laminates. Materials Science and Engineering: A 412(1-2):137-140.
Knapp MJ, Bernier JL (1959). The response of oral tissues to ultrasound. J Am Dent Assoc 58(1):50-61.
Kojima Y, Fukui H (2006). A numerical simulation of tooth movement by wire bending. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 130(4):452-459.
Kugelberg CF, Ahlstrom U, Ericson S, Hugoson A (1985). Periodontal healing after impacted lower third molar surgery. A retrospective study. International journal of oral surgery 14(1):29-40.
Lacroix D, Prendergast PJ, Li G, Marsh D (2002). Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Medical & biological engineering & computing 40(1):14-21.
Laird WR, Walmsley AD (1991). Ultrasound in dentistry. Part 1--Biophysical interactions. Journal of dentistry 19(1):14-17.
Lea SC, Landini G, Walmsley AD (2002). Vibration characteristics of ultrasonic scalers assessed with scanning laser vibrometry. Journal of dentistry 30(4):147-151.
Lea SC, Walmsley AD, Lumley PJ (2010). Analyzing endosonic root canal file oscillations: an in vitro evaluation. Journal of endodontics 36(5):880-883.
Lee J, Jang KT, Kim JW, Lee SH, Hahn SH, Kim CC (2003). Effect of ultrasonic vibration on dentin bond strength and resin infiltration. American journal of dentistry 16(6):404-408.
Lee M-S, Chen Y-L, Huang P-H, Chiang Y-C, Chang H-H, Wu J et al. (2013). Effects of ultrasonic and high-speed air-driven devices on pulp–dentin reactions: An animal study. Journal of Dental Sciences 0).
Li H, Li J, Zou Z, Fok AS (2011). Fracture simulation of restored teeth using a continuum damage mechanics failure model. Dental materials : official publication of the Academy of Dental Materials 27(7):e125-133.
Li J, Li H, Shi L, Fok AS, Ucer C, Devlin H et al. (2007). A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dental materials : official publication of the Academy of Dental Materials 23(9):1073-1078.
Lieblich SE (2012). Endodontic surgery. Dental clinics of North America 56(1):121-132, viii-ix.
Madarati AA, Qualtrough AJ, Watts DC (2009). Efficiency of a newly designed ultrasonic unit and tips in reducing temperature rise on root surface during the removal of fractured files. Journal of endodontics 35(6):896-899.
Martin H, Cunningham W (1984). Endosonic endodontics: the ultrasonic synergistic system. International dental journal 34(3):198-203.
Nielsen AG, Richards JR, Wolcott RB (1955). Ultrasonic dental cutting instrument: I. J Am Dent Assoc 50(4):392-399.
Oosterwaal PJ, Matee MI, Mikx FH, van 't Hof MA, Renggli HH (1987). The effect of subgingival debridement with hand and ultrasonic instruments on the subgingival microflora. Journal of clinical periodontology 14(9):528-533.
Paz E, Satovsky J, Moldauer I (2005). Comparison of the cutting efficiency of two ultrasonic units utilizing two different tips at two different power settings. Journal of endodontics 31(11):824-826.
Plotino G, Pameijer CH, Grande NM, Somma F (2007). Ultrasonics in endodontics: a review of the literature. Journal of endodontics 33(2):81-95.
Rees JS, Addy M, Hughes J (1999). An in vitro assessment of the dentine lost during instrumentation using the Periosonic system. Journal of clinical periodontology 26(2):106-109.
Sinha PK, Nanda RS (1997). The effect of different bonding and debonding techniques on debonding ceramic orthodontic brackets. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 112(2):132-137.
Sivolella S, Berengo M, Bressan E, Di Fiore A, Stellini E (2011). Osteotomy for lower third molar germectomy: randomized prospective crossover clinical study comparing piezosurgery and conventional rotatory osteotomy. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 69(6):e15-23.
Stoopler ET, Sia YW, Kuperstein AS (2011). Does ultrasonic dental equipment affect cardiovascular implantable electronic devices? J Can Dent Assoc 77(b113.
Sun X, Witzel EA, Bian H, Kang S (2008). 3-D finite element simulation for ultrasonic propagation in tooth. Journal of dentistry 36(7):546-553.
Thornton S, Garnick J (1982). Comparison of ultrasonic to hand instruments in the removal of subgingival plaque. Journal of periodontology 53(1):35-37.
Tunkel J, Heinecke A, Flemmig TF (2002). A systematic review of efficacy of machine-driven and manual subgingival debridement in the treatment of chronic periodontitis. Journal of clinical periodontology 29 Suppl 3(72-81; discussion 90-71.
Walmsley AD, Laird WR, Williams AR (1986a). Displacement amplitude as a measure of the acoustic output of ultrasonic scalers. Dental materials : official publication of the Academy of Dental Materials 2(3):97-100.
Walmsley AD, Laird WR, Williams AR (1986b). Inherent variability of the performance of the ultrasonic descaler. Journal of dentistry 14(3):121-125.
Wang RF, Kang B, Lang LA, Razzoog ME (2009). The dynamic natures of implant loading. The Journal of prosthetic dentistry 101(6):359-371.
Wang S, Liu GR, Hoang KC, Guo Y (2010). Identifiable range of osseointegration of dental implants through resonance frequency analysis. Medical engineering & physics 32(10):1094-1106.
Winchester LJ (1991). Bond strengths of five different ceramic brackets: an in vitro study. European journal of orthodontics 13(4):293-305.
Winkler MM, Katona TR, Paydar NH (1996). Finite element stress analysis of three filling techniques for class V light-cured composite restorations. Journal of dental research 75(7):1477-1483.
Yelton C, Lawlor K, Kulild JC, Walker MP (2010). Comparison of the efficiency of four different ultrasonic tips to remove dentin over time. Journal of endodontics 36(3):529-531.
Yip HK, Samaranayake LP (1998). Caries removal techniques and instrumentation: a review. Clinical oral investigations 2(4):148-154.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17372-
dc.description.abstract超音波器械已廣泛用於牙科領域,使用上以25至40 kHz為頻率範圍,其中共振頻率與振動模態是器械設計與使用的重要環節,有限元素分析雖然尚未在牙科超音波器械振動呈現具體成果,但已成功應用於各類研究,因此,本研究以有限元素分析探討牙科超音波器械振動,分析機械性質與幾何型態對器械共振頻率與振動模態的影響,並檢視臨床應用結果。
本研究共分五部分,第一部分建立有限元素分析模組探討密度、楊式模數及卜松比對共振頻率與振動模態的影響,超音波器械結合換能器的有限元素模組經過實驗量測驗證後可預測20至50 kHz的共振頻率與振動模態,選擇分析範圍內最高振幅模態比較後可發現密度增加共振頻率下降而楊式模數增加共振頻率則上升,波松比則不對共振頻率造成影響,另外密度增加同時也造成振幅下降。
第二部分以有限元素分析幾何型態對器械共振頻率與振動模態的影響,針對設計用於牙科矯正器移除的超音波器械,在長度、直徑、彎曲角度等幾何型態進行分析,比較共振頻率與振幅後選出表現最佳的幾何外型。
第三部分以有限元素分析選出幾何外型的器械進行陶瓷與金屬矯正器移除與齒質表面殘存樹脂清除實驗,結果顯示超音波移除矯正器在移除矯正器時間和傳統方式沒有顯著差異,但超音波移除可顯著降低陶瓷矯正器被破壞,同時減少清除殘存樹脂的花費時間也顯著少於傳統方式,因此超音波器械可成為去除矯正器與清除殘留樹脂的另一選擇。
第四部分以動物實驗探討不同共振頻率對牙髓組織的影響,在組織切片下35 kHz和83 kHz兩組超音波器械共振頻率結果相似且優於傳統高速手機,由於高頻振動可降低振動幅度提升穩定度,因此可做為日後應用上的考量。
最後以臨床實驗評估下顎第三大臼齒拔除過程中使用超音波器械和傳統高速手機對術後癒合的比較,觀察牙周囊袋深度與牙周附連喪失情形發現,使用超音波器械拔除下顎第三大臼齒有助於傷口初期復原,因此在此應用中超音波器械有取代傳統高速氣動式器械的潛力,
經過系列研究,我們建立牙科超音波器械共振頻率和振動模態的有限元素分析模組,對密度、楊式模數、波松比和幾何型態對共振頻率和振動模態的影響提出初步分析。並以體外實驗驗證有限元素分析之牙科超音波器械在牙科矯正器移除的效用,以動物實驗對不同超音波器械頻率對牙髓組織影響有了初步了解,並由人體實驗發現超音波器械可有利於下顎第三大臼齒拔除傷口的初期癒合。
綜合以上實驗,未來牙科超音波器械的共振頻率及振動模態可經由有限元素分析模擬,而後設計各項應用於臨床治療的器械。
zh_TW
dc.description.abstractCurrently, ultrasonic instruments are widely used in the dental field. Evaluating the resonant frequency and vibration mode is important when designing an ultrasonic instrument. Presently, finite element analysis (FEA) is successfully and widely used in dental research. However, the FEA results of dental ultrasonic instruments are insufficient because of the variety observed among ultrasonic instruments. The aims of this study are to build an FEA model of the resonant frequency and vibration mode of a dental ultrasonic instrument, to evaluate the effect of mechanical properties and geometry on the dental ultrasonic instrument vibration, and to demonstrate the application of the ultrasonic instrument for use in a dental clinical setting.
In the first part of this study, we generated an FEA model to evaluate the resonant frequency and vibration mode of a dental ultrasonic instrument. The effect of mechanical properties on the vibration of the instrument was observed. The simulation of a model with an instrument and transducer combined showed that the resonant frequency and vibration mode occurred between 20 and 50 kHz and could recapitulate the experimental measurements. The analysis of the vibration mode with the highest vibration amplitude indicated that an increase in density decreased the resonant frequency, whereas an increase in the Young’s modulus increased the resonant frequency. Changing the Poisson’s ratio did not affect the resonant frequency. In contrast, an increase in density decreased the vibration amplitude. The effect of mechanical properties should be noted when designing a dental ultrasonic instrument.
In the second part of this study, we used FEA to simulate the resonant frequency and vibration mode of a specific designed ultrasonic orthodontic bracket removal instrument. The geometric parameters, including length, curvature, and diameter, were evaluated. The proper geometry for the instrument application was determined after comparison of the resonant frequency and vibration mode.
The ultrasonic instrument design determined by the FEA evaluation was used for orthodontic ceramic and metal bracket debonding and residual resin removal in the third part of this study. The results indicated that there was no significant difference in bracket debonding time between the ultrasonic method and the conventional plier method. The ultrasonic method could significantly reduce the ceramic bracket breakage compared with the conventional method. Similarly, the ultrasonic method significantly decreased the procedure time to remove the residual resin compared with the conventional carbie low-speed air-turbine instrument method, and a smoother enamel surface after residual resin removal was observed. These results indicate that the ultrasonic method maybe a better choice for this orthodontic application.
In the fourth part of this study, we designed an animal model to evaluate the effect of different resonant frequencies on the pulp-dentin reaction. The analyzed ultrasonic instruments had resonant frequencies at 35 and 83 kHz. The tooth chamber was perforated in the two resonant frequency experimental groups and in a high-speed air-turbine instrument group, which served as the control. The results indicate that there was no difference between the two resonant frequency ultrasonic preparations and that both ultrasonic resonant frequency groups had a better result compared with the control group. A higher resonant frequency could reduce the vibration amplitude and enhance the precision of the preparation. Therefore, increasing the resonant frequency has much potential when a precise and safe approach in cavity preparation is needed.
In the final part of this study, we used an ultrasonic instrument in a clinical trial. The wound healing after mandibular third molar extraction with an ultrasonic instrument and a conventional high-speed air-turbine instrument was evaluated through the probing depth and examination of the loss of attachment. The mandibular third molar extraction with an ultrasonic instrument had better initial wound healing compared with the high-speed air-turbine instrument. Use of the ultrasonic instrument provides another treatment option for the mandibular molar extraction procedure.
In this study, we provide an FEA method to evaluate the resonant frequency and vibration mode of the dental ultrasonic instrument and some suggestions and warnings on the influence of the mechanical properties and geometry on the ultrasonic instrument vibration. In addition, an ultrasonic orthodontic bracket removal method was introduced and demonstrated in this study. The pulp-dentin reaction in ultrasonic instruments with different resonant frequencies was evaluated and compared in an animal study, and the benefit of the ultrasonic instrument in mandibular third molar extraction was demonstrated.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:09:20Z (GMT). No. of bitstreams: 1
ntu-102-F97422018-1.pdf: 3670570 bytes, checksum: 09dcb2d3c85022249df5befcadd98ad3 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsCONTENT
口試委員會審定書.................................................................................................. i
謝誌 ..................................................................................................... iiiii
中文摘要 ............................................................................................... iii
ABSTRACT ......................................................................................................... v
CHAPTER 1 GENERAL INTRODUCTION ..................................................... 17
1.1 Ultrasonics in dentistry ........................................................................ 17
1.2 The development of the dental ultrasonic instrument .......................... 18
1.3 The unknown vibration variables of dental ultrasonic instrument....... 20
1.4 Finite element analysis ......................................................................... 20
1.5 Motivation and objectives .................................................................... 21
CHAPTER 2 FINITE ELEMENT MODEL DEVELOPMENT AND ANALYSIS OF THE MECHANICAL PROPERTIES ................. 23
2.1 Introduction .......................................................................................... 23
2.2 Materials and methods ......................................................................... 24
2.2.1 Modeling the instrument and transducer........................................ 24
2.2.2 FEA of resonant frequency and vibration amplitude ..................... 25
2.2.3 Experimental measurement ............................................................ 25
2.2.4 Mechanical property effects ........................................................... 25
2.3 Results .................................................................................................. 26
2.3.1 FEA of the resonant frequency and vibration amplitude ............... 26
2.3.2 Experimental measurement ............................................................ 26
2.3.3 The effects of the mechanical properties ....................................... 26
2.4 Discussion ............................................................................................ 27
2.5 Conclusion ........................................................................................... 29
CHAPTER 3 FINITE ELEMENT ANALYSIS OF THE EFFECT OF GEOMETRY ON THE RESONANT FREQUENCY AND VIBRATION MODE OF DENTAL ULTRASONIC INSTRUMENTS ........................................................................... 30
3.1 Introduction .......................................................................................... 30
3.2 Materials and methods ......................................................................... 31
3.2.1 The effect of the length .................................................................. 31
3.2.2 The effect of the angle of curvature ............................................... 31
9
3.2.3 The effect of the diameter .............................................................. 32
3.2.4 The evaluation of the vibration mode ............................................ 32
3.3 Results .................................................................................................. 32
3.3.1 The effect of the length .................................................................. 32
3.3.2 The effect of the angle of curvature ............................................... 33
3.3.3 The effect of the diameter .............................................................. 33
3.4 Discussion ............................................................................................ 33
3.5 Conclusion ........................................................................................... 35
CHAPTER 4 THE EFFECT OF THE ULTRASONIC INSTRUMENT ON BRACKET REMOVAL ................................................................ 36
4.1 Introduction .......................................................................................... 36
4.2 Materials and methods ......................................................................... 37
4.3 Results .................................................................................................. 39
4.4 Discussion ............................................................................................ 41
4.5 Conclusion ........................................................................................... 44
CHAPTER 5 THE EFFECTS OF AN ULTRASONIC INSTRUMENT WITH DIFFERENT RESONANT FREQUENCIES ON PULP-DENTIN REACTIONS ..................................................... 45
5.1 Introduction .......................................................................................... 45
5.2 Materials and methods ......................................................................... 46
5.3 Results .................................................................................................. 48
5.4 Discussion ............................................................................................ 49
5.5 Conclusion ........................................................................................... 50
CHAPTER 6 A CLINICAL TRIAL OF THE ULTRASONIC INSTRUMENT IN MANDIBULAR THIRD MOLAR EXTRACTION ............................................................................. 51
6.1 Introduction ................................................................................... 51
6.2 Materials and methods .................................................................. 51
6.3 Results ........................................................................................... 54
6.4 Discussion ..................................................................................... 54
6.5 Conclusion ..................................................................................... 55
CHAPTER 7 SUMMARY STATEMENT........................................................... 57
7.1 Finite element model generation and analysis of mechanical properties.............................................................................................. 57
7.2 The FEA of the effect of geometry on the resonant frequency and vibration mode of a dental ultrasonic instrument .......................... 57
10
7.3 The effect of the ultrasonic instrument on bracket removal ................ 58
7.4 The effects of ultrasonic instruments with different resonant frequencies on pulp-dentin reactions ................................................... 58
7.5 A clinical trial of ultrasonic instrument use for mandibular third molar extraction ................................................................................... 59
7.6 Conclusion ........................................................................................... 59
REFERENCES ..................................................................................................... 60
已發表論文 . .................................................................................................... 107
11
LIST OF TABLES
Table 2-1 Resonant frequency and vibration amplitude of the z axis between 20 and 50 kHz of finite element analysis of the instrument with the tranceducer model and experimental measurement.................................................................................. 66
Table 2-2 The effect of density on the first resonant frequency and vibration amplitude of the x, y, and z axes between 20 and 50 kHz. .......................................................................................... 66
Table 2-3 The effect of Young’s modulus on the 1st resonant frequency and vibration amplitude of the x, y, and z axes between 20 and 50 kHz. ................................................................................... 67
Table 2-4 The effect of Poisson’s ratio on the 1st resonant frequency and vibration amplitude of the x, y, and z axes between 20 and 50 kHz. ................................................................................... 67
Table 3-1 The dimensions of the instrument used in the FEA model. .......... 68
Table 3-2 The resonant frequency and vibration amplitude of the x, y, and z axes at the highest y axis amplitude in models with increasing La and Lc lengths. ........................................................ 69
Table 3-3 The resonant frequency and vibration amplitude of the x, y, and z axes at the highest y axis amplitude in models with an increasing Lc length. ..................................................................... 70
Table 3-4 The resonant frequency and vibration amplitude of the x, y, and z axes at the highest y axis amplitude in models with increasing La length. ..................................................................... 71
Table 3-5 The resonant frequency and vibration amplitude of the x, y, and z axes at the highest y axis amplitude in models with different degrees of curvature. ...................................................... 72
Table 3-6 The resonant frequency and vibration amplitude of the x, y, and z axes at the highest y axis amplitude in models with different diameter dimensions. ...................................................... 73
Table 3-7 The resonant frequency and vibration amplitude of the x, y, and z axes at the highest y axis amplitude in models with
12
different Tb dimensio .................................................................... 74
Table 4-1 The failure modes of the four experimental groups. ..................... 75
Table 4-2 The adhesive remnant index distribution in the four experimental groups. ..................................................................... 76
Table 4-3 The bracket and residual resin removal time. ............................... 77
Table 5-1 The comparison of the pulp-dentin reaction. ................................ 78
Table 6-1 Classification of impacted mandibular third molars according to Pell and Gregory A, B, and C. .................................. 79
Table 6-2 The pocket depth at the distal side of the mandibular second molar.............................................................................................. 79
Table 6-3 The attachment level at the distal side of the mandibular second molar. ................................................................................ 80
13
LIST OF FIGURES
Figure 2-1 The dimensions of the ultrasonic instrument. ............................... 81
Figure 2-2 The composition and dimensions of the transducer. ..................... 81
Figure 2-3 The instrument model (IM) used in the FEA. ............................... 82
Figure 2-4 The instrument with the transducer model (ITM) used in the FEA. .............................................................................................. 82
Figure 2-5 The meshed instrument with the transducer model. ...................... 83
Figure 2-6 Simulation of the dental ultrasonic instrument vibration for the instrument with transducer model. .......................................... 83
Figure 3-1 The dimensions of the designed dental ultrasonic instrument for orthodontic bracket removal. ................................................... 84
Figure 3-2 The designed dental ultrasonic instrument with the transducer. ..................................................................................... 84
Figure 4-1 The dental ultrasonic instrument for orthodontic bracket removal .......................................................................................... 85
Figure 4-2 The ultrasonic preparation at the interface of the bracket and the enamel surface on the gingival side of the brackets. ............... 85
Figure 4-3 The defect caused by the ultrasonic instrument. (A) The residual resin after ultrasonic removal of the ceramic bracket. (B) Higher magnification of the defect. ........................................ 86
Figure 4-4 The defect caused by the ultrasonic instrument. (A) The residual resin after ultrasonic removal of the metal bracket. (B) Higher magnification of the defect. ........................................ 87
Figure 4-5 The resin surface after ceramic bracket debonding with the conventional plier method. (A) The surface of residual resin is without an obvious defect. (B) Higher magnification presents some cracked surfaces on the margin of the residual resin. .............................................................................................. 88
Figure 4-6 The resin surface after metal bracket debonding with the conventional plier method. (A) The crack line on the residual resin surface. (B) Higher magnification of the crack
14
line. ................................................................................................ 89
Figure 4-7 A type II failure (cohesive resin fracture) of the ceramic bracket after ultrasonic preparation. (A) The propagation of the porosity of the adhesive resin causes the debonding of the bracket. (B) Higher magnification of the porosity of the adhesive resin, resulting in the debonding of the bracket. ............ 90
Figure 4-8 A type II failure (cohesive resin fracture) of the metal bracket after ultrasonic preparation. (A) The resin was left on the enamel surface. (B) Higher magnification of the residual resin. ................................................................................ 91
Figure 4-9 The removal of a ceramic bracket with conventional pliers. (A) Cracked residual resin on the enamel surface. (B) Higher magnification of the propagation of the crack in the adhesive resin. ............................................................................... 92
Figure 4-10 (A) The cracked residual resin on the enamel surface after removal of the metal bracket with conventional pliers. (B) Higher magnification of the crack line in the resin. ...................... 93
Figure 4-11 (A) Residual adhesive resin on the enamel surface after the ceramic bracket removal with an ultrasonic instrument. (B) After resin removal by the ultrasonic instrument, the enamel surface presents a smooth appearance without residual resin. ...... 94
Figure 4-12 (A) Residual adhesion resin on the enamel surface after the metal bracket removal with an ultrasonic instrument. (B) After resin removal by the ultrasonic instrument, the enamel surface is smooth, and some chuck-white appearance from etching is noted.............................................................................. 95
Figure 4-13 (A) Residual adhesion resin on the enamel surface after the ceramic bracket removal with a conventional carbie low-speed round bur instrument. (B) After resin removal by the conventional carbie low-speed round bur instrument, the enamel presents a scratch surface.................................................. 96
Figure 4-14 The enamel surface after residual resin removal by the ultrasonic instrument. (A) The surface appears smooth. (B) Higher magnification of the surface shows that the adhesion
15
resin is removed from the enamel surface. .................................... 97
Figure 4-15 The enamel surface after residual resin removal by the conventional low-speed air-turbine carbie round bur instrument. (A) The enamel surface appears rough with scratches. (B) Higher magnification of the rough surface and scratches. ....................................................................................... 98
Figure 4-16 (A) Damage of the enamel surface by the low-speed air-turbine carbie round bur instrument after residual resin removal. (B) Higher magnification of the damage of the enamel surface. .............................................................................. 99
Figure 5-1 The dental ultrasonic instrument for cavity preparation. ............ 100
Figure 5-2 Histological examination of a cavity prepared with an ultrasonic instrument with a resonant frequency of 83 kHz. (A) The wound presents a smooth surface. (B) Higher magnification shows a moderate reaction of the pulp under the dentinal tubule level and moderate hemorrhaging. ............... 101
Figure 5-3 Histological examination of a cavity prepared with an ultrasonic instrument with a resonant frequency of 35 kHz. (A) The wound presents a smooth surface. (B) Higher magnification shows a moderate reaction of the pulp under the dentinal tubule level and moderate hemorrhaging. ............... 102
Figure 5-4 Histological examination of a cavity prepared with a high-speed air-turbine instrument. (A) The wound presents a rough surface. (B) Higher magnification shows a severe reaction of the pulp under the dentinal tubule level and moderate hemorrhaging............................................................... 103
Figure 5-5 A regular odontoblastic layer of the pulp with ultrasonic preparation with the ultrasonic instrument with a resonant frequency of 83 kHz. ................................................................... 104
Figure 5-6 The calcification in the pulp one week post-operation. (A) The ultrasonic preparation with the ultrasonic instrument with a resonant frequency of 83 kHz. (B) The ultrasonic preparation with the ultrasonic instrument with a resonant frequency of 35 kHz. ................................................................... 105
16
Figure 5-7 Cavity preparation with the ultrasonic instrument with (A) a 35 kHz resonant frequency and (B) an 83 kHz resonant frequency. .................................................................................... 106
dc.language.isoen
dc.title牙科超音波器械之頻率與幾何形狀對振動模態及切削效能之效應--有限元素分析及實驗驗證zh_TW
dc.titleEffects of Frequency and Geometry on the Vibration Mode and Cutting Efficiency of Dental Ultrasonic Instruments—Finite Element Analysis and Experimental Validationen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳文斌,林峰輝,廖運炫,李志偉,章浩宏
dc.subject.keyword超音波器械,有限元素分析法,共振頻率,振動模態,矯正器移除,zh_TW
dc.subject.keywordultrasonic instrument,finite element analysis,resonant frequency,vibration mode,orthodontic bracket removal,en
dc.relation.page107
dc.rights.note未授權
dc.date.accepted2013-08-09
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved