Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17370
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭哲來
dc.contributor.authorChung-Huai Changen
dc.contributor.author張中懷zh_TW
dc.date.accessioned2021-06-08T00:09:14Z-
dc.date.copyright2013-08-17
dc.date.issued2013
dc.date.submitted2013-08-09
dc.identifier.citationchapter 1
[1] H. W. Kroto, J. E. Fischer, and D. E. Cox. The Fullerenes. Pergamon, Oxford, 1993.
[2] Sumio Iijima. Helical microtubules of graphitic carbon. Nature, 354(6348):56-58, 1991.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric Field E ect in Atomically Thin Carbon Films. Science, 306(5696):666-669, 2004.
[4] Gerbrand Ceder. Predicting Properties from Scratch. Science, 280(5366):1099-1100, 1998.
[5] A. Castro Neto. The electronic properties of graphene. Rev. Mod. Phys., 81(1):109-162, 2009.
[6] Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, C ecile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, and Walt A. de Heer. Electronic Con nement and Coherence in Patterned Epitaxial Graphene. Science, 312(5777):1191-1196, 2006.
[7] P. R. Wallace. The Band Theory of Graphite. Physical Review, 71(9):622-634, 1947.
[8] Gordon W. Semeno . Condensed-Matter Simulation of a Three-Dimensional Anomaly. Physical Review Letters, 53(26):2449-2452, 1984.
[9] Phaedon Avouris, Zhihong Chen, and Vasili Perebeinos. Carbon-based electronics. Nat Nano, 2(10):605-615, 2007.
[10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065):197-200, 2005.
[11] Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer, and Philip Kim. Experimental observation of the quantum Hall e ect and Berry's phase in graphene. Nature, 438(7065):201-204, 2005.
[12] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim. Room-Temperature Quantum Hall E ect in Graphene. Science, 315(5817):1379, 2007.
[13] Claire Berger, Zhimin Song, Tianbo Li, Xuebin Li, Asmerom Y. Ogbazghi, Rui Feng, Zhenting Dai, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, and Walt A. de Heer. Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. The Journal of Physical Chemistry B, 108(52):19912-19916, 2004.
[14] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat Mater, 6(3):183-191, 2007.
[15] S. Morozov. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett., 100(1):016602, 2008.
[16] Jian-Hao Chen, Chaun Jang, Shudong Xiao, Masa Ishigami, and Michael S. Fuhrer. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nano, 3(4):206-209, 2008.
[17] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, and A. K. Geim. Strong Suppression of Weak Localization in Graphene. Phys. Rev. Lett., 97:016801, 2006.
[18] Jannik C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth. The structure of suspended graphene sheets. Nature, 446(7131):60-63, 2007.
[19] Kostya Novoselov. Graphene: Mind the gap. Nat Mater, 6(10):720{721, 2007.
[20] Matthew J. Allen, Vincent C. Tung, and Richard B. Kaner. Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 110:132-145, 2010. PMID: 19610631.
[21] A. K. Geim. Graphene: Status and Prospects. Science, 324(5934):1530-1534, 2009.
[22] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nano, 3(4):210-215, 2008.
[23] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30):10451-10453, 2005.
[24] J.A. Wilson and A.D. Yo e. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 18(73):193-335, 1969.
[25] A.D. Yo e. Low-dimensional systems: quantum size e ects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi two-dimensional systems. Advances in Physics, 42(2):173-262, 1993.
[26] A D Yo e. Layer compounds. Annual Review of Materials Science, 3(1):147-170, 2013/03/05 1973.
[27] Kin Mak. Atomically thin MoS2 : A new direct-gap semiconductor. Phys. Rev. Lett., 105(13):136805, 2010.
[28] Andrea Splendiani, Liang Sun, Yuanbo Zhang, Tianshu Li, Jonghwan Kim, Chi-Yung Chim, Giulia Galli, and Feng Wang. Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 10(4):1271-1275, 2010.
[29] A. Kuc, N. Zibouche, and T. Heine. Influence of quantum con nement on the electronic structure of the transition metal sul de TS 2. Physical Review B, 83, 2011.
[30] Tianshu Li and Giulia Galli. Electronic Properties of MoS2 Nanoparticles. The Journal of Physical Chemistry C, 111(44):16192-16196, 2007.
[31] Fang Liu, Pingbing Ming, and Ju Li. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B, 76, 2007.
[32] Changgu Lee, Xiaoding Wei, Je rey Kysar, and James Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (New York, N.Y.), 321(5887):385-388, 2008.
[33] Simone Bertolazzi, Jacopo Brivio, and Andras Kis. Stretching and breaking of ultrathin MoS2. ACS nano, 5(12):9703-9709, 2011.
[34] Ji Feng, Xiaofeng Qian, Cheng-Wei Huang, and Ju Li. Strain-engineered arti cial atom as a broad-spectrum solar energy funnel. Nature Photonics, 6, 2012.
[35] Priya Johari and Vivek Shenoy. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS nano, 6(6):5449-5456, 2012.
[36] Yungang Zhou, Zhiguo Wang, Ping Yang, Xiaotao Zu, Li Yang, Xin Sun, and Fei Gao. Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. ACS nano, 6(11):9727-9736, 2012.
[37] Won Seok Yun, S. W. Han, Soon Cheol Hong, In Gee Kim, and J. D. Lee. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2HMX_2 semiconductors (M = mo, w; x = s, se, te). Physical Review B, 85, 2012.
chapter 2
[1] R. M. Martin. Basic Theory and Practical Methods. Cambridge, 2008.
[2] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864-B871, Nov 1964.
[3] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation eff ects. Phys. Rev., 140:A1133-A1138, Nov 1965.
[4] A. Rajagopal. Inhomogeneous electron gas. Phys. Rev. B, 7(5):1912-1919, 1973.
[5] S. Hsieh and D. Lu. Energy Band Theory of Solids. Fu-Dan university, China, 1998.
[6] Paul Soven. Relativistic band structure and fermi surface of thallium. i'. Phys. Rev., 137(6A):A1706-A1717, 1965.
[7] T. Loucks. Relativistic electronic structure in crystals. i. theory'. Phys. Rev., 139(4A):A1333-A1337, 1965.
[8] R. M. Martin. Electronic Structure. Cambridge, UK, 2004.
[9] P. E. Bl ochl. Projector augmented-wave method. Phys. Rev. B, 50:17953-17979, Dec 1994.
[10] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59:1758-1775, Jan 1999.
chapter 3
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696):666–669, 2004.
[2] L. Brey. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B, 73(23):235411–, 2006.
[3] Kostya Novoselov. Graphene: Mind the gap. Nat Mater, 6(10):720–721, 2007.
[4] Bjorn Trauzettel, Denis V. Bulaev, Daniel Loss, and Guido Burkard. Spin qubits in graphene quantum dots. Nat Phys, 3(3):192–196, 2007.
[5] Xiaolin Li, Xinran Wang, Li Zhang, Sangwon Lee, and Hongjie Dai. Chem- ically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science, 319(5867):1229–1232, 2008.
[6] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim. Chaotic Dirac Billiard in Graphene Quantum Dots. Science, 320(5874):356–358, 2008.
[7] Melinda Han. Energy Band-Gap Engineering of Graphene Nanoribbons. Phys. Rev. Lett., 98(20):206805–, 2007.
[8] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nano, 3(4):210–215, 2008.
[9] Taisuke Ohta, Aaron Bostwick, Thomas Seyller, Karsten Horn, and Eli Rotenberg. Controlling the Electronic Structure of Bilayer Graphene. Science, 313(5789):951– 954, 2006.
[10] Jun Yan. Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene. Phys. Rev. Lett., 98(16):166802–, 2007.
[11] Jeroen B. Oostinga, Hubert B. Heersche, Xinglan Liu, Alberto F. Morpurgo, and Lieven M. K. Vandersypen. Gate-induced insulating state in bilayer graphene de- vices. Nat Mater, 7(2):151–157, 2008.
[12] Yuanbo Zhang, Tsung-Ta Tang, Caglar Girit, Zhao Hao, Michael C. Martin, Alex Zettl, Michael F. Crommie, Y. Ron Shen, and Feng Wang. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459(7248):820–823, 2009.
[13] Xiangyang Peng and Rajeev Ahuja. Symmetry Breaking Induced Bandgap in Epi- taxial Graphene Layers on SiC. Nano Letters, 8(12):4464–4468, 2008.
[14] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science, 323(5914):610–613, 2009.
[15] Gianluca Giovannetti. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B, 76(7), 2007.
[16] S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara. Substrate-induced bandgap opening in epitaxial graphene. Nat Mater, 6(10):770–775, 2007.
[17] Soon-Yong Kwon, Cristian V. Ciobanu, Vania Petrova, Vivek B. Shenoy, Javier Baren ̃o, Vincent Gambin, Ivan Petrov, and Suneel Kodambaka. Growth of Semi- conducting Graphene on Palladium. Nano Letters, 9(12):3985–3990, 2009. PMID: 19995079.
[18] D. Boukhvalov. Tuning the gap in bilayer graphene using chemical functionaliza- tion: Density functional calculations. Phys. Rev. B, 78(8):085413–, 2008.
[19] Julia Berashevich. Tunable band gap and magnetic ordering by adsorption of molecules on graphene. Phys. Rev. B, 80(3):033404–, 2009.
[20] Changyao Chen, Sami Rosenblatt, Kirill I. Bolotin, William Kalb, Philip Kim, Ioannis Kymissis, Horst L. Stormer, Tony F. Heinz, and James Hone. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nano, 4(12):861–867, 2009.
[21] Lei Liu and Zexiang Shen. Bandgap engineering of graphene: A density functional theory study. Applied Physics Letters, 95(25):252104–, 2009.
[22] Xiaofeng Fan, Lei Liu, Jer-Lai Kuo, and Zexiang Shen. Functionalizing Single- and Multi-layer Graphene with Br and Br2. The Journal of Physical Chemistry C, 114(35):14939–14945, 2010.
[23] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 6(9):652–655, 2007.
[24] T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein. Molecular Doping of Graphene. Nano Letters, 8(1):173–177, 2008. PMID: 18085811.
[25] Xiaochen Dong. Symmetry Breaking of Graphene Monolayers by Molecular Deco- ration. Phys. Rev. Lett., 102(13):135501–, 2009.
[26] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat Phys, 4(2):144–148, 2008.
[27] Xiaoqing Tian, Jianbin Xu, and Xiaomu Wang. Band Gap Opening of Bilayer Graphene by F4-TCNQ Molecular Doping and Externally Applied Electric Field. The Journal of Physical Chemistry B, 114(35):11377–11381, 2010.
[28] Andrea Marini, P. Garc ́ıa-Gonz ́alez, and Angel Rubio. First-Principles Description of Correlation Effects in Layered Materials. Phys. Rev. Lett., 96(13):136404–, 2006.
[29] Newton Ooi, Asit Rairkar, and James B. Adams. Density functional study of graphite bulk and surface properties. Carbon, 44(2):231–242, 2006.
[30] G. Kresse. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B, 48(17):13115–13118, 1993.
[31] G. Kresse and J. Furthmu ̈ller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1):15–50, 7 1996.
[32] J. C. Boettger. All-electron full-potential calculation of the electronic band structure, elastic constants, and equation of state for graphite”. Phys. Rev. B, 55(17):11202–11211, 1997.
[33] Perdew, Burke, and Ernzerhof. Generalized gradient approximation made simple. Physical review letters, 77(18):3865–3868, 1996.
[34] Stefan Grimme. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of computational chemistry, 27(15):1787– 1799, 2006.
[35] Joachim Paier, Robin Hirschl, Martijn Marsman, and Georg Kresse. The Perdew- Burke-Ernzerhof exchange-correlation functional applied to the g2-1 test set using a plane-wave basis set. The Journal of chemical physics, 122(23), 2005.
[36] Jochen Heyd, Juan Peralta, Gustavo Scuseria, and Richard Martin. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. The Journal of chemical physics, 123(17), 2005.
chapter 4
[1] K Novoselov, D Jiang, F Schedin, T Booth, V Khotkevich, S Morozov, and A Geim. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30):10451-10453, 2005.
[2] A Geim and K Novoselov. The rise of graphene. Nature materials, 6(3):183-191, 2007.
[3] K Novoselov, A Geim, S Morozov, D Jiang, Y Zhang, S Dubonos, I Grigorieva, and A Firsov. Electric eld e ect in atomically thin carbon fi lms. Science (New York, N.Y.), 306(5696):666{669, 2004.
[4] Matthew A. Hamilton, Luis A. Alvarez, Nathan A. Mauntler, Nicolas Argibay, Rachel Colbert, David L. Burris, Chris Muratore, Andrey A. Voevodin, Scott S. Perry, and W. Gregory Sawyer. A possible link between macroscopic wear and temperature dependent friction behaviors of MoS2 coatings. Tribology Letters, 32, 2008.
[5] Berit Hinnemann, Poul Moses, Jacob Bonde, Kristina J rgensen, Jane Nielsen, Sebastian Horch, Ib Chorkendor , and Jens N rskov. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. Journal of the American Chemical Society, 127(15):5308-5309, 2005.
[6] K. K. Kam and B. A. Parkinson. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. The Journal of Physical Chemistry, 86, 1982.
[7] McDonald, Steven, Gerasimos Konstantatos, Shiguo Zhang, Paul Cyr, Ethan Klem, Larissa Levina, and Edward Sargent. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature materials, 4(2):138-142, 2005.
[8] Qing Wang, Kalantar-Zadeh, Kourosh, Andras Kis, Jonathan Coleman, and Michael Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 7(11):699-712, 2012.
[9] Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, and Tony F. Heinz. Atomically thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters, 105, 2010.
[10] A. Kuc, N. Zibouche, and T. Heine. Influence of quantum con nement on the electronic structure of the transition metal sul de TS 2. Physical Review B, 83, 2011.
[11] A. Kumar and P. K. Ahluwalia. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors. The European Physical Journal B, 85, 2012.
[12] Andrea Splendiani, Liang Sun, Yuanbo Zhang, Tianshu Li, Jonghwan Kim, Chi-Yung Chim, Giulia Galli, and Feng Wang. Emerging photoluminescence in monolayer MoS2. Nano letters, 10(4):1271-1275, 2010.
[13] Ashwin Ramasubramaniam. Large excitonic e ects in monolayers of molybdenum and tungsten dichalcogenides. Physical Review B, 86, 2012.
[14] Ji Feng, Xiaofeng Qian, Cheng-Wei Huang, and Ju Li. Strain-engineered arti cial atom as a broad-spectrum solar energy funnel. Nature Photonics, 6, 2012.
[15] Priya Johari and Vivek Shenoy. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS nano, 6(6):5449-5456, 2012.
[16] Yungang Zhou, Zhiguo Wang, Ping Yang, Xiaotao Zu, Li Yang, Xin Sun, and Fei Gao. Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. ACS nano, 6(11):9727-9736, 2012.
[17] W Yun, S Han, S Hong, I Kim, and J Lee. Thickness and strain e ects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M= Mo, W; X= S, Se, Te). 2012.
[18] P. Bl ochl. Projector augmented-wave method. Physical Review B, 50(24):17953-17979, 1994.
[19] G Kresse and D Joubert. From ultrasoft pseudopotentials to the projector
augmented-wave method. 1999.
[20] G Kresse and J Hafner. Ab initio molecular dynamics for open-shell transition metals. 1993.
[21] F Fuchs, J Furthm uller, F Bechstedt, M Shishkin, and G Kresse. Quasiparticle band structure based on a generalized Kohn-Sham scheme. Physical Review B, 76(11), 2007.
[22] Perdew, Burke, and Ernzerhof. Generalized gradient approximation made simple. Physical review letters, 77(18):3865-3868, 1996.
[23] Stefan Grimme. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of computational chemistry, 27(15):1787-1799, 2006.
[24] Emilio Scalise, Michel Houssa, Geo rey Pourtois, Valery Afanas'ev, and Andr e Stesmans. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Research, 5, 2011.
[25] Peng Lu, Xiaojun Wu, Wanlin Guo, and Xiao Zeng. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Physical chemistry chemical physics : PCCP, 14(37):13035-13040, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17370-
dc.description.abstractGraphene is one of the most widely studied materials nowadays because of its unique electronic properties, for example, high electron mobility, extreme large conductivity, and room temperature quantum Hall effect. However, the pristine graphene is gapless which is an essential problem for applications, such as low on-off-ratio making it difficult for logic circuits.
Aiming at tuning electronic properties, in particular opening band gaps, we sys- tematically studied the effects of the adsorption of simple aromatic molecules on the electronic structures of graphene by first-principles calculations. In the first part of this thesis, we show that adsorptions of different aromatic molecules, Borazine (B3N3H6), Triazine (C3N3H3), and Benzene (C6H6), on graphene strongly perturb surface charges and often lead to band gap openings.
Moreover, “micromechanical cleavage method”, developed for graphene, has been applied to other layered materials to fabricate two dimensional (2D) materials, for ex- ample BN, MoS2, and other complex oxides. Among those 2D materials, the transition metal dichalcogenides (TMDCs) semiconductors arose more interests because of their intrinsic semiconductor properties. The TMDCs semiconductors have been studied ex- tensively and shown great potential in applications, for instance, lubrication, catalysis, photoelectrochemical cells, and photodetection. A single layer of MX2 (M stands for the transition metal, such as Mo and W; X stands for the chalcogen atom, such as S and Se) has attracted more attentions and been studied widely theoretically and experi- mentally mainly because of its variety properties that different from the bulk state. For the purpose of applications on making electronic and optical devices, it is essential to be able to tune the band gap. One promising route to manipulate band gaps is through the elastic strain engineering.
Therefore, in the second part of this thesis, the effects of bi-axial (both compressive and tensile) and uni-axial strains along different directions were examined and we found that the band gap of monolayer MX2 is more sensitive to the bi-axial strains. This notion can be attributed to the fact that, under bi-axial strains, lattice structures of MX2 tend to relax more significantly along the vertical direction and result in noteworthy changes in the bond angles. While most theoretical reports suggested systematic reduction of band gaps under mechanical strains, we found that the direct band gap can be robustly widened by applying compressive bi-axial strain. Hence, our findings in the gap widening mechanism have great potential for future applications in nanoelectronics and photoelectronics.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:09:14Z (GMT). No. of bitstreams: 1
ntu-102-D94222002-1.pdf: 5567188 bytes, checksum: 860fd5d5113cda73aa13206835f3f442 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents1 Introduction 9
1.1 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Transition metal dichalcogenides (TMDCs) . . . . . . . . . . . . . . . . . 13
1.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Theoretical background 21
2.1 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.1 Many-bodies system . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 The Born-Oppenheimer approximation . . . . . . . . . . . . . . . 23
2.1.3 Thomas-Fermi theory . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 The Hohenberg-Kohn formulation of density functional theory . . . . . . 29
2.2.1 The self-consistent Kohn-Sham equation . . . . . . . . . . . . . . 32
2.2.2 Local density approximation (LDA) and generalized gradient approximation (GGA) . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Projector augmented wave method . . . . . . . . . . . . . . . . . . . . . 39
2.3.1 Plane wave method . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.2 Bloch theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.3 Projector augmented wave method . . . . . . . . . . . . . . . . . 42
2.3.4 Transformation operator . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.5 Expectation values . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3 Molecular adsorptions on graphene 50
3.1 Computational method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Structural properties and adsorption energy . . . . . . . . . . . . . . . . 54
3.3 Band structures and electronic properties . . . . . . . . . . . . . . . . . . 59
3.4 Distance dependence of adsorption and band gap . . . . . . . . . . . . . 65
3.5 Dispersion-corrected and hybrid functional calculations . . . . . . . . . . 70
3.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4 Structure and Electronic Properties of Monolayer MoS2, MoSe2, WS2, and WSe2 under Elastic Strains 77
4.1 Computational method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Band structures and orbitals analysis . . . . . . . . . . . . . . . . . . . . 84
4.3 Change of band structures under strains . . . . . . . . . . . . . . . . . . 87
4.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5 Conclusion 98
5.1 Molecular adsorptions on graphene . . . . . . . . . . . . . . . . . . . . . 98
5.2 Structure and electronic properties of monolayer MoS2, MoSe2, WS2, and WSe2 under elastic strains . . . . . . . . . . . . . . . . . . . . . . . . . . 99
dc.language.isoen
dc.title以第一原理研究二維材料之電子結構的調控zh_TW
dc.titleFirst-Principles Studies on Tuning Electronic Properties of Two-Dimensional Materialsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.coadvisor周美吟
dc.contributor.oralexamcommittee魏金明,李連忠,蔡政達
dc.subject.keyword分子吸附,密度泛函理論,石墨烯,能隙調控,過渡金屬二硫屬化物,zh_TW
dc.subject.keywordMolecular adsorption,Density functional theory,Graphene,Band gap engineering,Transition metal dichalcogenides,en
dc.relation.page99
dc.rights.note未授權
dc.date.accepted2013-08-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
5.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved