Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17350
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖秀娟
dc.contributor.authorI-Ling Tsengen
dc.contributor.author曾怡菱zh_TW
dc.date.accessioned2021-06-08T00:08:11Z-
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-08-12
dc.identifier.citationAdachi, R., Osada, H., Shingai, R., 2008. Phase-dependent preference of thermosensation and chemosensation during simultaneous presentation assay in Caenorhabditis elegans. BMC Neuroscience 9, 106.
Aitken, R.J., Skakkebaek, N.E., Roman, S.D., 2006. Male reproductive health and the environment. The Medical Journal of Australia 185, 414-415.
Aliev, G., Smith, M.A., Seyidov, D., Neal, M.L., Lamb, B.T., Nunomura, A., Gasimov, E.K., Vinters, H.V., Perry, G., LaManna, J.C., Friedland, R.P., 2002. The role of oxidative stress in the pathophysiology of cerebrovascular lesions in Alzheimer's disease. Brain Pathology 12, 21-35.
Anderson, G.L., Boyd, W.A., Williams, P.L., 2001. Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environmental Toxicology and Chemistry 20, 833-838.
Anderson, G.L., Cole, R.D., Williams, P.L., 2004. Assessing behavioral toxicity with Caenorhabditis elegans. Environmental Toxicology and Chemistry 23, 1235-1240.
Antoshechkin, I., Sternberg, P.W., 2007. The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Genetics 8, 518-532.
Anway, M.D., Cupp, A.S., Uzumcu, M., Skinner, M.K., 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466-1469.
Bargmann, C.I., Hartwieg, E., Horvitz, H.R., 1993. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515-527.
Bargmann, C.I., Horvitz, H.R., 1991. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729-742.
Beverly, M., Anbil, S., Sengupta, P., 2011. Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in Caenorhabditis elegans. The Journal of neuroscience : the official journal of the Society for Neuroscience 31, 11718-11727.
Biemann, R., Navarrete Santos, A., Navarrete Santos, A., Riemann, D., Knelangen, J., Bluher, M., Koch, H., Fischer, B., 2012. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows. Biochemical and Biophysical Research Communications 417, 747-752.
Brenner, S., 1974. The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Calafat, A.M., Ye, X., Silva, M.J., Kuklenyik, Z., Needham, L.L., 2006. Human exposure assessment to environmental chemicals using biomonitoring. International Journal of Andrology 29, 166-171.
Cammack, J.N., White, R.D., Gordon, D., Gass, J., Hecker, L., Conine, D., Bruen, U.S., Friedman, M., Echols, C., Yeh, T.Y., Wilson, D.M., 2003. Evaluation of reproductive development following intravenous and oral exposure to DEHP in male neonatal rats. International Journal of Toxicology 22, 159-174.
Casals-Casas, C., Desvergne, B., 2011. Endocrine disruptors: from endocrine to metabolic disruption. Annual Review of Physiology 73, 135-162.
Cassata, G., Kagoshima, H., Andachi, Y., Kohara, Y., Durrenberger, M.B., Hall, D.H., Burglin, T.R., 2000. The LIM homeobox gene ceh-14 confers thermosensory function to the AFD neurons in Caenorhabditis elegans. Neuron 25, 587-597.
Chalfie, M., Sulston, J.E., White, J.G., Southgate, E., Thomson, J.N., Brenner, S., 1985. The neural circuit for touch sensitivity in Caenorhabditis elegans. The Journal of Neuroscience 5, 956-964.
Chang, S., Johnston, R.J., Jr., Hobert, O., 2003. A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons of C. elegans. Genes & Development 17, 2123-2137.
Chiba, C.M., Rankin, C.H., 1990. A developmental analysis of spontaneous and reflexive reversals in the nematode Caenorhabditis elegans. Journal of Neurobiology 21, 543-554.
Cho, S.C., Bhang, S.Y., Hong, Y.C., Shin, M.S., Kim, B.N., Kim, J.W., Yoo, H.J., Cho, I.H., Kim, H.W., 2010. Relationship between environmental phthalate exposure and the intelligence of school-age children. Environmental Health Perspectives 118, 1027-1032.
Choi, S.M., Yoo, S.D., Lee, B.M., 2004. Toxicological characteristics of endocrine-disrupting chemicals: developmental toxicity, carcinogenicity, and mutagenicity. Journal of toxicology and environmental health. Part B, Critical Reviews 7, 1-24.
Cobellis, L., Latini, G., De Felice, C., Razzi, S., Paris, I., Ruggieri, F., Mazzeo, P., Petraglia, F., 2003. High plasma concentrations of di-(2-ethylhexyl)-phthalate in women with endometriosis. Human Reproduction 18, 1512-1515.
Coburn, C.M., Bargmann, C.I., 1996. A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17, 695-706.
Conlon, I., Raff, M., 1999. Size control in animal development. Cell 96, 235-244.
Coyle, J.T., Puttfarcken, P., 1993. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689-695.
Croll, N.A., 1975. Behavioural analysis of nematode movement. Advances in Parasitology 13, 71-122.
DeRosa, C., Richter, P., Pohl, H., Jones, D.E., 1998. Environmental exposures that affect the endocrine system: public health implications. Journal of toxicology and environmental health. Part B, Critical Reviews 1, 3-26.
Diamanti-Kandarakis, E., Bourguignon, J.P., Giudice, L.C., Hauser, R., Prins, G.S., Soto, A.M., Zoeller, R.T., Gore, A.C., 2009. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocrine Reviews 30, 293-342.
Doyle, T.J., Bowman, J.L., Windell, V.L., McLean, D.J., Kim, K.H., 2013. Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice. Biology of Reproduction 88, 112.
Dusenbery, D.B., Sheridan, R.E., Russell, R.L., 1975. Chemotaxis-defective mutants of the nematode Caenorhabditis elegans. Genetics 80, 297-309.
Engel, S.M., Miodovnik, A., Canfield, R.L., Zhu, C., Silva, M.J., Calafat, A.M., Wolff, M.S., 2010. Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environmental Health Perspectives 118, 565-571.
Erkekoglu, P., Rachidi, W., De Rosa, V., Giray, B., Favier, A., Hincal, F., 2010. Protective effect of selenium supplementation on the genotoxicity of di(2-ethylhexyl)phthalate and mono(2-ethylhexyl)phthalate treatment in LNCaP cells. Free Radical Biology & Medicine 49, 559-566.
Fang, Y.Z., Yang, S., Wu, G., 2002. Free radicals, antioxidants, and nutrition. Nutrition 18, 872-879.
Foster, P.M., 2005. Mode of action: impaired fetal leydig cell function--effects on male reproductive development produced by certain phthalate esters. Critical Reviews in Toxicology 35, 713-719.
Fridovich, I., 1999. Fundamental aspects of reactive oxygen species, or what's the matter with oxygen? Annals of the New York Academy of Sciences 893, 13-18.
Frye, C.A., Bo, E., Calamandrei, G., Calza, L., Dessi-Fulgheri, F., Fernandez, M., Fusani, L., Kah, O., Kajta, M., Le Page, Y., Patisaul, H.B., Venerosi, A., Wojtowicz, A.K., Panzica, G.C., 2012. Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. Journal of Neuroendocrinology 24, 144-159.
Gabel, C.V., Antoine, F., Chuang, C.F., Samuel, A.D., Chang, C., 2008. Distinct cellular and molecular mechanisms mediate initial axon development and adult-stage axon regeneration in C. elegans. Development 135, 1129-1136.
Gami, M.S., Iser, W.B., Hanselman, K.B., Wolkow, C.A., 2006. Activated AKT/PKB signaling in C. elegans uncouples temporally distinct outputs of DAF-2/insulin-like signaling. BMC Developmental Biology 6, 45.
Gilgun-Sherki, Y., Melamed, E., Offen, D., 2001. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40, 959-975.
Gomez, M., De Castro, E., Guarin, E., Sasakura, H., Kuhara, A., Mori, I., Bartfai, T., Bargmann, C.I., Nef, P., 2001. Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron 30, 241-248.
Grad, L.I., Lemire, B.D., 2004. Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis. Human Molecular Genetics 13, 303-314.
Halliwell, B., 1994. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344, 721-724.
Halliwell, B., Cross, C.E., 1994. Oxygen-derived species: their relation to human disease and environmental stress. Environmental Health Perspectives 102, 5-12.
Hart, A.C., 2006. Behavior. WormBook : the online review of C. elegans biology.
Hartwig, K., Heidler, T., Moch, J., Daniel, H., Wenzel, U., 2009. Feeding a ROS-generator to Caenorhabditis elegans leads to increased expression of small heat shock protein HSP-16.2 and hormesis. Genes & Nutrition 4, 59-67.
Hauser, R., Meeker, J.D., Singh, N.P., Silva, M.J., Ryan, L., Duty, S., Calafat, A.M., 2007. DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Human Reproduction 22, 688-695.
Hedgecock, E.M., Russell, R.L., 1975. Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 72, 4061-4065.
Heindel, J.J., Powell, C.J., 1992. Phthalate ester effects on rat Sertoli cell function in vitro: effects of phthalate side chain and age of animal. Toxicology and Applied Pharmacology 115, 116-123.
Heudorf, U., Mersch-Sundermann, V., Angerer, J., 2007. Phthalates: toxicology and exposure. International Journal of Hygiene and Environmental Health 210, 623-634.
Hoogewijs, D., Houthoofd, K., Matthijssens, F., Vandesompele, J., Vanfleteren, J.R., 2008. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Molecular Biology 9, 9.
Hope, I.A., 1999. Background on Caenorhabditis elegans. In C. elegans: A
Practical Approach (I. A. Hope, Ed.), Oxford University Press, NY.
Hoshi, H., Ohtsuka, T., 2009. Adult rats exposed to low-doses of di-n-butyl phthalate during gestation exhibit decreased grooming behavior. Bulletin of Environmental Contamination and Toxicology 83, 62-66.
Inada, H., Ito, H., Satterlee, J., Sengupta, P., Matsumoto, K., Mori, I., 2006. Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans. Genetics 172, 2239-2252.
Inoue, H., Hisamoto, N., An, J.H., Oliveira, R.P., Nishida, E., Blackwell, T.K., Matsumoto, K., 2005. The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes & Development 19, 2278-2283.
Kim, B.N., Cho, S.C., Kim, Y., Shin, M.S., Yoo, H.J., Kim, J.W., Yang, Y.H., Kim, H.W., Bhang, S.Y., Hong, Y.C., 2009. Phthalates exposure and attention-deficit/hyperactivity disorder in school-age children. Biological Psychiatry 66, 958-963.
Kipreos, E.T., 2005. Ubiquitin-mediated pathways in C. elegans. WormBook : the online review of C. elegans biology, 1-24.
Koch, H.M., Bolt, H.M., Preuss, R., Angerer, J., 2005. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Archives of Toxicology 79, 367-376.
Komatsu, H., Mori, I., Rhee, J.S., Akaike, N., Ohshima, Y., 1996. Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17, 707-718.
Kumsta, C., Thamsen, M., Jakob, U., 2011. Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans. Antioxidants & Redox Signaling 14, 1023-1037.
Latini, G., 2005. Monitoring phthalate exposure in humans. Clinica Chimica Acta 361, 20-29.
Leung, M.C., Williams, P.L., Benedetto, A., Au, C., Helmcke, K.J., Aschner, M., Meyer, J.N., 2008. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological Sciences 106, 5-28.
Lewis, J.A., Hodgkin, J.A., 1977. Specific neuroanatomical changes in chemosensory mutants of the nematode Caenorhabditis elegans. The Journal of Comparative Neurology 172, 489-510.
Li, W.H., Hsu, F.L., Liu, J.T., Liao, V.H., 2011. The ameliorative and toxic effects of selenite on Caenorhabditis elegans. Food and Chemical Toxicology 49, 812-819.
Li, W.H., Shi, Y.C., Tseng, I.L., Liao, V.H., 2013. Protective efficacy of selenite against lead-induced neurotoxicity in Caenorhabditis elegans. PloS One 8, e62387.
Li, Y., Zhuang, M., Li, T., Shi, N., 2009. Neurobehavioral toxicity study of dibutyl phthalate on rats following in utero and lactational exposure. Journal of Applied Toxicology 29, 603-611.
Link, E.M., Hardiman, G., Sluder, A.E., Johnson, C.D., Liu, L.X., 2000. Therapeutic target discovery using Caenorhabditis elegans. Pharmacogenomics 1, 203-217.
Lyche, J.L., Gutleb, A.C., Bergman, A., Eriksen, G.S., Murk, A.J., Ropstad, E., Saunders, M., Skaare, J.U., 2009. Reproductive and developmental toxicity of phthalates. Journal of Toxicology and Environmental Health. Part B, Critical Reviews 12, 225-249.
Markey, C.M., Rubin, B.S., Soto, A.M., Sonnenschein, C., 2002. Endocrine disruptors: from Wingspread to environmental developmental biology. The Journal of Steroid Biochemistry and Molecular Biology 83, 235-244.
Miodovnik, A., Engel, S.M., Zhu, C., Ye, X., Soorya, L.V., Silva, M.J., Calafat, A.M., Wolff, M.S., 2011. Endocrine disruptors and childhood social impairment. Neurotoxicology 32, 261-267.
Moore, R.W., Rudy, T.A., Lin, T.M., Ko, K., Peterson, R.E., 2001. Abnormalities of sexual development in male rats with in utero and lactational exposure to the antiandrogenic plasticizer Di(2-ethylhexyl) phthalate. Environmental Health Perspectives 109, 229-237.
Mori, I., Ohshima, Y., 1995. Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376, 344-348.
Mori, I., Sasakura, H., Kuhara, A., 2007. Worm thermotaxis: a model system for analyzing thermosensation and neural plasticity. Current Opinion in Neurobiology 17, 712-719.
Morita, K., Chow, K.L., Ueno, N., 1999. Regulation of body length and male tail ray pattern formation of Caenorhabditis elegans by a member of TGF-beta family. Development 126, 1337-1347.
Murakami, S., Murakami, H., 2005. The effects of aging and oxidative stress on learning behavior in C. elegans. Neurobiology of Aging 26, 899-905.
Nass, R., Blakely, R.D., 2003. The Caenorhabditis elegans dopaminergic system: opportunities for insights into dopamine transport and neurodegeneration. Annual Review of Pharmacology and Toxicology 43, 521-544.
Pan, G., Hanaoka, T., Yoshimura, M., Zhang, S., Wang, P., Tsukino, H., Inoue, K., Nakazawa, H., Tsugane, S., Takahashi, K., 2006. Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environmental Health Perspectives 114, 1643-1648.
Pierce-Shimomura, J.T., Morse, T.M., Lockery, S.R., 1999. The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. The Journal of Neuroscience 19, 9557-9569.
Poulsen, H.E., Prieme, H., Loft, S., 1998. Role of oxidative DNA damage in cancer initiation and promotion. European journal of cancer prevention 7, 9-16.
Rand, J.B., Johnson, C.D., 1995. Genetic pharmacology: interactions between drugs and gene products in Caenorhabditis elegans. Methods in Cell Biology 48, 187-204.
Rankin, C.H., Beck, C.D., Chiba, C.M., 1990. Caenorhabditis elegans: a new model system for the study of learning and memory. Behavioural Brain Research 37, 89-92.
Reddy, B.S., Rozati, R., Reddy, B.V., Raman, N.V., 2006. Association of phthalate esters with endometriosis in Indian women. An International Journal of Obstetrics and Gynaecology 113, 515-520.
Riddle, D.L., 2003. Neurobiology of aging: hormonal regulation of development and longevity in C. elegans. Alzheimer Disease and Associated Disorders 17 Suppl 2, S42-44.
Rozati, R., Reddy, P.P., Reddanna, P., Mujtaba, R., 2002. Role of environmental estrogens in the deterioration of male factor fertility. Fertility and Sterility 78, 1187-1194.
Rusyn, I., Kadiiska, M.B., Dikalova, A., Kono, H., Yin, M., Tsuchiya, K., Mason, R.P., Peters, J.M., Gonzalez, F.J., Segal, B.H., Holland, S.M., Thurman, R.G., 2001. Phthalates rapidly increase production of reactive oxygen species in vivo: role of Kupffer cells. Molecular Pharmacology 59, 744-750.
Rusyn, I., Peters, J.M., Cunningham, M.L., 2006. Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver. Critical Reviews in Toxicology 36, 459-479.
Satterlee, J.S., Sasakura, H., Kuhara, A., Berkeley, M., Mori, I., Sengupta, P., 2001. Specification of thermosensory neuron fate in C. elegans requires ttx-1, a homolog of otd/Otx. Neuron 31, 943-956.
Schantz, S.L., Widholm, J.J., 2001. Cognitive effects of endocrine-disrupting chemicals in animals. Environmental Health Perspectives 109, 1197-1206.
Schettler, T., 2006. Human exposure to phthalates via consumer products. International Journal of Andrology 29, 134-139.
Silva, M.J., Barr, D.B., Reidy, J.A., Kato, K., Malek, N.A., Hodge, C.C., Hurtz, D., 3rd, Calafat, A.M., Needham, L.L., Brock, J.W., 2003. Glucuronidation patterns of common urinary and serum monoester phthalate metabolites. Archives of Toxicology 77, 561-567.
Skakkebaek, N.E., Rajpert-De Meyts, E., Main, K.M., 2001. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Human Reproduction 16, 972-978.
Skinner, M.K., Anway, M.D., Savenkova, M.I., Gore, A.C., Crews, D., 2008. Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PloS One 3, e3745.
Sulston, J., Hodgkin, J., 1998. Methods. In Wood., W.B., (Ed.), The Nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, New York, pp. 587-606.
Tanaka, T., 2002. Reproductive and neurobehavioural toxicity study of bis(2-ethylhexyl) phthalate (DEHP) administered to mice in the diet. Food and Chemical Toxicology 40, 1499-1506.
Tanaka, T., 2005. Reproductive and neurobehavioural effects of bis(2-ethylhexyl) phthalate (DEHP) in a cross-mating toxicity study of mice. Food and Chemical Toxicology 43, 581-589.
Testa, C., Nuti, F., Hayek, J., De Felice, C., Chelli, M., Rovero, P., Latini, G., Papini, A.M., 2012. Di-(2-ethylhexyl) phthalate and autism spectrum disorders. ASN Neuro 4, 223-229.
Tickner, J.A., Schettler, T., Guidotti, T., McCally, M., Rossi, M., 2001. Health risks posed by use of Di-2-ethylhexyl phthalate (DEHP) in PVC medical devices: a critical review. American Journal of Industrial Medicine 39, 100-111.
Tsalik, E.L., Hobert, O., 2003. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. Journal of Neurobiology 56, 178-197.
Uchida, O., Nakano, H., Koga, M., Ohshima, Y., 2003. The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons. Development 130, 1215-1224.
Wang, D., Xing, X., 2008. Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. Journal of Environmental Sciences 20, 1132-1137.
Ward, S., 1973. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proceedings of the National Academy of Sciences of the United States of America 70, 817-821.
White, J.G., Southgate, E., Thomson, J.N., Brenner, S., 1986. The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 314, 1-340.
Williams, P.L., Dusenbery, D.B., 1990. A promising indicator of neurobehavioral toxicity using the nematode Caenorhabditis elegans and computer tracking. Toxicology and Industrial Health 6, 425-440.
Wormuth, M., Scheringer, M., Vollenweider, M., Hungerbuhler, K., 2006. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Analysis 26, 803-824.
Wu, M.T., Wu, C.F., Wu, J.R., Chen, B.H., Chen, E.K., Chao, M.C., Liu, C.K., Ho, C.K., 2012a. The public health threat of phthalate-tainted foodstuffs in Taiwan: the policies the government implemented and the lessons we learned. Environment International 44, 75-79.
Wu, Q., Wang, W., Li, Y., Li, Y., Ye, B., Tang, M., Wang, D., 2012b. Small sizes of TiO2-NPs exhibit adverse effects at predicted environmental relevant concentrations on nematodes in a modified chronic toxicity assay system. Journal of Hazardous Materials 243, 161-168.
Wu, Z., Ghosh-Roy, A., Yanik, M.F., Zhang, J.Z., Jin, Y., Chisholm, A.D., 2007. Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching. Proceedings of the National Academy of Sciences of the United States of America 104, 15132-15137.
Xing, X., Du, M., Xu, X., Rui, Q., Wang, D., 2009a. Exposure to metals induces morphological and functional alteration of AFD neurons in nematode Caenorhabditis elegans. Environmental Toxicology and Pharmacology 28, 104-110.
Xing, X., Du, M., Zhang, Y., Wang, D., 2009b. Adverse effects of metal exposure on chemotaxis towards water-soluble attractants regulated mainly by ASE sensory neuron in nematode Caenorhabditis elegans. Journal of Environmental Sciences 21, 1684-1694.
Xu, X., Liu, Y., Sadamatsu, M., Tsutsumi, S., Akaike, M., Ushijima, H., Kato, N., 2007. Perinatal bisphenol A affects the behavior and SRC-1 expression of male pups but does not influence on the thyroid hormone receptors and its responsive gene. Neuroscience Research 58, 149-155.
Ye, H., Ye, B., Wang, D., 2008. Trace administration of vitamin E can retrieve and prevent UV-irradiation- and metal exposure-induced memory deficits in nematode Caenorhabditis elegans. Neurobiology of Learning and Memory 90, 10-18.
Yolton, K., Xu, Y., Strauss, D., Altaye, M., Calafat, A.M., Khoury, J., 2011. Prenatal exposure to bisphenol A and phthalates and infant neurobehavior. Neurotoxicology and Teratology 33, 558-566.
Yu, S., Avery, L., Baude, E., Garbers, D.L., 1997. Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proceedings of the National Academy of Sciences of the United States of America 94, 3384-3387.
Zhang, Y., Chen, D., Smith, M.A., Zhang, B., Pan, X., 2012. Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity. PloS One 7, e31849.
Zhang, Y., Ye, B., Wang, D., 2010. Effects of metal exposure on associative learning behavior in nematode Caenorhabditis elegans. Archives of Environmental Contamination and Toxicology 59, 129-136.
Zhao, B., Khare, P., Feldman, L., Dent, J.A., 2003. Reversal frequency in Caenorhabditis elegans represents an integrated response to the state of the animal and its environment. The Journal of Neuroscience 23, 5319-5328.
行政院環保署 (1998)。淡水河水體環境分析及研究,環保署環境檢驗所年度報告。
行政院環保署 (2001)。毒性化學物質環境流布暴露調查分析。
張碧芬 (2000)。河川環境鄰苯二甲酸酯類化合物之調查及生物降解之研究。環境荷爾蒙研討會論文集。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17350-
dc.description.abstract鄰苯二甲酸酯類化合物,俗稱塑化劑,係存在於環境中類似於環境賀爾蒙的物質,具有類似生物體內激素作用,可改變生物體內免疫、神經與內分泌系統之正常運作,對人類健康與生物造成危害。然而目前對於生物體暴露鄰苯二甲酸酯類之毒性效應及其機制的研究仍不完整,急需更進一步的探討,因此本研究利用活體模式生物-秀麗隱桿線蟲 (Caenorhabditis elegans) 探討鄰苯二甲酸酯類所誘導之發育毒性、生殖毒性與神經毒性,並探討可能的毒性機制。研究結果顯示,C. elegans暴露於特定濃度之鄰苯二甲酸酯類 (DEHP 、DBP及 DIBP) 會引起生殖缺陷與發育異常,並觀察到C. elegans的行為缺陷,包括身體彎曲、頭部擺動、倒轉頻率、趨化及趨熱行為的改變。在神經發育上,鄰苯二甲酸酯類會影響AFD及ASE感覺神經元螢光標記之轉殖C. elegans其神經元細胞體之fluorescent puncta的大小及強度,同時觀察到,暴露於DEHP會導致AFD神經分化相關之TTX-1、 TAX-2、 TAX-4、 CEH-14及ASE神經分化相關之CHE-1、TAX-2、 TAX-4的mRNA表現量下降。我們也發現,C. elegans暴露於特定之鄰苯二甲酸酯類,細胞內之活性氧Reactive oxygen species (ROS) 含量提高,若先將C. elegans暴露於‐抗氧化劑Ascorbic acid ,則可顯著地修復鄰苯二甲酸酯類所誘導之神經毒性效應,因此,推測鄰苯二甲酸酯類對C. elegans造成之神經毒性,氧化壓力扮演重要的關鍵角色。zh_TW
dc.description.abstractPhthalate esters, also called plasticizer, are ubiquitous endocrine disrupting chemicals (EDCs) in the environment. They may have adverse consequences for human and ecosystem. Considering the critical, but limited, researches on human neurobehavioral and other healthy outcomes in association with phthalate exposure, we used the nematode Caenorhabditis elegans as an in vivo model to evaluate phthalates-induced developmental toxicity, reproductive toxicity, neurotoxicity, and the possible associated mechanisms. The results showed that exposure to phthalates (DEHP, DBP, and DIBP) at the examined concentrations induced reproductive defects and developmental abnormality. Moreover, exposure to phthalates (DEHP, DBP, and DIBP) at the examined concentrations induced behavioral defects, including changes in body bending, head thrashing, reversal frequency, chemotaxis, and thermotaxis. Furthermore, phthalate (DEHP, DBP, and DIBP) exposure caused toxicity, affecting the relative sizes of cell body fluorescent puncta, and relative intensities of cell bodies in AFD and ASE neurons. The mRNA levels of the majority of the genes (TTX-1, TAX-2, TAX-4, and CEH-14) that are required for the differentiation and function of AFD neurons and the majority of the genes (CHE-1, TAX-2, TAX-4) that are required for the differentiation and function of ASE neurons were both decreased upon DEHP exposure.Moreover, phthalate (DEHP, DBP, and DIBP) exposure at the examined concentrations produced elevated intracellular reactive oxygen species (ROS) in C. elegans. Finally, pretreatment of worms with the antioxidant ascorbic acid significantly ameliorated phthalates-induced neurotoxicity. Our study suggests that oxidative stress may play a critical role in initiating the phthalate ester-induced neurotoxic effects in C. elegans.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:08:11Z (GMT). No. of bitstreams: 1
ntu-102-R00622001-1.pdf: 3963226 bytes, checksum: 902e03075c7d923a3256cdcbc55d0a9b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
致謝 I
中文摘要 II
ABSTRACT IV
目錄 VI
表次 IX
圖次 X
縮寫表 XII
壹、研究動機 1
貳、文獻探討與研究目的 2
2.1環境賀爾蒙 (Endocrine-disrupting chemicals, EDCs) 2
2.2塑化劑‐鄰苯二甲酸酯類化合物 (Phthalate esters, PAEs) 3
2.3鄰苯二甲酸酯類相關化合物之毒性效應 5
2.3.1生殖和發育 5
2.3.2神經發育與行為模式 5
2.3.3活性氧物質 (Reactive oxygen species, ROS) 和神經毒性 6
2.4以秀麗隱桿線蟲 (Caenorhabditis elegans) 為模式生物探討毒理學 7
2.5 C. elegans 的分子神經遺傳學 9
2.6研究目的 11
参、材料與方法 13
3.1實驗藥品 13
3.2實驗動物與生長條件 13
3.3繁殖分析試驗 14
3.4體長量測試驗 14
3.5 C. elegans運動行為分析試驗 14
3.5.1身體彎曲試驗 (Body bending assay) 15
3.5.2頭部擺動試驗 (Head thrashing assay) 15
3.5.3倒轉頻率試驗 (Reversal frequency assay) 16
3.6趨性分析試驗. 16
3.6.1趨化分析試驗 (Chemotaxis assay) 16
3.6.2趨熱分析試驗 (Thermotaxis assay) 17
3.7基因轉殖C. elegans螢光分析試驗 18
3.8反轉錄聚合酶鏈鎖反應 (Quantitative real-time RT-PCR) 19
3.9生物體內ROS分析試驗 19
3.10統計分析 20
肆、結果 21
4.1鄰苯二甲酸酯類DEHP、DBP及DIBP對C. elegans具有繁殖毒性 21
4.2鄰苯二甲酸酯類DEHP、DBP及DIBP造成C. elegans體長縮短 21
4.3鄰苯二甲酸酯類DEHP、DBP及DIBP對C. elegans行為模式之影響 22
4.3.1鄰苯二甲酸酯類DEHP、DBP及DIBP造成C. elegans身體彎曲頻率下降 22
4.3.2鄰苯二甲酸酯類DEHP、DBP及DIBP造成C. elegans頭部擺動下降 22
4.3.3鄰苯二甲酸酯類DEHP、DBP及DIBP造成C. elegans倒轉頻率下降 23
4.4鄰苯二甲酸酯類DEHP、DBP及DIBP對C. elegans趨性分析之影響 23
4.4.1鄰苯二甲酸酯類DEHP、DBP及DIBP造成C. elegans趨化行為下降 23
4.4.2鄰苯二甲酸酯類DEHP、DBP及DIBP造成線蟲趨熱行為下降 24
4.5鄰苯二甲酸酯DEHP、DBP及DIBP對感覺神經元之影響 25
4.5.1鄰苯二甲酸酯類DEHP、DBP及DIBP改變ASER感覺神經元 25
4.5.2鄰苯二甲酸酯類DEHP、DBP及DIBP改變AFD感覺神經元 26
4.6鄰苯二甲酸酯類DEHP、DBP及DIBP對AFD、ASE神經相關基因表現之影響 27
4.6.1鄰苯二甲酸酯類DEHP、DBP及DIBP抑制 ASE神經相關基因之表現 27
4.6.2鄰苯二甲酸酯類DEHP、DBP及DIBP抑制 AFD神經相關基因之表現 28
4.7 鄰苯二甲酸酯類和氧化壓力關係 29
4.7.1鄰苯二甲酸酯類DEHP、DBP及DIBP增加C. elegans體內ROS 29
4.7.2抗氧化劑降低鄰苯二甲酸酯類DEHP、DBP、DIBP對C. elegans造成的毒性效應 29
伍、討論 31
5.1鄰苯二甲酸酯類DEHP、DBP及DIBP對C. elegans繁殖與發育探討 31
5.2鄰苯二甲酸酯類DEHP、DBP及DIBP對C. elegans運動行為與趨性分析之探討 32
5.3鄰苯二甲酸酯類DEHP、DBP及DIBP對C. elegans ASE、AFD感覺神經之探討 33
5.4鄰苯二甲酸酯類DEHP、DBP及DIBP對C. elegans產生神經毒性機制之探討
35
陸、結論 37
柒、建議 38
捌、參考資料 39
玖、附錄 74
dc.language.isozh-TW
dc.title塑化劑‐鄰苯二甲酸酯類化合物對秀麗隱桿線蟲之
毒性效應評估
zh_TW
dc.titleToxicity Evaluation of Plasticizer‐Phthalates in Caenorhabditis elegansen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳佩貞,沈偉強
dc.subject.keyword秀麗隱桿線蟲,鄰苯二甲酸酯類,神經毒性,氧化壓力,zh_TW
dc.subject.keywordphthalates,Caenorhabditis elegans,neurotoxicity,oxidative stress,en
dc.relation.page78
dc.rights.note未授權
dc.date.accepted2013-08-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
3.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved