Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17320
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳(Wei-Fang Su)
dc.contributor.authorChun-Yu Changen
dc.contributor.author張峻瑜zh_TW
dc.date.accessioned2021-06-08T00:06:40Z-
dc.date.copyright2013-08-17
dc.date.issued2013
dc.date.submitted2013-08-12
dc.identifier.citation[1]J. Zhao, A. Wang, MA. Green, F. Ferrazza, 'Novel 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,' Applied Physics Letters, vol. 73, pp. 1991–1993, 1998.
[2]I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, '19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,' Progress in Photovoltaics: Research and Applications, vol. 16, pp. 235–239, 2008.
[3]Y.-W. Su, S.-C. Lan, and K.-H. Wei, 'Organic photovoltaics,' Materials Today, vol. 15, pp. 554-562, 2012.
[4]J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, and Y. Yang, 'A polymer tandem solar cell with 10.6% power conversion efficiency,' Nat Commun, vol. 4, p. 1446, 2013.
[5]NREL, In http://www.nrel.gov/ncpv/
[6]A. Moliton and J.-M. Nunzi, 'How to model the behaviour of organic photovoltaic cells,' Polymer International, vol. 55, pp. 583-600, 2006.
[7]P. Peumans, A. Yakimov, and S. R. Forrest, 'Small molecular weight organic thin-film photodetectors and solar cells,' Journal of Applied Physics, vol. 93, p. 3693, 2003.
[8]M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, 'Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency,' Advanced Materials, vol. 18, pp. 789-794, 2006.
[9]A. Mayer, S. Scully, B. Hardin, M. Rowell, and M. McGehee, 'Polymer-based solar cells,' Materials Today, vol. 10, pp. 28-33, 2007.
[10]K. M. Coakley, M. D. McGehee, 'Conjugated polymer photovoltaic cells,' Chemistry of Materials, vol. 16, pp. 4553-4542, 2004.
[11]C. W. Tang, 'Two‐layer organic photovoltaic cell, 'Applied Physics Letters, vol. 48, pp.183-185, 1986.
[12]N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, 'Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells,' Applied Physics Letters, vol. 62, pp. 585-587, 1993.
[13]G. Yu, J. Gao, J. C. Hummelen, F. Wudi, A. J. Heeger, 'Polymer photovoltaic ceclls: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,' Science, vol. 270, pp. 1789-1791, 1995.
[14]蔡進譯, '超高效率太陽能電池-從愛因斯坦光電效應談起,' 物理雙月刊, vol. 27, pp. 701-719, 2005.
[15]C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, 'Origin of the open circuit voltage of plastic solar cells'
[16]G. Li, V. Shrotriya, Y. Yao, and Y. Yang, 'Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),' Journal of Applied Physics, vol. 98, p. 043704, 2005.
[17]G. D. Sharma, P. Suresh, S. S. Sharma, Y. K. Vijay, and J. A. Mikroyannidis, 'Effect of solvent and subsequent thermal annealing on the performance of phenylenevinylene copolymer: PCBM solar cells,' ACS Appl Mater Interfaces, vol. 2, pp. 504-10, Feb 2010.
[18]C. F. Shih, K. T. Hung, C. Y. Hsiao, H. T. Wu, S. W. Fu, H. J. Chen, C. Y. Hsiao, 'In situ monitoring of photovolatic properties in organic solar cells during thermal annealing,' Organic Electronics, vol. 13, pp. 373-376, 2012.
[19]H. Kim, W. W. So, S. J. Moon, 'Effect of thermal annealing on the performance of P3HT/PCBM polymer photovoltaic cells,' Journal of the Korean Physical Society, vol. 48, pp. 441-445, 2006.
[20]W.-H. Huang, P.-Y. Chen, and S.-H. Tung, 'Effects of Annealing Solvents on the Morphology of Block Copolymer-Based Supramolecular Thin Films,' Macromolecules, vol. 45, pp. 1562-1569, 2012.
[21]G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, '“Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes,' Advanced Functional Materials, vol. 17, pp. 1636-1644, 2007.
[22]J. H. Park, J. S. Kim, J. H. Lee, W. H. Lee, and K. Cho, 'Effect of Annealing Solvent Solubility on the Performance of Poly(3-hexylthiophene)/Methanofullerene Solar Cells,' The Journal of Physical Chemistry C, vol. 113, pp. 17579-17584, 2009.
[23]G. Wei, S. Wang, K. Sun, M. E. Thompson, and S. R. Forrest, 'Solvent-Annealed Crystalline Squaraine: PC70BM (1:6) Solar Cells,' Advanced Energy Materials, vol. 1, pp. 184-187, 2011.
[24]L. Ye, S. Zhang, W. Ma, B. Fan, X. Guo, Y. Huang, H. Ade, and J. Hou, 'From binary to ternary solvent: morphology fine-tuning of D/A blends in PDPP3T-based polymer solar cells,' Adv Mater, vol. 24, pp. 6335-41, Dec 11 2012.
[25]B. R. Aïch, J. Lu, S. Beaupré, M. Leclerc, and Y. Tao, 'Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells,' Organic Electronics, vol. 13, pp. 1736-1741, 2012.
[26]X. Guo, C. Cui, M. Zhang, L. Huo, Y. Huang, J. Hou, and Y. Li, 'High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive,' Energy & Environmental Science, vol. 5, p. 7943, 2012.
[27]C. V. Hoven, X. D. Dang, R. C. Coffin, J. Peet, T. Q. Nguyen, and G. C. Bazan, 'Improved performance of polymer bulk heterojunction solar cells through the reduction of phase separation via solvent additives,' Adv Mater, vol. 22, pp. E63-6, Feb 23 2010.
[28]S. Kwon, J. K. Park, G. Kim, J. Kong, G. C. Bazan, and K. Lee, 'Synergistic Effect of Processing Additives and Optical Spacers in Bulk-Heterojunction Solar Cells,' Advanced Energy Materials, vol. 2, pp. 1420-1424, 2012.
[29]J. K. Park, C. Kim, B. Walker, T.-Q. Nguyen, and J. H. Seo, 'Morphology control of solution processable small molecule bulk heterojunction solar cells via solvent additives,' RSC Advances, vol. 2, p. 2232, 2012.
[30]Y. Sun, C. Cui, H. Wang, and Y. Li, 'Efficiency Enhancement of Polymer Solar Cells Based on Poly(3-hexylthiophene)/Indene-C70 Bisadduct via Methylthiophene Additive,' Advanced Energy Materials, vol. 1, pp. 1058-1061, 2011.
[31]E. Bundgaard and F. Krebs, 'Low band gap polymers for organic photovoltaics,' Solar Energy Materials and Solar Cells, vol. 91, pp. 954-985, 2007.
[32]H. Zhou, L. Yang, S. Stoneking, and W. You, 'A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells,' ACS Appl Mater Interfaces, vol. 2, pp. 1377-83, May 2010.
[33]C.-C. Ho, S.-Y. Chang, T.-C. Huang, C.-A. Chen, H.-C. Liao, Y.-F. Chen, and W.-F. Su, 'Synthesis, characterization and photovoltaic properties of poly(cyclopentadithiophene-alt-isoindigo),' Polymer Chemistry, 2013.
[34]Z. Ma, E. Wang, K. Vandewal, M. R. Andersson, and F. Zhang, 'Enhance performance of organic solar cells based on an isoindigo-based copolymer by balancing absorption and miscibility of electron acceptor,' Applied Physics Letters, vol. 99, p. 143302, 2011.
[35]Z. Ma, E. Wang, M. E. Jarvid, P. Henriksson, O. Inganäs, F. Zhang, and M. R. Andersson, 'Synthesis and characterization of benzodithiophene–isoindigo polymers for solar cells,' Journal of Materials Chemistry, vol. 22, p. 2306, 2012.
[36]E. Wang, Z. Ma, Z. Zhang, K. Vandewal, P. Henriksson, O. Inganas, F. Zhang, and M. R. Andersson, 'An easily accessible isoindigo-based polymer for high-performance polymer solar cells,' J Am Chem Soc, vol. 133, pp. 14244-7, 2011.
[37]R. Stalder, C. Grand, J. Subbiah, F. So, and J. R. Reynolds, 'An isoindigo and dithieno[3,2-b:2′,3′-d]silole copolymer for polymer solar cells,' Polymer Chemistry, vol. 3, p. 89, 2012
[38]P. M. Beaujuge, C. M. Amb, J. R. Reynolds, 'Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions ' Accounts of Chemical Research, , vol. 43, pp. 1396-1407, 2010.
[39]T. Lei, Y. Cao, X. Zhou, Y. Peng, J. Bian, and J. Pei, 'Systematic Investigation of Isoindigo-Based Polymeric Field-Effect Transistors: Design Strategy and Impact of Polymer Symmetry and Backbone Curvature,' Chemistry of Materials, vol. 24, pp. 1762-1770, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17320-
dc.description.abstract高分子太陽能電池(PSC)由於具有低成本、可撓曲且易於以溶液方式製備等特性, 因此近年來在替代性能源中被受到高度的重視。異靛藍素是一種天然色素,它可以從植物中萃取提煉而得,故為一種可再生的材料。此外,由於異靛藍素具有很強拉電子能力,因此可用於合成低能隙施體-予體交替型高分子。在本研究中, 我們所使用的四種異靛藍素基低能隙導電高分子是由不同數目的噻吩作為電子予體並和電子受體異靛藍素共聚而成。依照噻吩在單體中的數目分別命名為:P3TI, P4TI, P5TI, P6TI。我們將此四種高分子分別和PC71BM進行混摻以製作元件,並利用一系列的方式以最佳化元件效率。
我們採用的元件結構為:ITO/PEDOT:PSS/PnTI:PC71BM/Ca/Al。為了最佳化元件效率表現,在製程中分別依序以不同的混摻比例、不同的混摻濃度、使用不同的溶劑及添加物以逐步達成效率最佳化。 由於單體中不同數目的噻吩具有不同的結構對稱性,造成此四種高分子具有不同的結晶性及溶解性。從掠角入射廣角X光散射射分析(GIWAXS)的結果可知,P4TI和P6TI具有高結晶性,而P3TI和P5TI的結晶性則較差。因此,此四種高分子在不同的溶劑組合下具有不同的溶解度。此外,PnTI的結晶性和溶解度的不同對於主動層的型態以及元件的表現有很大的影響,因此我們使用AFM和GIWAXS來分析PnTI:PC71BM主動層的型態以及結晶性和效率之間的關係。最後,得到P3TI:PC71BM最佳效率為6.52%, P4TI:PC71BM為6.04%, P5TI:PC71BM為3.87%,而P6TI:PC71BM為7.25%。我們預期藉由使用其他能夠讓主動層有最佳型態的溶劑組合,並在主動層和電極之間加入具有良好歐姆接觸的電荷傳導層,能夠使此系列太陽能電池的效率再進一步提升。
zh_TW
dc.description.abstractPolymer solar cells (PSC) features low cost, flexibility, and can be manufacture by solution process. Therefore, PSC has drawn high attention among the alternative energy in recent year. Isoindigo has strong electron-pull property which is ideal to synthesize alternating donor-acceptor low bandgap copolymers. Here, we try to optimize the performance of solar cells which are made with four kinds of isoindigo based low bandgap conducting polymers: P3TI, P4TI, P5TI, P6TI blended with PC71BM as active layer. The repeating units of these polymers are constructed from alternative electron-push unit thiophene and electron-pull unit isoindigo, the different among them are the number of thiophene in the repeating unit.
Our solar cells are fabricated with the forward structure of ITO/PEDOT:PSS/ PnTI:PC71BM/ Ca/Al. In order to optimize the device performance, we change the processing conditions by mixing polymer with PC71BM in different ratios, using different process solvents, and adding different additives. Due to the difference of structure symmetry and the number of thiophene in the repeating unit, PnTI has different crystallinity and solubility in different solvent. The grazing-incidence wide angle X-ray scattering (GIWAXS) results show that both P4TI and P6TI have the characteristic of high crystallinity. On the other hand, the crystallinity of P3TI and P5TI are relatively low. The crystallinity and solubility of PnTI affect the film morphology of the active layer dramatically and further impact the device performance. We used AFM and GIWAXS to analyze the film morphology and crystallinity in each solvent combination and investigate how they relate to the property of each PnTI:PC71BM in solar cell. Finally, the optimized power conversion efficiency of the devices made with different PnTI:PC71BM are: 6.52% in P3TI:PC71BM, 6.04% in P4TI:PC71BM, 3.87% in P5TI:PC71BM and 7.25% in P6TI:PC71BM.
The efficiency of this type solar cell is expected to be further increased by using other combination of solvent system for favorable active layer morphology and by using ohmic contact interlayer between active layer and electrode.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:06:40Z (GMT). No. of bitstreams: 1
ntu-102-R00527053-1.pdf: 6461191 bytes, checksum: fd2ea16a256c127a9a677bfb7a545496 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 I
Abstract II
Contents IV
Tables V
Figures VI
Chapter 1 Introduction 1
1.1 Introduction to the development of solar cells 1
1.2 Working principles of polymer solar cells 3
1.3 Structure of polymer solar cells 6
1.4 Photovoltaic characteristics of polymer solar cells 8
1.5 Low bandgap polymer in polymer solar cells 12
1.6 Isoindigo based polymer solar cells 14
1.7 Motivation 17
Chapter 2 Experimental Section 18
2.1 Chemicals characterizations 18
2.2 Instruments 20
2.3 Fabrication of isoindigo based polymer solar cells 21
2.4 Samples preparation for materials characterization 23
Chapter 3 Results and Discussion 24
3.1 Chemistry and physics of PnTI 24
3.2 Optimization the weight ratio between PnTI and PC71BM 26
3.3 Optimization the solution concentration of PnTI:PC71BM 31
3.4 Utilization different solvent and additives for high efficiency PnTI:PC71BM solar cells 36
3.4.1 Effects of type of solvents and additives on the cell performance and morphology of active layer 36
3.4.2 GIXRD analysis of P6TI:PC71BM hybrid films 53
3.5 Summary the performance of PnTI:PC71BM solar cells 55
Chapter 4 Conclusion 58
Chapter 5 Recommendation 60
Reference 61
dc.language.isozh-TW
dc.title高效率異靛藍素基高分子太陽能電池zh_TW
dc.titleToward High Efficiency Isoindigo Based Polymer Solar Cellsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳永芳,曹正熙,王立義
dc.subject.keyword異靛藍素,溶劑添加劑,結構對稱性,結晶性,溶解性,zh_TW
dc.subject.keywordIsoindigo,solvent additives,structure symmetry,crystallinity,solubility,en
dc.relation.page67
dc.rights.note未授權
dc.date.accepted2013-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
6.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved