Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17314
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉興華
dc.contributor.authorChing-Chia Wangen
dc.contributor.author王景甲zh_TW
dc.date.accessioned2021-06-08T00:06:23Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-13
dc.identifier.citation1. Bredt DS and Snyder SH: Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A, 1990; 87: 682-5.
2. Pollock JS, Forstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane M and Murad F: Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A, 1991; 88: 10480-4.
3. Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T and Nathan C: Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science, 1992; 256: 225-8.
4. Alderton WK, Cooper CE and Knowles RG: Nitric oxide synthases: structure, function and inhibition. Biochem J, 2001; 357: 593-615.
5. Lefer DJ, Jones SP, Girod WG, Baines A, Grisham MB, Cockrell AS, Huang PL and Scalia R: Leukocyte-endothelial cell interactions in nitric oxide synthase-deficient mice. Am J Physiol, 1999; 276: H1943-50.
6. Kuchan MJ and Frangos JA: Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol, 1994; 266: C628-36.
7. Sessa WC, Pritchard K, Seyedi N, Wang J and Hintze TH: Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res, 1994; 74: 349-53.
8. Prence EM: Effects of calcium on phosphatidylserine- and saposin C-stimulated glucosylceramide beta-glucosidase activity. Biochem J, 1995; 310 ( Pt 2): 571-5.
9. Venugopal SK, Devaraj S, Yuhanna I, Shaul P and Jialal I: Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation, 2002; 106: 1439-41.
10. Jialal I, Devaraj S and Venugopal SK: C-reactive protein: risk marker or mediator in atherothrombosis? Hypertension, 2004; 44: 6-11.
11. Igarashi J, Thatte HS, Prabhakar P, Golan DE and Michel T: Calcium-independent activation of endothelial nitric oxide synthase by ceramide. Proc Natl Acad Sci U S A, 1999; 96: 12583-8.
12. Gattullo D, Pagliaro P, Marsh NA and Losano G: New insights into nitric oxide and coronary circulation. Life Sci, 1999; 65: 2167-74.
13. Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC and Moskowitz MA: Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab, 1996; 16: 981-7.
14. Fraccarollo D, Galuppo P, Hildemann S, Christ M, Ertl G and Bauersachs J: Additive improvement of left ventricular remodeling and neurohormonal activation by aldosterone receptor blockade with eplerenone and ACE inhibition in rats with myocardial infarction. J Am Coll Cardiol, 2003; 42: 1666-73.
15. Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R and Lefer DJ: Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes, 2008; 57: 696-705.
16. Scherrer-Crosbie M, Ullrich R, Bloch KD, Nakajima H, Nasseri B, Aretz HT, Lindsey ML, Vancon AC, Huang PL, Lee RT et al.: Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation, 2001; 104: 1286-91.
17. Matsuda H and Iyanagi T: Calmodulin activates intramolecular electron transfer between the two flavins of neuronal nitric oxide synthase flavin domain. Biochim Biophys Acta, 1999; 1473: 345-55.
18. Roman LJ and Masters BS: Electron transfer by neuronal nitric-oxide synthase is regulated by concerted interaction of calmodulin and two intrinsic regulatory elements. J Biol Chem, 2006; 281: 23111-8.
19. Guan ZW and Iyanagi T: Electron transfer is activated by calmodulin in the flavin domain of human neuronal nitric oxide synthase. Arch Biochem Biophys, 2003; 412: 65-76.
20. Chanrion B, Mannoury la Cour C, Bertaso F, Lerner-Natoli M, Freissmuth M, Millan MJ, Bockaert J and Marin P: Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity. Proc Natl Acad Sci U S A, 2007; 104: 8119-24.
21. Saitoh F, Tian QB, Okano A, Sakagami H, Kondo H and Suzuki T: NIDD, a novel DHHC-containing protein, targets neuronal nitric-oxide synthase (nNOS) to the synaptic membrane through a PDZ-dependent interaction and regulates nNOS activity. J Biol Chem, 2004; 279: 29461-8.
22. Riefler GM and Firestein BL: Binding of neuronal nitric-oxide synthase (nNOS) to carboxyl-terminal-binding protein (CtBP) changes the localization of CtBP from the nucleus to the cytosol: a novel function for targeting by the PDZ domain of nNOS. J Biol Chem, 2001; 276: 48262-8.
23. Rodriguez-Crespo I, Straub W, Gavilanes F and Ortiz de Montellano PR: Binding of dynein light chain (PIN) to neuronal nitric oxide synthase in the absence of inhibition. Arch Biochem Biophys, 1998; 359: 297-304.
24. Xia Y, Berlowitz CO and Zweier JL: PIN inhibits nitric oxide and superoxide production from purified neuronal nitric oxide synthase. Biochim Biophys Acta, 2006; 1760: 1445-9.
25. Bender AT, Silverstein AM, Demady DR, Kanelakis KC, Noguchi S, Pratt WB and Osawa Y: Neuronal nitric-oxide synthase is regulated by the Hsp90-based chaperone system in vivo. J Biol Chem, 1999; 274: 1472-8.
26. Parent JM, Elliott RC, Pleasure SJ, Barbaro NM and Lowenstein DH: Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol, 2006; 59: 81-91.
27. Wiltrout C, Lang B, Yan Y, Dempsey RJ and Vemuganti R: Repairing brain after stroke: a review on post-ischemic neurogenesis. Neurochem Int, 2007; 50: 1028-41.
28. Ehninger D and Kempermann G: Neurogenesis in the adult hippocampus. Cell Tissue Res, 2008; 331: 243-50.
29. Romero-Grimaldi C, Moreno-Lopez B and Estrada C: Age-dependent effect of nitric oxide on subventricular zone and olfactory bulb neural precursor proliferation. J Comp Neurol, 2008; 506: 339-46.
30. Islam AT, Kuraoka A and Kawabuchi M: Morphological basis of nitric oxide production and its correlation with the polysialylated precursor cells in the dentate gyrus of the adult guinea pig hippocampus. Anat Sci Int, 2003; 78: 98-103.
31. Luo CX, Zhu XJ, Zhou QG, Wang B, Wang W, Cai HH, Sun YJ, Hu M, Jiang J, Hua Y et al.: Reduced neuronal nitric oxide synthase is involved in ischemia-induced hippocampal neurogenesis by up-regulating inducible nitric oxide synthase expression. J Neurochem, 2007; 103: 1872-82.
32. Zhou QG, Hu Y, Hua Y, Hu M, Luo CX, Han X, Zhu XJ, Wang B, Xu JS and Zhu DY: Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J Neurochem, 2007; 103: 1843-54.
33. Bohme GA, Bon C, Lemaire M, Reibaud M, Piot O, Stutzmann JM, Doble A and Blanchard JC: Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats. Proc Natl Acad Sci U S A, 1993; 90: 9191-4.
34. Rickard NS and Gibbs ME: Effects of nitric oxide inhibition on avoidance learning in the chick are lateralized and localized. Neurobiol Learn Mem, 2003; 79: 252-6.
35. Koylu EO, Kanit L, Taskiran D, Dagci T, Balkan B and Pogun S: Effects of nitric oxide synthase inhibition on spatial discrimination learning and central DA2 and mACh receptors. Pharmacol Biochem Behav, 2005; 81: 32-40.
36. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG and Needleman P: Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A, 1993; 90: 7240-4.
37. Zamora R, Vodovotz Y and Billiar TR: Inducible nitric oxide synthase and inflammatory diseases. Mol Med, 2000; 6: 347-73.
38. Kalff JC, Schraut WH, Billiar TR, Simmons RL and Bauer AJ: Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents. Gastroenterology, 2000; 118: 316-27.
39. Nathan C and Xie QW: Nitric oxide synthases: roles, tolls, and controls. Cell, 1994; 78: 915-8.
40. Trepicchio WL, Bozza M, Pedneault G and Dorner AJ: Recombinant human IL-11 attenuates the inflammatory response through down-regulation of proinflammatory cytokine release and nitric oxide production. J Immunol, 1996; 157: 3627-34.
41. Bogdan C, Vodovotz Y, Paik J, Xie QW and Nathan C: Mechanism of suppression of nitric oxide synthase expression by interleukin-4 in primary mouse macrophages. J Leukoc Biol, 1994; 55: 227-33.
42. Barton BE and Jackson JV: Protective role of interleukin 6 in the lipopolysaccharide-galactosamine septic shock model. Infect Immun, 1993; 61: 1496-9.
43. Howard M, Muchamuel T, Andrade S and Menon S: Interleukin 10 protects mice from lethal endotoxemia. J Exp Med, 1993; 177: 1205-8.
44. Ryffel B: Impact of knockout mice in toxicology. Crit Rev Toxicol, 1997; 27: 135-54.
45. Nathan CF: Secretory products of macrophages. J Clin Invest, 1987; 79: 319-26.
46. Salvemini D and Masferrer JL: Interactions of nitric oxide with cyclooxygenase: in vitro, ex vivo, and in vivo studies. Methods Enzymol, 1996; 269: 12-25.
47. Cuzzocrea S, Sautebin L, De Sarro G, Costantino G, Rombola L, Mazzon E, Ialenti A, De Sarro A, Ciliberto G, Di Rosa M et al.: Role of IL-6 in the pleurisy and lung injury caused by carrageenan. J Immunol, 1999; 163: 5094-104.
48. MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie QW, Sokol K, Hutchinson N et al.: Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell, 1995; 81: 641-50.
49. Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, Xu D, Muller W, Moncada S and Liew FY: Altered immune responses in mice lacking inducible nitric oxide synthase. Nature, 1995; 375: 408-11.
50. Cobb JP, Hotchkiss RS, Swanson PE, Chang K, Qiu Y, Laubach VE, Karl IE and Buchman TG: Inducible nitric oxide synthase (iNOS) gene deficiency increases the mortality of sepsis in mice. Surgery, 1999; 126: 438-42.
51. Liu SF, Ye X and Malik AB: In vivo inhibition of nuclear factor-kappa B activation prevents inducible nitric oxide synthase expression and systemic hypotension in a rat model of septic shock. J Immunol, 1997; 159: 3976-83.
52. Tengan CH, Rodrigues GS and Godinho RO: Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. Int J Mol Sci, 2012; 13: 17160-84.
53. Gamba J, Gamba LT, Rodrigues GS, Kiyomoto BH, Moraes CT and Tengan CH: Nitric Oxide Synthesis Is Increased in Cybrid Cells with m.3243A>G Mutation. Int J Mol Sci, 2012; 14: 394-410.
54. Janakiram NB and Rao CV: iNOS-selective inhibitors for cancer prevention: promise and progress. Future Med Chem, 2012; 4: 2193-204.
55. Hunter GC, Henderson AM, Westerband A, Kobayashi H, Suzuki F, Yan ZQ, Sirsjo A, Putnam CW and Hansson GK: The contribution of inducible nitric oxide and cytomegalovirus to the stability of complex carotid plaque. J Vasc Surg, 1999; 30: 36-49; discussion 50.
56. de Jonge ME, Huitema AD, Rodenhuis S and Beijnen JH: Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet, 2005; 44: 1135-64.
57. Levine LA and Richie JP: Urological complications of cyclophosphamide. J Urol, 1989; 141: 1063-9.
58. Batista CK, Mota JM, Souza ML, Leitao BT, Souza MH, Brito GA, Cunha FQ and Ribeiro RA: Amifostine and glutathione prevent ifosfamide- and acrolein-induced hemorrhagic cystitis. Cancer Chemother Pharmacol, 2007; 59: 71-7.
59. Abraham P, Rabi S and Kulothungan P: Aminoguanidine, selective nitric oxide synthase inhibitor, ameliorates cyclophosphamide-induced hemorrhagic cystitis by inhibiting protein nitration and PARS activation. Urology, 2009; 73: 1402-6.
60. Talar-Williams C, Hijazi YM, Walther MM, Linehan WM, Hallahan CW, Lubensky I, Kerr GS, Hoffman GS, Fauci AS and Sneller MC: Cyclophosphamide-induced cystitis and bladder cancer in patients with Wegener granulomatosis. Ann Intern Med, 1996; 124: 477-84.
61. Tasso MJ, Boddy AV, Price L, Wyllie RA, Pearson AD and Idle JR: Pharmacokinetics and metabolism of cyclophosphamide in paediatric patients. Cancer Chemother Pharmacol, 1992; 30: 207-11.
62. Fraiser L and Kehrer JP: Murine strain differences in metabolism and bladder toxicity of cyclophosphamide. Toxicology, 1992; 75: 257-72.
63. el-Yazigi A, Ernst P, al-Rawithi S, Legayada E and Raines DA: Pharmacokinetics of mesna and dimesna after simultaneous intravenous bolus and infusion administration in patients undergoing bone marrow transplantation. J Clin Pharmacol, 1997; 37: 618-24.
64. Arnold JH: High frequency oscillatory ventilation: theory and practice in paediatric patients. Paediatr Anaesth, 1996; 6: 437-41.
65. Wratney AT, Gentile MA, Hamel DS and Cheifetz IM: Successful treatment of acute chest syndrome with high-frequency oscillatory ventilation in pediatric patients. Respir Care, 2004; 49: 263-9.
66. Ben Jaballah N, Mnif K, Bouziri A, Kazdaghli K, Belhadj S and Zouari B: High-frequency oscillatory ventilation in paediatric patients with acute respiratory distress syndrome--early rescue use. Eur J Pediatr, 2005; 164: 17-21.
67. Froese AB and Kinsella JP: High-frequency oscillatory ventilation: lessons from the neonatal/pediatric experience. Crit Care Med, 2005; 33: S115-21.
68. Slee-Wijffels FY, van der Vaart KR, Twisk JW, Markhorst DG and Plotz FB: High-frequency oscillatory ventilation in children: a single-center experience of 53 cases. Crit Care, 2005; 9: R274-9.
69. Ben Jaballah N, Khaldi A, Mnif K, Bouziri A, Belhadj S, Hamdi A and Kchaou W: High-frequency oscillatory ventilation in pediatric patients with acute respiratory failure. Pediatr Crit Care Med, 2006; 7: 362-7.
70. Mamas MA, Reynard JM and Brading AF: Nitric oxide and the lower urinary tract: current concepts, future prospects. Urology, 2003; 61: 1079-85.
71. Oter S, Korkmaz A, Oztas E, Yildirim I, Topal T and Bilgic H: Inducible nitric oxide synthase inhibition in cyclophosphamide induced hemorrhagic cystitis in rats. Urol Res, 2004; 32: 185-9.
72. Janssen LJ: Isoprostanes: generation, pharmacology, and roles in free-radical-mediated effects in the lung. Pulm Pharmacol Ther, 2000; 13: 149-55.
73. Montuschi P, Kharitonov SA, Ciabattoni G, Corradi M, van Rensen L, Geddes DM, Hodson ME and Barnes PJ: Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis. Thorax, 2000; 55: 205-9.
74. Abraham P and Isaac B: The effects of oral glutamine on cyclophosphamide-induced nephrotoxicity in rats. Hum Exp Toxicol, 2011; 30: 616-23.
75. Walterhouse D and Watson A: Optimal management strategies for rhabdomyosarcoma in children. Paediatr Drugs, 2007; 9: 391-400.
76. Carli M, Passone E, Perilongo G and Bisogno G: Ifosfamide in pediatric solid tumors. Oncology, 2003; 65 Suppl 2: 99-104.
77. Philips FS, Sternberg SS, Cronin AP and Vidal PM: Cyclophosphamide and urinary bladder toxicity. Cancer Res, 1961; 21: 1577-89.
78. Dechant KL, Brogden RN, Pilkington T and Faulds D: Ifosfamide/mesna. A review of its antineoplastic activity, pharmacokinetic properties and therapeutic efficacy in cancer. Drugs, 1991; 42: 428-67.
79. Brock N, Pohl J and Stekar J: Studies on the urotoxicity of oxazaphosphorine cytostatics and its prevention. 2. Comparative study on the uroprotective efficacy of thiols and other sulfur compounds. Eur J Cancer Clin Oncol, 1981; 17: 1155-63.
80. Brock N and Pohl J: The development of mesna for regional detoxification. Cancer Treat Rev, 1983; 10 Suppl A: 33-43.
81. Ribeiro RA, Freitas HC, Campos MC, Santos CC, Figueiredo FC, Brito GA and Cunha FQ: Tumor necrosis factor-alpha and interleukin-1beta mediate the production of nitric oxide involved in the pathogenesis of ifosfamide induced hemorrhagic cystitis in mice. J Urol, 2002; 167: 2229-34.
82. Gomes TN, Santos CC, Souza-Filho MV, Cunha FQ and Ribeiro RA: Participation of TNF-alpha and IL-1 in the pathogenesis of cyclophosphamide-induced hemorrhagic cystitis. Braz J Med Biol Res, 1995; 28: 1103-8.
83. Korkmaz A, Topal T and Oter S: Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation. Cell Biol Toxicol, 2007; 23: 303-12.
84. Al-Rawithi S, El-Yazigi A, Ernst P, Al-Fiar F and Nicholls PJ: Urinary excretion and pharmacokinetics of acrolein and its parent drug cyclophosphamide in bone marrow transplant patients. Bone Marrow Transplant, 1998; 22: 485-90.
85. James MJ, Birmingham AT and Hill SJ: Partial mediation by nitric oxide of the relaxation of human isolated detrusor strips in response to electrical field stimulation. Br J Clin Pharmacol, 1993; 35: 366-72.
86. Liu SH and Lin-Shiau SY: Protein kinase c regulates purinergic component of neurogenic contractions in mouse bladder. J Urol, 2000; 164: 1764-7.
87. Weng TI, Chen WJ and Liu SH: Bladder instillation of Escherichia coli lipopolysaccharide alters the muscle contractions in rat urinary bladder via a protein kinase C-related pathway. Toxicol Appl Pharmacol, 2005; 208: 163-9.
88. Weng TI, Chen WJ, Wu HY and Liu SH: Uropathogenic Escherichia coli alters muscle contractions in rat urinary bladder via a nitric oxide synthase-related signaling pathway. J Infect Dis, 2006; 194: 1774-82.
89. Mota JM, Brito GA, Loiola RT, Cunha FQ and Ribeiro Rde A: Interleukin-11 attenuates ifosfamide-induced hemorrhagic cystitis. Int Braz J Urol, 2007; 33: 704-10.
90. Weng TI, Wu HY, Lin PY and Liu SH: Uropathogenic Escherichia coli-induced inflammation alters mouse urinary bladder contraction via an interleukin-6-activated inducible nitric oxide synthase-related pathway. Infect Immun, 2009; 77: 3312-9.
91. Whiteman M and Halliwell B: Protection against peroxynitrite-dependent tyrosine nitration and alpha 1-antiproteinase inactivation by ascorbic acid. A comparison with other biological antioxidants. Free Radic Res, 1996; 25: 275-83.
92. Glantzounis GK, Tsimoyiannis EC, Kappas AM and Galaris DA: Uric acid and oxidative stress. Curr Pharm Des, 2005; 11: 4145-51.
93. Hooper DC, Spitsin S, Kean RB, Champion JM, Dickson GM, Chaudhry I and Koprowski H: Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A, 1998; 95: 675-80.
94. Gray KJ, Engelmann UH, Johnson EH and Fishman IJ: Evaluation of misoprostol cytoprotection of the bladder with cyclophosphamide (Cytoxan) therapy. J Urol, 1986; 136: 497-500.
95. Lukasewycz SJ, Smith AR, Rambachan A, MacMillan ML, Lewis JM and Shukla AR: Intractable hemorrhagic cystitis after hematopoietic stem cell tranplantation--is there a role for early urinary diversion in children? J Urol, 2012; 188: 242-6.
96. Hale GA, Rochester RJ, Heslop HE, Krance RA, Gingrich JR, Benaim E, Horwitz EM, Cunningham JM, Tong X, Srivastava DK et al.: Hemorrhagic cystitis after allogeneic bone marrow transplantation in children: clinical characteristics and outcome. Biol Blood Marrow Transplant, 2003; 9: 698-705.
97. Shimada M, Johnson RJ, May WS, Jr., Lingegowda V, Sood P, Nakagawa T, Van QC, Dass B and Ejaz AA: A novel role for uric acid in acute kidney injury associated with tumour lysis syndrome. Nephrol Dial Transplant, 2009; 24: 2960-4.
98. Sencer SF, Haake RJ and Weisdorf DJ: Hemorrhagic cystitis after bone marrow transplantation. Risk factors and complications. Transplantation, 1993; 56: 875-9.
99. Wang CC, Weng TI, Wu ET, Wu MH, Yang RS and Liu SH: Involvement of interleukin-6-regulated nitric oxide synthase in hemorrhagic cystitis and impaired bladder contractions in young rats induced by acrolein, a urinary metabolite of cyclophosphamide. Toxicol Sci, 2013; 131:302-10
100. Batista CK, Brito GA, Souza ML, Leitao BT, Cunha FQ and Ribeiro RA: A model of hemorrhagic cystitis induced with acrolein in mice. Braz J Med Biol Res, 2006; 39: 1475-81.
101. Virag L and Szabo C: The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev, 2002; 54: 375-429.
102. Nishii H, Nomura M, Fujimoto N and Matsumoto T: Up-regulation of interleukin-6 gene expression in cyclophosphamide-induced cystitis in mice: An in situ hybridization histochemical study. Int J Urol, 2006; 13: 1339-43.
103. Kiuchi H, Takao T, Yamamoto K, Nakayama J, Miyagawa Y, Tsujimura A, Nonomura N and Okuyama A: Sesquiterpene lactone parthenolide ameliorates bladder inflammation and bladder overactivity in cyclophosphamide induced rat cystitis model by inhibiting nuclear factor-kappaB phosphorylation. J Urol, 2009; 181: 2339-48.
104. Watson NA and Notley RG: Urological complications of cyclophosphamide. Br J Urol, 1973; 45: 606-9.
105. Hassan Z: Management of refractory hemorrhagic cystitis following hematopoietic stem cell transplantation in children. Pediatr Transplant, 2011; 15: 348-61.
106. Macedo FY, Baltazar F, Almeida PR, Tavora F, Ferreira FV, Schmitt FC, Brito GA and Ribeiro RA: Cyclooxygenase-2 expression on ifosfamide-induced hemorrhagic cystitis in rats. J Cancer Res Clin Oncol, 2008; 134: 19-27.
107. Taga T and Kishimoto T: Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol, 1997; 15: 797-819.
108. Neuhaus J, Schlichting N, Oberbach A and Stolzenburg JU: Lipopolysaccharide-mediated regulation of interleukin-6 in cultured human detrusor smooth muscle cells. Urologe A, 2007; 46: 1193-7.
109. Andrews B, Shariat SF, Kim JH, Wheeler TM, Slawin KM and Lerner SP: Preoperative plasma levels of interleukin-6 and its soluble receptor predict disease recurrence and survival of patients with bladder cancer. J Urol, 2002; 167: 1475-81.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17314-
dc.description.abstractCyclophosphamide是一種二氯甲基二乙酸(mechlorethamine)的衍生化合物,屬於alkylating類的抗腫瘤藥物。Acrolein是這類藥物經由肝臟酵素P450(cytochrome P450)而產生的尿液代謝產物。在兒童血液腫瘤疾病的治療上,它可能會直接造成膀胱傷害而引起常見的出血性膀胱炎併發症。它的發生率可以從7%到75%,其中可能會造成血尿、頻尿、排尿疼痛、甚至膀胱大量出血的症狀而導致死亡。動物模式中,將Acrolein注射入膀胱或cyclophosphamide直接注射入腹腔造成出血性膀胱炎,模擬化療藥物治療後的副作用。文獻指出,一氧化氮合酶(nitric oxide synthase, NOS)和氧化壓力一直為發炎反應重要機轉。在大鼠泌尿道感染所造成的平滑肌收縮力,NOS亦直接參與。對於化療藥物造成的出血性膀胱炎也是扮演很重要的病理機轉角色。然而,對於化療藥物cyclophosphamide所引起的出血性膀胱炎,NOS、氧化壓力與細胞訊息傳導的相互關係以及是否影響膀胱排尿肌的收縮並沒有清楚的瞭解。同時,目前也沒有有效的檢查方式來早期預測出血性膀胱炎的發生。8-iso-prostaglandin F2α為已知的脂肪受損的產物,這產物可以當作是氧化侵襲的生物指標。尿氮化合物(NOx)為NO代謝後在尿液出現的穩定產物,也可以代表體內NO生成的情形。過去文獻指出8-iso-prostaglandin F2α的代謝物在成人及小兒氣喘、慢性阻塞性肺疾病、間質性肺病、急性心、肺、腎臟的傷害和膽汁淤積性肝炎等的病人血液、尿液中,皆可以見到上升的情形。然而,對於化療藥物所引起的出血性膀胱炎,卻較少這方面的探討。因此,本研究將去探討cyclophosphamide造成膀胱傷害中,NOS、氧化壓力與細胞訊息傳遞因子的交互關係。同時,也希望藉由收集病童尿液中的NOx、8-iso-prostaglandin F2α來評估化療藥物對於出血性膀胱炎的影響。
研究結果顯示在動物模式中,使用cyclophosphamide的代謝產物acrolein (75 μg),利用微小導尿管注入幼鼠膀胱內造成出血性膀胱炎,在24小時後可以明顯發現膀胱出血同時有iNOS顯著增加的情形。蛋白質致活酶(PKC)會在早期1、6小時上升,並且伴隨著膀胱肌肉的張力上升,但是在24小時後,隨著iNOS增加而抑制PKC的表現也同時抑制膀胱肌肉的張力。另一方面,在幼鼠的尿液收集中也發現尿氮化合物(NOx)及IL-6的上升。因此使用iNOS抑制劑或者使用IL-6的抗體皆會減少iNOS的產生,同時恢復原本下降的膀胱肌肉張力。代表在IL-6在調控NO/iNOS及PKC訊息傳導的幼鼠出血性膀胱炎及肌肉的張力改變上,扮演一個重要角色。進一步我們也利用直接腹腔注入cyclophosphamide的小鼠動物模式,發現iNOS及尿液中的NOx也是增加的情形,同時我們注入尿酸,它本身也是一種抗氧化物質,發現與iNOS抑制劑有著相同減緩出血性膀胱炎及回復PKC的作用。同時,我們回顧過去10年來因為化療藥物cyclophosphamide而導致出血性膀胱炎的病童,發現其血液中尿酸值的改變似乎影響出血性膀胱炎的程度。配合臨床上收集使用cyclophosphamide治療的病童尿液,也證實NOx及氧化壓力指標8-iso-prostaglandin F2α會有明顯上升的情形。綜合上述,尿酸對於出血性膀胱炎也許有些保護的角色;也證實氧化壓力及NOS的確佔有一定的角色。從臨床的觀察及後續的動物實驗中,希望能夠找到更好的方式來減少因為化療藥物所造成的兒童出血性膀胱炎。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-08T00:06:23Z (GMT). No. of bitstreams: 1
ntu-102-D97447004-1.pdf: 2357667 bytes, checksum: d4bf52da8551576abadb2feb2d83ceb2 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書 ………………………………………………….I
誌謝 ………………………………………………………………. II
中文摘要 …………………………………………………………. III
Abstract …………………………………………………………… V
List of Abbreviation ………………………………………………VII
I. Introduction …………………………………………………….. 1
1.1 Nitric Oxide Synthase Related Signals and Disorder 1
1.2 Chemotherapy-Induced Bladder Injury and Nitric Oxide Synthase ………………………………………………………. 4
1.2.1 Cyclophosphamide-induced bladder injury………………………... 4
1.2.2 Acrolein, a urinary metabolite of cyclophosphamide, induced hemorrhagic cystitis…………………………………………………. 6
1.2.3 The roles of interleukin-6, uric acid, and nitric oxide synthase in bladder injury………………………………………………......… 7
1.3 The Aims of This Study…………………………………..…… 8
II. Materials and Methods……………………………………...…13
2.1 Clinical cyclophosphamide-induced bladder injury...…....… 13
2.1.1 Children with hemorrhagic cystitis……………………………….…. 13
2.1.2 Children with cyclophosphamide treatment…………………….….. 13
2.1.3 Measurement of nitrite/nitrate (NOx) levels…………………………14
2.1.4 Bladder oxidative injury assessment: 8-isoprostane assay…………. 14
2.2 Animal study in bladder injury……………………....…....… 15
2.2.1 Cyclophosphamide-induced hemorrhagic cystitis in mice………… 15
2.2.2 Western blot analysis…………………………………………….…… 15
2.2.3 Measurement of nitrite/nitrate (NOx) levels……………………….... 16
2.2.4 Histopathology and Immunohistochemistry……………………..….. 16
2.2.5 Acrolein-triggered hemorrhagic cystitis in rats……………….……... 17
2.2.6 Preparation of bladder detrusor strips…………………..………….. 18
2.2.7 Measurement of IL-6 and nitrite/nitrate (NOx) levels……………... 18
2.2.8 Western blotting in bladder………………………………………….. 19
2.2.9 Histological and immunohistochemistrical assessment…………..... 20
2.2.10 Statistical analysis…………………………..……………..……….… 20
III. Results…………………………………………………..…....… 21
3.1 Cyclophosphamide-induced hemorrhagic cystitis and
clinical implication………………………………….…..………21
3.1.1 Demographic data in children with hemorrhagic cystitis.….….….… 21
3.1.2 Urine NOx levels in children with cyclophosphamide chemotherapy. 22
3.1.3 Protein expressions of iNOS in mouse urinary bladders………...….. 22
3.1.4 The roles of uric acid and urine NOx levels……...……...……...….... 23
3.1.5 Histological and immunohistochemical changes in bladders……...... 23
3.2 Acrolein-triggered hemorrhagic cystitis..……………………. 23
3.2.1 Hemorrhagic cystitis and protein expressions in rat………………...23
3.2.2 Protein expressions of iNOS and phosphorylated PKC in rat………24
3.2.3 Urine IL-6 and NO levels after intravesical instillation of acrolein… 24
3.2.4 IL-6 and NO in altered contractile responses in bladders………...… 24
3.2.5 Histological and immunohistochemical changes in rat bladders….... 25
IV. Discussion ………………………27
4.1 The NOS and ROS involves in the cyclophosphamide-induced hemorrhagic cystitis………………27
4.2 The role of IL-6 and NOS in acrolein-triggered hemorrhagic cystitis…………………………. 30
V. Summary and Perspective ………………………………………34
Reference ……………………………………………………...……. 36
Appendix ……………………………………………….….……...... 82
1. List of Publication: …………………………………….……..…...… 82
2. Permission of Clinical Trial ………………………………….……..…83
dc.language.isoen
dc.titleCyclophosphamide誘導出血性膀胱炎:臨床與基礎機制之探討zh_TW
dc.titleCyclophosphamide-Induced Hemorrhagic Cystitis: clinical investigation and basic mechanism researchen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee楊榮森,吳美環,蕭水銀,姜至剛
dc.subject.keyword出血性膀胱炎,IL-6,一氧化氮合?(NOS),尿氮化合物,尿酸,脂肪氧化代謝產物,zh_TW
dc.subject.keywordHemorrhagic cystitis,NOS,interleukin 6,uric acid,Nitrite/nitrate,8-iso-prostaglandin F2α,en
dc.relation.page83
dc.rights.note未授權
dc.date.accepted2013-08-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved