請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17299
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪一薰(I-Hsuan Hong) | |
dc.contributor.author | I-Ting Chen | en |
dc.contributor.author | 陳奕廷 | zh_TW |
dc.date.accessioned | 2021-06-08T00:05:38Z | - |
dc.date.copyright | 2020-09-23 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-06 | |
dc.identifier.citation | Ashby, S. F., Bosl, W. J., Falgout, R. D., Smith, S. G., Tompson, A. F. B., Williams, T. J. (1999). A numerical simulation of groundwater flow and contaminant transport on the CRAY T3D and C90 Supercomputers. The International Journal of High Performance Computing Applications, 13(1), 80-93. Chau, K. W. (2007). Application of a PSO-based neural network in analysis of outcomes of construction claims. Automation in construction, 16(5), 642-646. Chow, T. T., Zhang, G. Q., Lin, Z., Song, C. L. (2002). Global optimization of absorption chiller system by genetic algorithm and neural network. Energy and buildings, 34(1), 103-109. Cui, Y., Olsen, K. B., Jordan, T. H., Lee, K., Zhou, J., Small, P., ... Levesque, J. (2010, November). Scalable earthquake simulation on petascale supercomputers. In SC'10: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1-20). IEEE. Das, G., Pattnaik, P. K., Padhy, S. K. (2014). Artificial neural network trained by particle swarm optimization for non-linear channel equalization. Expert Systems with Applications, 41(7), 3491-3496. Fonseca, D. J., Navaresse, D. (2002). Artificial neural networks for job shop simulation. Advanced Engineering Informatics, 16(4), 241-246. GEKKO (2019). GEKKO Optimization Suite. Retrieved from https://gekko.readthedocs.io/en/latest/# James, S. C., Johnson, E. L., Barco, J., Roberts, J. D. (2020). Simulating current-energy converters: SNL-EFDC model development, verification, and parameter estimation. Renewable Energy, 147, 2531-2541. Kuo, Y., Yang, T., Peters, B. A., Chang, I. (2007). Simulation metamodel development using uniform design and neural networks for automated material handling systems in semiconductor wafer fabrication. Simulation Modelling Practice and Theory, 15(8), 1002-1015. Liu, B., Zhang, Q., Gielen, G. G. (2013). A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems. IEEE Transactions on Evolutionary Computation, 18(2), 180-192. Maciejewski, M. (2014). Benchmarking minimum passenger waiting time in online taxi dispatching with exact offline optimization methods. Madu, C. N. (1990). Simulation in manufacturing: a regression metamodel approach. Computers Industrial Engineering, 18(3), 381-389. Mehdad, E., Kleijnen, J. P. (2018). Efficient global optimisation for black-box simulation via sequential intrinsic Kriging. Journal of the Operational Research Society, 69(11), 1725-1737 Mirjalili, S., Hashim, S. Z. M., Sardroudi, H. M. (2012). Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Applied Mathematics and Computation, 218(22), 11125-11137 Ribau, J., Viegas, R., Angelino, A., Moutinho, A., Silva, C. (2014). A new offline optimization approach for designing a fuel cell hybrid bus. Transportation Research Part C: Emerging Technologies, 42, 14-27. Sanyal, J., New, J., Edwards, R. E., Parker, L. (2014). Calibrating building energy models using supercomputer trained machine learning agents. Concurrency and Computation: Practice and Experience, 26(13), 2122-2133. Simpson, T. W., Poplinski, J. D., Koch, P. N., Allen, J. K. (2001). Metamodels for computer-based engineering design: survey and recommendations. Engineering with computers, 17(2), 129-150. Uchio, E., Ohno, S., Kudoh, J., Aoki, K., Kisielewicz, L. T. (1999). Simulation model of an eyeball based on finite element analysis on a supercomputer. British Journal of Ophthalmology, 83(10), 1106-1111. Vlahogianni, E. I., Karlaftis, M. G., Golias, J. C. (2005). Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach. Transportation Research Part C: Emerging Technologies, 13(3), 211-234. Wächter, A., Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical programming, 106(1), 25-57. Yan, S., Minsker, B. (2006). Optimal groundwater remediation design using an adaptive neural network genetic algorithm. Water Resources Research, 42(5). ITRead01 (2018)。常用激活函數比較。取自https://www.itread01.com/content/1539193093.html 台灣電力公司 (2019)。資訊接露動態圖表。取自 https://www.taipower.com.tw /tc/Chart.aspx?mid=194 李柏翰.(2013). 台灣開發海流發電成本效益之評估。國立成功大學海洋科技與事務研究所碩士論文,台南市。 取自https://hdl.handle.net/11296/sjzyhj 徐子堯. (2019). 以類神經網路及萬用啟發式演算法離線最佳化模擬系統參數-海底渦輪機應用. 國立臺灣大學工業工程學研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/gt6zzz 陳陽益、許弘莒、蘇超偉、薛憲文 、白俊彥、楊瑞源、李孟學、許城榕 (民104). 瓩級黑潮發電先導機組實海域船拖測試. 第 37 屆海洋工程研討會論文集, 739-744. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17299 | - |
dc.description.abstract | 隨著環保意識抬頭,綠色能源逐漸興起,其中海流能被視為極具潛力的選項,然而發展海流能需要大量的物理實驗數據輔助,藉由電腦模擬物理實驗又缺乏效率,因此本研究期望以類神經網路架設後設模型模擬超級電腦模擬系統,已大幅增加研究效率。本研究主要分為三個部分,首先對原資料進行篩選和整理,以剔除失準資料並將資料調整成適合後續訓練的型態,接著以電腦模擬系統為目標架設後設模型,最後利用粒子團演算法和基因演算法以近似物理實驗為目標找出最佳參數,除此之外以類神經網路的後設模型為基礎,成功將後設模型轉換為非線性模型的型式,求解後證實非線性模型有機會找出優於萬用啟發式演算法的參數解。此研究架構能夠在提高效率又不失精準度的情況下,找出模擬系統的參數解。 | zh_TW |
dc.description.abstract | With the rise of environmental awareness, green energy is gradually emerging, especially the ocean current energy, which is regarded as a very promising option. However, the development of the ocean current energy requires a large amount of physical experiment data, and the computer simulation of physical experiments is inefficient. This paper utilizes the neural network to develop our surrogate model describing the response surface between the design parameters of the simulation and experimental quantities of interests, and the efficiency has been greatly increased. This study is mainly divided into three parts. First, remove the inaccurate data and adjust the data to a form that is suitable for training. Then, construct the surrogate model with the goal of approximating simulation system. Last, find the optimal solution of the simulation with the goal of approximating physical experiment system by using the particle swarm algorithm, the genetic algorithm and the nonlinear model, and finally confirm that the nonlinear model has the opportunity to find a better solution than the metaheuristics. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:05:38Z (GMT). No. of bitstreams: 1 U0001-0608202014104600.pdf: 2500142 bytes, checksum: 841c8aee26c94416667150916a8a5c0d (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 v 表目錄 vi 第一章 緒論 1 第二章 離線最佳化 4 2.1 背景介紹 5 2.2 資料整理 5 2.3 後設模型 7 2.3.1 模型選擇 7 2.3.2 類神經網路 7 2.4最佳化方法 11 2.4.1 定義問題 11 2.4.2 粒子團演算法 12 2.4.3 基因演算法 13 2.4.4 非線性模型 15 第三章 數值分析 17 3.1 模型參數設置 17 3.2 後設模型擬合誤差 18 3.3 預測誤差 19 第四章 結論 26 參考文獻 27 | |
dc.language.iso | zh-TW | |
dc.title | 運用類神經網路建置後設模型並離線最佳化海底渦輪機模擬系統參數 | zh_TW |
dc.title | Offline optimization of marine turbine parameters based on Neural network | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 藍俊宏,蘇哲平 | |
dc.subject.keyword | 非線性模型,類神經網路,後設模型,粒子團演算法,基因演算法,離線最佳化, | zh_TW |
dc.subject.keyword | nonlinear model,neural network,surrogate model,particle swarm algorithm,genetic algorithm,offline optimization, | en |
dc.relation.page | 30 | |
dc.identifier.doi | 10.6342/NTU202002532 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0608202014104600.pdf 目前未授權公開取用 | 2.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。