請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17288完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪一薰(I-Hsuan Hong) | |
| dc.contributor.author | Yi-Ping Wang | en |
| dc.contributor.author | 王怡萍 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:05:06Z | - |
| dc.date.copyright | 2020-09-23 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-07 | |
| dc.identifier.citation | 中央通訊社. (2017). 台電節電新制測試未過確定解約處理. 取自https://www.cna.com.tw/news/afe/201707310271.aspx. 中華民國經濟部. (2019). 推動能源轉型「展綠、增氣、減煤、非核」. 取自https://www.moea.gov.tw/MNS/populace/Policy/Policy.aspx?menu_id=32800 policy_id=9. 台電月刊. (2018). Small Is New Big 以小見大的電網未來. 取自https://tpcjournal.taipower.com.tw/article/2887. 台灣安奈諾克股份有限公司. (2017). TPC DR program 2 年合約調度200mw/小時.取自http://www.tsa.org.tw/file/15652_170503093923.pdf. 行政院. (2016). 推動低壓智慧電表建置. 取自https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/e69c2971-a86e-43bc-b49d-dfffec54f886. 行政院. (2018). 能源政策專案報告. 取自https://www.ey.gov.tw/Index.aspx. 行政院環保署. (2018). 溫室氣體減量及管理法. 取自https://ghgrule.epa.gov.tw/greenhouse/greenhouse_page/23. 行政院. (2019). 《電業法》修法— 發展綠能, 啟動國家能源轉型. 取自https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/2ae8bfb8-6014-49d1-b04e-75374fbd6096. 財團法人台灣綠色生產力基金會. (2016). 電能管理與需量控制Q A節能技術手冊. 取自https://www.ecct.org.tw/Knowledge/knowledge_more?id=6added8771424f0ab456abfa4aacce19. 許志義、鍾皓晨. (2017). 虛擬電廠參與者之成本效益分析與政策推介. 取自https://km.twenergy.org.tw/Publication/thesis_more?id=154. 經濟部能源局. (2018). 公宅智慧節電導入用戶群代表需量競價計畫. 取自https://energymagazine.itri.org.tw/Cont.aspx?CatID= ContID=2966. 經濟部能源局. (2018). 我國燃料燃燒二氧化碳排放統計與分析. 取自https://www.moeaboe.gov.tw/ecw/populace/content/SubMenu.aspx?menu_id=114. 經濟部能源局. (2018). 能源轉型白皮書. 取自http://energywhitepaper.tw/. 經濟部能源局. (2020). 能源供需概況分析. 取自https://www.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH menu_id=142#E. 臺灣電力公司. (2020). 台電公司109 年上半年電價費率檢討方案自發及購入電力化石燃料成本. 取自https://www.taipower.com.tw/upload/5524/2020032715294916069.pdf. 臺灣電力公司. (2017). 台電攜手國際廠商首次導入用戶群代表聚沙成塔建構虛擬電廠目標每次降低20 萬瓩用電負載. 取自https://www.taipower.com.tw/tc/news_info.aspx?id=110 chk=5ebb3d9f-159a-425f-aa41-444565412d37 mid=17 param=pn%3d1%26mid%3d17%26key%3d%e5%8f%b0%e9%9b%bb%e6%94%9c%e6%89%8b%e5%9c%8b%e9%9a%9b%e5%bb%a0%e5%95%86%e9%a6%96%e6%ac%a1%e5%b0%8e%e5%85%a5%e7%94%a8%e6%88%b6%e7%be%a4%e4%bb%a3%e8%a1%a8+%e8%81%9a%e6%b2%99%e6%88%90%e5%a1%94%e5%bb%ba%e6%a7%8b%e8%99%9b%e6%93%ac%e9%9b%bb%e5%bb%a0+%e7%9b%ae%e6%a8%99%e6%af%8f%e6%ac%a1%e9%99%8d%e4%bd%8e20%e8%90%ac%e7%93%a9%e7%94%a8%e9%9b%bb%e8%b2%a0%e8%bc%89. 臺灣電力公司. (2019). 各縣市太陽光電容量因數. 取自https://www.taipower.com.tw/tc/page.aspx?mid=207 cid=165 cchk=a83cd635-a792-4660-9f02-f71d5d925911#b02. 臺灣電力公司. (2019). 新版「電業法」與未來電力交易平台架構規劃. 取自http://www.tepa108.org.tw/EpaperHtm/20191015181500.htm. 臺灣電力公司. (2019). 電價表及說明. 取自https://www.taipower.com.tw/tc/page.aspx?mid=1461 cid=2677 cchk=2bee9399-7715-4039-aa86-2fb68ae76240. Abapour, M., Zare, K., et al. (2019). Stackelberg based optimal planning of dgs and electric vehicle parking lot by implementing demand response program. Sustainable Cities and Society, 51, 101743. Alves, M. J., Antunes, C. H. (2018). A semivectorial bilevel programming approach to optimize electricity dynamic time-of-use retail pricing. Computers Operations Research, 92, 130–144. Bazaraa, M. S., Sherali, H. D., Shetty, C. M. (2013). Nonlinear programming: theory and algorithms. John Wiley Sons. Carreiro, A. M., Jorge, H. M., Antunes, C. H. (2017). Energy management systems aggregators:A literature survey. Renewable and Sustainable Energy Reviews, 73, 1160-1172. Chen, J., Zhu, Q. (2017). A stackelberg game approach for two-level distributed energy management in smart grids. IEEE Transactions on Smart Grid, 9(6), 6554–6565. Cui, S., Wang, Y.-W., Liu, N. (2017). Distributed game-based pricing strategy for energy sharing in microgrid with pv prosumers. IET Renewable Power Generation, 12(3), 380–388. Di Somma, M., Graditi, G., Heydarian-Forushani, E., Shafie-Khah, M., Siano, P (2018). Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects. Renewable Energy, 116, 272–287. Di Somma, M., Graditi, G., Siano, P. (2018). Optimal bidding strategy for a der aggregator in the day-ahead market in the presence of demand flexibility. IEEE Transactions on Industrial Electronics, 66(2), 1509–1519. Dorn, W. S. (1960). Duality in quadratic programming. Quarterly of Applied Mathematics, 18(2), 155–162. Fortuny-Amat, J., McCarl, B. (1981). A representation and economic interpretation of a two-level programming problem. Journal of the Operational Research Society, 32(9), 783–792. Fudenberg, D., Tirole, J. (1991). Game theory, 1991. Cambridge, Massachusetts, 393(12), 80. Gibbons, R. S. (1992). Game theory for applied economists. Princeton University Press. Grzanic, M., Capuder, T. (2018). Bi-level modelling approach to coordinated operation of wind power plant and pv-storage energy community. In 2018 IEEE International Energy Conference (ENERGYCON) (pp. 1–6). Hobbs, B. F., Metzler, C. B., Pang, J.-S. (2000). Strategic gaming analysis for electric power systems: An MPEC approach. IEEE Transactions on Power Systems, 15(2), 638–645. Horst, R., Pardalos, P. M. (2013). Handbook of global optimization (Vol. 2). Springer Science Business Media. Jia, Y., Mi, Z., Yu, Y., Song, Z., Fan, H. (2019). Tri-level decision-making framework for strategic trading of demand response aggregator. IET Renewable Power Generation, 13(12), 2195–2206. Jordehi, A. R. (2019). Optimisation of demand response in electric power systems, a review. Renewable and Sustainable Energy Reviews, 103, 308–319. Lu, Q., Lü, S., Leng, Y. (2019). A nash-stackelberg game approach in regional energy market considering users’integrated demand response. Energy, 175, 456–470. Mahmoudi, N., Heydarian-Forushani, E., Shafie-khah, M., Saha, T. K., Golshan, M., Siano, P. (2017). A bottom-up approach for demand response aggregators’participation in electricity markets. Electric Power Systems Research, 143, 121–129. Mahmoudi, N., Saha, T. K., Eghbal, M. (2014). Modelling demand response aggregator behavior in wind power offering strategies. Applied Energy, 133, 347–355. Mohammadi, J., Rahimi-Kian, A., Ghazizadeh, M.-S. (2011). Aggregated wind power and flexible load offering strategy. IET Renewable Power Generation, 5(6), 439–447. Motalleb, M., Annaswamy, A., Ghorbani, R. (2018). A real-time demand response market through a repeated incomplete-information game. Energy, 143, 424–438. Murdock, H. E., Gibb, D., André, T., Appavou, F., Brown, A., Epp, B., … others (2019). Renewables 2019 global status report. Nan, S., Zhou, M., Li, G. (2018). Optimal residential community demand response scheduling in smart grid. Applied Energy, 210, 1280–1289. Narimani, A., Nourbakhsh, G., Ledwich, G., Walker, G. (2018). Optimum electricity purchase scheduling for aggregator storage in a reliability framework for rural distribution networks. International Journal of Electrical Power Energy Systems, 94, 363–373. Niromandfam, A., Yazdankhah, A. S., Kazemzadeh, R. (2020). Modeling demand response based on utility function considering wind profit maximization in the day-ahead market. Journal of Cleaner Production, 251, 119317. Okur, Ö., Voulis, N., Heijnen, P., Lukszo, Z. (2019). Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation. Applied Energy, 247, 426–437. Parvania, M., Fotuhi-Firuzabad, M., Shahidehpour, M. (2013). Optimal demand response aggregation in wholesale electricity markets. IEEE Transactions on Smart Grid, 4(4), 1957–1965. Rashidizadeh-Kermani, H., Vahedipour-Dahraie, M., Shafie-khah, M., Catalão, J. P. (2019). Stochastic programming model for scheduling demand response aggregators considering uncertain market prices and demands. International Journal of Electrical Power Energy Systems, 113, 528–538. Riaz, S., Marzooghi, H., Verbič, G., Chapman, A. C., Hill, D. J. (2017). Generic demand model considering the impact of prosumers for future grid scenario analysis. IEEE Transactions on Smart Grid, 10(1), 819–829. Srinivasan, D., Rajgarhia, S., Radhakrishnan, B. M., Sharma, A., Khincha, H. (2017). Game-theory based dynamic pricing strategies for demand side management in smart grids. Energy, 126, 132–143. Torriti, J., Hassan, M. G., Leach, M. (2010). Demand response experience in europe: Policies, programmes and implementation. Energy, 35(4), 1575–1583. Wang, K., Ouyang, Z., Krishnan, R., Shu, L., He, L. (2015). A game theory-based energy management system using price elasticity for smart grids. IEEE Transactions on Industrial Informatics, 11(6), 1607–1616. Zhang, D., Shah, N., Papageorgiou, L. G. (2013). Efficient energy consumption and operation management in a smart building with microgrid. Energy Conversion and Management, 74, 209–222. Zugno, M., Morales, J. M., Pinson, P., Madsen, H. (2013). A bilevel model for electricity retailers’ participation in a demand response market environment. Energy Economics, 36, 182–197. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17288 | - |
| dc.description.abstract | 為舒緩供電吃緊的壓力,並避免限電危機,用戶群代表為其中一種需求面管理的機制,透過執行需量反應,消費者在緊急時段抑低用電以幫助平衡電網供需,本研究針對不同電力市場情況,利用史坦伯格賽局(Stackelberg game),考慮配電系統營運商、用戶群代表(aggregator)、消費者、產銷者(prosumer) 等等,建立雙層最佳化模型,以最大化各參與者的利益,場景分為需量反應市場,以及具間歇性發電來源之需量反應市場,雙層模型在經過Karush–Kuhn–Tucker(KKT) 條件、強對偶理論(strong duality) 轉換後成為單層二次規劃模型(quadratic programming model),個案分析中使用臺灣歷史資料,藉此分析在電力市場加入用戶群代表後,各決策者的獲利情況。 | zh_TW |
| dc.description.abstract | In order to prevent from electricity shortage, an aggregator is a way of demand side management. By implementing demand response, consumers help reduce demand to meet supply in an emergency period. This research aims at different market situations using the Stackelberg game structure with respect to the distribution system operator(DSO), aggregators, consumers, and prosumers. There are two scenarios. One is demand response market and the other is demand response market with intermittent power generation sources. We reformulate the bilevel programming by KKT conditions and strong duality. The case study makes use of Taiwan’s data to analyze the profits of participants, including DSO and aggregators. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:05:06Z (GMT). No. of bitstreams: 1 U0001-0608202014492000.pdf: 1832948 bytes, checksum: 887e000bb2e00b77a898990748f7984e (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 i 摘要 ii Abstract iii 圖目錄 v 表目錄 vi 第1章 緒論 1 第2章 文獻回顧 5 2.1 賽局模型於需量反應電力市場 5 2.2 用戶群代表於市場上的不同應用 6 第3章 史坦伯格賽局雙層模型 8 3.1 問題描述 8 3.2 消費者需量反應效用函數 14 3.3 需量反應電力市場 16 3.3.1 配電系統營運商模型 16 3.3.2 需量反應用戶群代表模型 17 3.4 具間歇性發電來源之需量反應市場 18 3.4.1 配電系統營運商模型 19 3.4.2 具間歇性發電來源用戶群代表模型 19 第4章 求解方法 21 4.1 模型重組 21 4.1.1 需量反應電力市場雙層模型重組 21 4.1.2 具間歇性發電來源需量反應市場之雙層模型重組 22 4.2 線性化KKT條件 24 4.3 強對偶理論 25 第5章 個案分析 28 5.1 個案背景與參數設定 28 5.2 需量反應市場 31 5.3 具間歇性發電來源之需量反應市場 32 5.3.1 夏季需量反應市場 33 5.3.2 冬季需量反應市場 35 第6章 結論與未來研究方向 38 參考文獻 39 | |
| dc.language.iso | zh-TW | |
| dc.title | 電力市場需量反應之雙層最佳化模型 | zh_TW |
| dc.title | The application of bilevel programming model on demand response with aggregators | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡明哲(Ming-Che Hu),鍾年勉(Nian-Mian Zhong) | |
| dc.subject.keyword | 需量反應,用戶群代表,史坦伯格賽局, | zh_TW |
| dc.subject.keyword | Demand Response,Aggregator,Stackelberg game, | en |
| dc.relation.page | 44 | |
| dc.identifier.doi | 10.6342/NTU202002540 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0608202014492000.pdf 未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
