Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17270
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡孟君(Meng-Chun Hu)
dc.contributor.authorHao-Hua Jiangen
dc.contributor.author姜浩華zh_TW
dc.date.accessioned2021-06-08T00:04:10Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-14
dc.identifier.citationAoki, C., and Siekevitz, P. (1985). Ontogenetic changes in the cyclic adenosine 3',5'-monophosphate-stimulatable phosphorylation of cat visual cortex proteins, particularly of microtubule-associated protein 2 (MAP 2): effects of normal and dark rearing and of the exposure to light. The Journal of neuroscience : the official journal of the Society for Neuroscience 5, 2465-2483.
Arakane, F., King, S.R., Du, Y., Kallen, C.B., Walsh, L.P., Watari, H., Stocco, D.M., and Strauss, J.F., 3rd (1997). Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. The Journal of biological chemistry 272, 32656-32662.
Barbaccia, M.L., Roscetti, G., Trabucchi, M., Purdy, R.H., Mostallino, M.C., Perra, C., Concas, A., and Biggio, G. (1996). Isoniazid-induced inhibition of GABAergic transmission enhances neurosteroid content in the rat brain. Neuropharmacology 35, 1299-1305.
Bates, B., Rios, M., Trumpp, A., Chen, C., Fan, G., Bishop, J.M., and Jaenisch, R. (1999). Neurotrophin-3 is required for proper cerebellar development. Nature neuroscience 2, 115-117.
Bear, M.F., Kleinschmidt, A., Gu, Q.A., and Singer, W. (1990). Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. The Journal of neuroscience : the official journal of the Society for Neuroscience 10, 909-925.
Beique, J.C., Lin, D.T., Kang, M.G., Aizawa, H., Takamiya, K., and Huganir, R.L. (2006). Synapse-specific regulation of AMPA receptor function by PSD-95. Proceedings of the National Academy of Sciences of the United States of America 103, 19535-19540.
Benshalom, G., and White, E.L. (1988). Dendritic spines are susceptible to structural alterations induced by degeneration of their presynaptic afferents. Brain research 443, 377-382.
Bernhardt, R., and Matus, A. (1984). Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. The Journal of comparative neurology 226, 203-221.
Beyenburg, S., Stoffel-Wagner, B., Watzka, M., Blumcke, I., Bauer, J., Schramm, J., Bidlingmaier, F., and Elger, C.E. (1999). Expression of cytochrome P450scc mRNA in the hippocampus of patients with temporal lobe epilepsy. Neuroreport 10, 3067-3070.
Brady, S.T., Tytell, M., Heriot, K., and Lasek, R.J. (1981). Axonal transport of calmodulin: a physiologic approach to identification of long-term associations between proteins. The Journal of cell biology 89, 607-614.
Brinton, R.D. (1994). The neurosteroid 3 alpha-hydroxy-5 alpha-pregnan-20-one induces cytoarchitectural regression in cultured fetal hippocampal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 14, 2763-2774.
Brinton, R.D., and Wang, J.M. (2006). Therapeutic potential of neurogenesis for prevention and recovery from Alzheimer's disease: allopregnanolone as a proof of concept neurogenic agent. Current Alzheimer research 3, 185-190.
Castejon, O.J., Fuller, L., and Dailey, M.E. (2004). Localization of synapsin-I and PSD-95 in developing postnatal rat cerebellar cortex. Brain Res Dev Brain Res 151, 25-32.
Chamak, B., Fellous, A., Glowinski, J., and Prochiantz, A. (1987). MAP2 expression and neuritic outgrowth and branching are coregulated through region-specific neuro-astroglial interactions. The Journal of neuroscience : the official journal of the Society for Neuroscience 7, 3163-3170.
Charalampopoulos, I., Alexaki, V.I., Tsatsanis, C., Minas, V., Dermitzaki, E., Lasaridis, I., Vardouli, L., Stournaras, C., Margioris, A.N., Castanas, E., et al. (2006). Neurosteroids as endogenous inhibitors of neuronal cell apoptosis in aging. Annals of the New York Academy of Sciences 1088, 139-152.
Cho, K.O., Hunt, C.A., and Kennedy, M.B. (1992). The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929-942.
Choi, J.M., Romeo, R.D., Brake, W.G., Bethea, C.L., Rosenwaks, Z., and McEwen, B.S. (2003). Estradiol increases pre- and post-synaptic proteins in the CA1 region of the hippocampus in female rhesus macaques (Macaca mulatta). Endocrinology 144, 4734-4738.
Cline, H.T., Debski, E.A., and Constantine-Paton, M. (1987). N-methyl-D-aspartate receptor antagonist desegregates eye-specific stripes. Proceedings of the National Academy of Sciences of the United States of America 84, 4342-4345.
Compagnone, N.A., and Mellon, S.H. (1998). Dehydroepiandrosterone: a potential signalling molecule for neocortical organization during development. Proceedings of the National Academy of Sciences of the United States of America 95, 4678-4683.
Compagnone, N.A., and Mellon, S.H. (2000). Neurosteroids: biosynthesis and function of these novel neuromodulators. Frontiers in neuroendocrinology 21, 1-56.
Cooke, B.M., and Woolley, C.S. (2005). Gonadal hormone modulation of dendrites in the mammalian CNS. Journal of neurobiology 64, 34-46.
Crandall, J.E., and Fischer, I. (1989). Developmental regulation of microtubule-associated protein 2 expression in regions of mouse brain. J Neurochem 53, 1910-1917.
Crandall, J.E., Jacobson, M., and Kosik, K.S. (1986). Ontogenesis of microtubule-associated protein 2 (MAP2) in embryonic mouse cortex. Brain research 393, 127-133.
De Camilli, P., Cameron, R., and Greengard, P. (1983a). Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. The Journal of cell biology 96, 1337-1354.
De Camilli, P., Harris, S.M., Jr., Huttner, W.B., and Greengard, P. (1983b). Synapsin I (Protein I), a nerve terminal-specific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. The Journal of cell biology 96, 1355-1373.
de Kloet, E.R., Joels, M., and Holsboer, F. (2005). Stress and the brain: from adaptation to disease. Nature reviews Neuroscience 6, 463-475.
Do-Rego, J.L., Mensah-Nyagan, G.A., Beaujean, D., Vaudry, D., Sieghart, W., Luu-The, V., Pelletier, G., and Vaudry, H. (2000). gamma-Aminobutyric acid, acting through gamma -aminobutyric acid type A receptors, inhibits the biosynthesis of neurosteroids in the frog hypothalamus. Proceedings of the National Academy of Sciences of the United States of America 97, 13925-13930.
Ehrlich, I., Klein, M., Rumpel, S., and Malinow, R. (2007). PSD-95 is required for activity-driven synapse stabilization. Proceedings of the National Academy of Sciences of the United States of America 104, 4176-4181.
El-Husseini, A.E., Schnell, E., Chetkovich, D.M., Nicoll, R.A., and Bredt, D.S. (2000). PSD-95 involvement in maturation of excitatory synapses. Science (New York, NY) 290, 1364-1368.
Fiala, J.C., Feinberg, M., Popov, V., and Harris, K.M. (1998). Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. The Journal of neuroscience : the official journal of the Society for Neuroscience 18, 8900-8911.
Fiala, J.C.H., K. M. (1999). Dendrite structure.
Fifkova, E. (1985). A possible mechanism of morphometric changes in dendritic spines induced by stimulation. Cellular and molecular neurobiology 5, 47-63.
Fischer, I., Kosik, K.S., and Sapirstein, V.S. (1987). Heterogeneity of microtubule-associated protein (MAP2) in vertebrate brains. Brain research 436, 39-48.
Flood, J.F., and Roberts, E. (1988). Dehydroepiandrosterone sulfate improves memory in aging mice. Brain research 448, 178-181.
Fukaya, M., Ueda, H., Yamauchi, K., Inoue, Y., and Watanabe, M. (1999). Distinct spatiotemporal expression of mRNAs for the PSD-95/SAP90 protein family in the mouse brain. Neuroscience research 33, 111-118.
Furukawa, A., Miyatake, A., Ohnishi, T., and Ichikawa, Y. (1998). Steroidogenic acute regulatory protein (StAR) transcripts constitutively expressed in the adult rat central nervous system: colocalization of StAR, cytochrome P-450SCC (CYP XIA1), and 3beta-hydroxysteroid dehydrogenase in the rat brain. Journal of neurochemistry 71, 2231-2238.
Gomez-Sanchez, E.P., Gomez-Sanchez, C.M., Plonczynski, M., and Gomez-Sanchez, C.E. (2010). Aldosterone synthesis in the brain contributes to Dahl salt-sensitive rat hypertension. Experimental physiology 95, 120-130.
Goosens, K.A., and Sapolsky, R.M. (2007). Stress and Glucocorticoid Contributions to Normal and Pathological Aging
Brain Aging: Models, Methods, and Mechanisms (Boca Raton FL: Taylor & Francis Group, LLC).
Gould, E., Woolley, C.S., Frankfurt, M., and McEwen, B.S. (1990a). Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. The Journal of neuroscience : the official journal of the Society for Neuroscience 10, 1286-1291.
Gould, E., Woolley, C.S., and McEwen, B.S. (1990b). Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience 37, 367-375.
Grgurevic, N., Budefeld, T., Rissman, E.F., Tobet, S.A., and Majdic, G. (2008). Aggressive behaviors in adult SF-1 knockout mice that are not exposed to gonadal steroids during development. Behav Neurosci 122, 876-884.
Hajszan, T., Milner, T.A., and Leranth, C. (2007). Sex steroids and the dentate gyrus. Progress in brain research 163, 399-415.
Hamori, J. (1973). The inductive role of presynaptic axons in the development of postsynaptic spines. Brain research 62, 337-344.
Harada, A., Sobue, K., and Hirokawa, N. (1990). Developmental changes of synapsin I subcellular localization in rat cerebellar neurons. Cell structure and function 15, 329-342.
Higo, S., Hojo, Y., Ishii, H., Komatsuzaki, Y., Ooishi, Y., Murakami, G., Mukai, H., Yamazaki, T., Nakahara, D., Barron, A., et al. (2011). Endogenous synthesis of corticosteroids in the hippocampus. PloS one 6, e21631.
Higo, S., Hojo, Y., Ishii, H., Kominami, T., Nakajima, K., Poirier, D., Kimoto, T., and Kawato, S. (2009). Comparison of sex-steroid synthesis between neonatal and adult rat hippocampus. Biochemical and biophysical research communications 385, 62-66.
Hojo, Y., Hattori, T.A., Enami, T., Furukawa, A., Suzuki, K., Ishii, H.T., Mukai, H., Morrison, J.H., Janssen, W.G., Kominami, S., et al. (2004). Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. Proceedings of the National Academy of Sciences of the United States of America 101, 865-870.
Hojo, Y., Higo, S., Kawato, S., Hatanaka, Y., Ooishi, Y., Murakami, G., Ishii, H., Komatsuzaki, Y., Ogiue-Ikeda, M., Mukai, H., et al. (2011). Hippocampal synthesis of sex steroids and corticosteroids: essential for modulation of synaptic plasticity. Front Endocrinol (Lausanne) 2, 43.
Hsu, H.J., Hsu, N.C., Hu, M.C., and Chung, B.C. (2006). Steroidogenesis in zebrafish and mouse models. Molecular and cellular endocrinology 248, 160-163.
Hu, M.C., Hsu, N.C., El Hadj, N.B., Pai, C.I., Chu, H.P., Wang, C.K., and Chung, B.C. (2002). Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Molecular endocrinology (Baltimore, Md) 16, 1943-1950.
Hum, D.W., and Miller, W.L. (1993). Transcriptional regulation of human genes for steroidogenic enzymes. Clin Chem 39, 333-340.
Huttner, W.B., DeGennaro, L.J., and Greengard, P. (1981). Differential phosphorylation of multiple sites in purified protein I by cyclic AMP-dependent and calcium-dependent protein kinases. The Journal of biological chemistry 256, 1482-1488.
Huttner, W.B., and Greengard, P. (1979). Multiple phosphorylation sites in protein I and their differential regulation by cyclic AMP and calcium. Proceedings of the National Academy of Sciences of the United States of America 76, 5402-5406.
Ibanez, C., Shields, S.A., El-Etr, M., Leonelli, E., Magnaghi, V., Li, W.W., Sim, F.J., Baulieu, E.E., Melcangi, R.C., Schumacher, M., et al. (2003). Steroids and the reversal of age-associated changes in myelination and remyelination. Progress in neurobiology 71, 49-56.
Iwata, M., Muneoka, K.T., Shirayama, Y., Yamamoto, A., and Kawahara, R. (2005). A study of a dendritic marker, microtubule-associated protein 2 (MAP-2), in rats neonatally treated neurosteroids, pregnenolone and dehydroepiandrosterone (DHEA). Neuroscience letters 386, 145-149.
Jakab, R.L., Wong, J.K., and Belcher, S.M. (2001). Estrogen receptor beta immunoreactivity in differentiating cells of the developing rat cerebellum. The Journal of comparative neurology 430, 396-409.
Johnson, G.V., and Jope, R.S. (1992). The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. Journal of neuroscience research 33, 505-512.
Karishma, K.K., and Herbert, J. (2002). Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression. The European journal of neuroscience 16, 445-453.
Katz, F., Ellis, L., and Pfenninger, K.H. (1985). Nerve growth cones isolated from fetal rat brain. III. Calcium-dependent protein phosphorylation. The Journal of neuroscience : the official journal of the Society for Neuroscience 5, 1402-1411.
Kawato, S., Hojo, Y., and Kimoto, T. (2002). Histological and metabolism analysis of P450 expression in the brain. Methods in enzymology 357, 241-249.
Keith, D., and El-Husseini, A. (2008). Excitation Control: Balancing PSD-95 Function at the Synapse. Front Mol Neurosci 1, 4.
Kelly, M.J., and Ronnekleiv, O.K. (2009). Control of CNS neuronal excitability by estrogens via membrane-initiated signaling. Molecular and cellular endocrinology 308, 17-25.
Kimoto, T., Ishii, H., Higo, S., Hojo, Y., and Kawato, S. (2010). Semicomprehensive analysis of the postnatal age-related changes in the mRNA expression of sex steroidogenic enzymes and sex steroid receptors in the male rat hippocampus. Endocrinology 151, 5795-5806.
Kimoto, T., Tsurugizawa, T., Ohta, Y., Makino, J., Tamura, H., Hojo, Y., Takata, N., and Kawato, S. (2001). Neurosteroid synthesis by cytochrome p450-containing systems localized in the rat brain hippocampal neurons: N-methyl-D-aspartate and calcium-dependent synthesis. Endocrinology 142, 3578-3589.
King, S.R., Ginsberg, S.D., Ishii, T., Smith, R.G., Parker, K.L., and Lamb, D.J. (2004). The steroidogenic acute regulatory protein is expressed in steroidogenic cells of the day-old brain. Endocrinology 145, 4775-4780.
King, S.R., Manna, P.R., Ishii, T., Syapin, P.J., Ginsberg, S.D., Wilson, K., Walsh, L.P., Parker, K.L., Stocco, D.M., Smith, R.G., et al. (2002). An essential component in steroid synthesis, the steroidogenic acute regulatory protein, is expressed in discrete regions of the brain. The Journal of neuroscience : the official journal of the Society for Neuroscience 22, 10613-10620.
Kistner, U., Wenzel, B.M., Veh, R.W., Cases-Langhoff, C., Garner, A.M., Appeltauer, U., Voss, B., Gundelfinger, E.D., and Garner, C.C. (1993). SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. The Journal of biological chemistry 268, 4580-4583.
Kleinschmidt, A., Bear, M.F., and Singer, W. (1987). Blockade of 'NMDA' receptors disrupts experience-dependent plasticity of kitten striate cortex. Science (New York, NY) 238, 355-358.
Kohchi, C., Ukena, K., and Tsutsui, K. (1998). Age- and region-specific expressions of the messenger RNAs encoding for steroidogenic enzymes p450scc, P450c17 and 3beta-HSD in the postnatal rat brain. Brain research 801, 233-238.
Komatsuzaki, Y., Murakami, G., Tsurugizawa, T., Mukai, H., Tanabe, N., Mitsuhashi, K., Kawata, M., Kimoto, T., Ooishi, Y., and Kawato, S. (2005). Rapid spinogenesis of pyramidal neurons induced by activation of glucocorticoid receptors in adult male rat hippocampus. Biochemical and biophysical research communications 335, 1002-1007.
Kretz, O., Fester, L., Wehrenberg, U., Zhou, L., Brauckmann, S., Zhao, S., Prange-Kiel, J., Naumann, T., Jarry, H., Frotscher, M., et al. (2004). Hippocampal synapses depend on hippocampal estrogen synthesis. The Journal of neuroscience : the official journal of the Society for Neuroscience 24, 5913-5921.
Lambert, J.J., Cooper, M.A., Simmons, R.D., Weir, C.J., and Belelli, D. (2009). Neurosteroids: endogenous allosteric modulators of GABA(A) receptors. Psychoneuroendocrinology 34 Suppl 1, S48-58.
Lavaque, E., Mayen, A., Azcoitia, I., Tena-Sempere, M., and Garcia-Segura, L.M. (2006). Sex differences, developmental changes, response to injury and cAMP regulation of the mRNA levels of steroidogenic acute regulatory protein, cytochrome p450scc, and aromatase in the olivocerebellar system. Journal of neurobiology 66, 308-318.
Lewis, S.A., Ivanov, I.E., Lee, G.H., and Cowan, N.J. (1989). Organization of microtubules in dendrites and axons is determined by a short hydrophobic zipper in microtubule-associated proteins MAP2 and tau. Nature 342, 498-505.
Li, C., Brake, W.G., Romeo, R.D., Dunlop, J.C., Gordon, M., Buzescu, R., Magarinos, A.M., Allen, P.B., Greengard, P., Luine, V., et al. (2004). Estrogen alters hippocampal dendritic spine shape and enhances synaptic protein immunoreactivity and spatial memory in female mice. Proceedings of the National Academy of Sciences of the United States of America 101, 2185-2190.
Liu, F., Day, M., Muniz, L.C., Bitran, D., Arias, R., Revilla-Sanchez, R., Grauer, S., Zhang, G., Kelley, C., Pulito, V., et al. (2008). Activation of estrogen receptor-beta regulates hippocampal synaptic plasticity and improves memory. Nature neuroscience 11, 334-343.
Macri, S., Biamonte, F., Romano, E., Marino, R., Keller, F., and Laviola, G. (2010). Perseverative responding and neuroanatomical alterations in adult heterozygous reeler mice are mitigated by neonatal estrogen administration. Psychoneuroendocrinology 35, 1374-1387.
Mani, S. (2008). Progestin receptor subtypes in the brain: the known and the unknown. Endocrinology 149, 2750-2756.
Marx, C.E., Stevens, R.D., Shampine, L.J., Uzunova, V., Trost, W.T., Butterfield, M.I., Massing, M.W., Hamer, R.M., Morrow, A.L., and Lieberman, J.A. (2006). Neuroactive steroids are altered in schizophrenia and bipolar disorder: relevance to pathophysiology and therapeutics. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 31, 1249-1263.
Mason, C.A. (1986). Axon development in mouse cerebellum: embryonic axon forms and expression of synapsin I. Neuroscience 19, 1319-1333.
Matthews, D.A., Cotman, C., and Lynch, G. (1976). An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. II. Reappearance of morphologically normal synaptic contacts. Brain research 115, 23-41.
McCarthy, M.M. (2008). Estradiol and the developing brain. Physiological reviews 88, 91-124.
McEwen, B.S. (2000). Effects of adverse experiences for brain structure and function. Biological psychiatry 48, 721-731.
Melchior, C.L., and Ritzmann, R.F. (1996). Neurosteroids block the memory-impairing effects of ethanol in mice. Pharmacology, biochemistry, and behavior 53, 51-56.
Mellon, S.H. (2007). Neurosteroid regulation of central nervous system development. Pharmacol Ther 116, 107-124.
Mellon, S.H., and Deschepper, C.F. (1993). Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain research 629, 283-292.
Mellon, S.H., and Griffin, L.D. (2002). Neurosteroids: biochemistry and clinical significance. Trends in endocrinology and metabolism: TEM 13, 35-43.
Mirescu, C., Peters, J.D., and Gould, E. (2004). Early life experience alters response of adult neurogenesis to stress. Nat Neurosci 7, 841-846.
Mukai, H., Hatanaka, Y., Mitsuhashi, K., Hojo, Y., Komatsuzaki, Y., Sato, R., Murakami, G., Kimoto, T., and Kawato, S. (2011). Automated analysis of spines from confocal laser microscopy images: application to the discrimination of androgen and estrogen effects on spinogenesis. Cerebral cortex (New York, NY : 1991) 21, 2704-2711.
Mukai, H., Kimoto, T., Hojo, Y., Kawato, S., Murakami, G., Higo, S., Hatanaka, Y., and Ogiue-Ikeda, M. (2010). Modulation of synaptic plasticity by brain estrogen in the hippocampus. Biochimica et biophysica acta 1800, 1030-1044.
Mukai, H., Tsurugizawa, T., Murakami, G., Kominami, S., Ishii, H., Ogiue-Ikeda, M., Takata, N., Tanabe, N., Furukawa, A., Hojo, Y., et al. (2007). Rapid modulation of long-term depression and spinogenesis via synaptic estrogen receptors in hippocampal principal neurons. Journal of neurochemistry 100, 950-967.
Mukai, H., Tsurugizawa, T., Ogiue-Ikeda, M., Murakami, G., Hojo, Y., Ishii, H., Kimoto, T., and Kawato, S. (2006). Local neurosteroid production in the hippocampus: influence on synaptic plasticity of memory. Neuroendocrinology 84, 255-263.
Munetsuna, E., Hojo, Y., Hattori, M., Ishii, H., Kawato, S., Ishida, A., Kominami, S.A., and Yamazaki, T. (2009). Retinoic acid stimulates 17beta-estradiol and testosterone synthesis in rat hippocampal slice cultures. Endocrinology 150, 4260-4269.
Murakami, G., Tsurugizawa, T., Hatanaka, Y., Komatsuzaki, Y., Tanabe, N., Mukai, H., Hojo, Y., Kominami, S., Yamazaki, T., Kimoto, T., et al. (2006). Comparison between basal and apical dendritic spines in estrogen-induced rapid spinogenesis of CA1 principal neurons in the adult hippocampus. Biochemical and biophysical research communications 351, 553-558.
Murakami, K., Fellous, A., Baulieu, E.E., and Robel, P. (2000). Pregnenolone binds to microtubule-associated protein 2 and stimulates microtubule assembly. Proceedings of the National Academy of Sciences of the United States of America 97, 3579-3584.
Murphy, D.D., Cole, N.B., Greenberger, V., and Segal, M. (1998). Estradiol increases dendritic spine density by reducing GABA neurotransmission in hippocampal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 18, 2550-2559.
Murphy, D.D., and Segal, M. (1997). Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proceedings of the National Academy of Sciences of the United States of America 94, 1482-1487.
Neve, R.L., Finch, E.A., Bird, E.D., and Benowitz, L.I. (1988). Growth-associated protein GAP-43 is expressed selectively in associative regions of the adult human brain. Proceedings of the National Academy of Sciences of the United States of America 85, 3638-3642.
Neveu, I., and Arenas, E. (1996). Neurotrophins promote the survival and development of neurons in the cerebellum of hypothyroid rats in vivo. The Journal of cell biology 133, 631-646.
Ooishi, Y., Mukai, H., Hojo, Y., Murakami, G., Hasegawa, Y., Shindo, T., Morrison, J.H., Kimoto, T., and Kawato, S. (2012). Estradiol rapidly rescues synaptic transmission from corticosterone-induced suppression via synaptic/extranuclear steroid receptors in the hippocampus. Cerebral cortex (New York, NY : 1991) 22, 926-936.
Papa, M., and Segal, M. (1996). Morphological plasticity in dendritic spines of cultured hippocampal neurons. Neuroscience 71, 1005-1011.
Parnavelas, J.G., Lynch, G., Brecha, N., Cotman, C.W., and Globus, A. (1974). Spine loss and regrowth in hippocampus following deafferentation. Nature 248, 71-73.
Perrone-Bizzozero, N.I., Finklestein, S.P., and Benowitz, L.I. (1986). Synthesis of a growth-associated protein by embryonic rat cerebrocortical neurons in vitro. The Journal of neuroscience : the official journal of the Society for Neuroscience 6, 3721-3730.
Pluchino, N., Luisi, M., Lenzi, E., Centofanti, M., Begliuomini, S., Freschi, L., Ninni, F., and Genazzani, A.R. (2006). Progesterone and progestins: effects on brain, allopregnanolone and beta-endorphin. The Journal of steroid biochemistry and molecular biology 102, 205-213.
Prager, E.M., Brielmaier, J., Bergstrom, H.C., McGuire, J., and Johnson, L.R. (2010). Localization of mineralocorticoid receptors at mammalian synapses. PloS one 5, e14344.
Price, R.H., Jr., and Handa, R.J. (2000). Expression of estrogen receptor-beta protein and mRNA in the cerebellum of the rat. Neuroscience letters 288, 115-118.
Racchi, M., Govoni, S., Solerte, S.B., Galli, C.L., and Corsini, E. (2001). Dehydroepiandrosterone and the relationship with aging and memory: a possible link with protein kinase C functional machinery. Brain research Brain research reviews 37, 287-293.
Reddy, D.S., and Kulkarni, S.K. (1998). Possible role of nitric oxide in the nootropic and antiamnesic effects of neurosteroids on aging- and dizocilpine-induced learning impairment. Brain research 799, 215-229.
Rocamora, N., Garcia-Ladona, F.J., Palacios, J.M., and Mengod, G. (1993). Differential expression of brain-derived neurotrophic factor, neurotrophin-3, and low-affinity nerve growth factor receptor during the postnatal development of the rat cerebellar system. Brain research Molecular brain research 17, 1-8.
Rogawski, M.A., and Reddy, D.S. (2002). Neurosteroids and infantile spasms: the deoxycorticosterone hypothesis. International review of neurobiology 49, 199-219.
Roscetti, G., Ambrosio, C., Trabucchi, M., Massotti, M., and Barbaccia, M.L. (1994). Modulatory mechanisms of cyclic AMP-stimulated steroid content in rat brain cortex. European journal of pharmacology 269, 17-24.
Rose, O., Grund, C., Reinhardt, S., Starzinski-Powitz, A., and Franke, W.W. (1995). Contactus adherens, a special type of plaque-bearing adhering junction containing M-cadherin, in the granule cell layer of the cerebellar glomerulus. Proceedings of the National Academy of Sciences of the United States of America 92, 6022-6026.
Rune, G.M., and Frotscher, M. (2005). Neurosteroid synthesis in the hippocampus: role in synaptic plasticity. Neuroscience 136, 833-842.
Sakamoto, H., Ukena, K., and Tsutsui, K. (2001). Effects of progesterone synthesized de novo in the developing Purkinje cell on its dendritic growth and synaptogenesis. The Journal of neuroscience : the official journal of the Society for Neuroscience 21, 6221-6232.
Sasahara, K., Shikimi, H., Haraguchi, S., Sakamoto, H., Honda, S., Harada, N., and Tsutsui, K. (2007). Mode of action and functional significance of estrogen-inducing dendritic growth, spinogenesis, and synaptogenesis in the developing Purkinje cell. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 7408-7417.
Schumacher, M., Guennoun, R., Ghoumari, A., Massaad, C., Robert, F., El-Etr, M., Akwa, Y., Rajkowski, K., and Baulieu, E.E. (2007). Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system. Endocrine reviews 28, 387-439.
Schumacher, M., Guennoun, R., Robert, F., Carelli, C., Gago, N., Ghoumari, A., Gonzalez Deniselle, M.C., Gonzalez, S.L., Ibanez, C., Labombarda, F., et al. (2004). Local synthesis and dual actions of progesterone in the nervous system: neuroprotection and myelination. Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF Research Society 14 Suppl A, S18-33.
Shirayama, Y., Muneoka, K., Fukumoto, M., Tadokoro, S., Fukami, G., Hashimoto, K., and Iyo, M. (2011). Infusions of allopregnanolone into the hippocampus and amygdala, but not into the nucleus accumbens and medial prefrontal cortex, produce antidepressant effects on the learned helplessness rats. Hippocampus 21, 1105-1113.
Shirayama, Y., Muneoka, K.T., Iwata, M., Ishida, H., Hazama, G., and Kawahara, R. (2005). Pregnenolone and dehydroepiandrosterone administration in neonatal rats alters the immunoreactivity of hippocampal synapsin I, neuropeptide Y and glial fibrillary acidic protein at post-puberty. Neuroscience 133, 147-157.
Smith, S.S. (1989). Estrogen administration increases neuronal responses to excitatory amino acids as a long-term effect. Brain research 503, 354-357.
Smith, S.S., Waterhouse, B.D., and Woodward, D.J. (1988). Locally applied estrogens potentiate glutamate-evoked excitation of cerebellar Purkinje cells. Brain research 475, 272-282.
Sorra, K.E., and Harris, K.M. (2000). Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10, 501-511.
Stoffel-Wagner, B. (2001). Neurosteroid metabolism in the human brain. Eur J Endocrinol 145, 669-679.
Strous, R.D., Maayan, R., and Weizman, A. (2006). The relevance of neurosteroids to clinical psychiatry: from the laboratory to the bedside. Eur Neuropsychopharmacol 16, 155-169.
Suzuki, M., Wright, L.S., Marwah, P., Lardy, H.A., and Svendsen, C.N. (2004). Mitotic and neurogenic effects of dehydroepiandrosterone (DHEA) on human neural stem cell cultures derived from the fetal cortex. Proceedings of the National Academy of Sciences of the United States of America 101, 3202-3207.
Tamura, M., Sajo, M., Kakita, A., Matsuki, N., and Koyama, R. (2011). Prenatal stress inhibits neuronal maturation through downregulation of mineralocorticoid receptors. The Journal of neuroscience : the official journal of the Society for Neuroscience 31, 11505-11514.
Tsurugizawa, T., Mukai, H., Tanabe, N., Murakami, G., Hojo, Y., Kominami, S., Mitsuhashi, K., Komatsuzaki, Y., Morrison, J.H., Janssen, W.G., et al. (2005). Estrogen induces rapid decrease in dendritic thorns of CA3 pyramidal neurons in adult male rat hippocampus. Biochemical and biophysical research communications 337, 1345-1352.
Vallee, M., Mayo, W., Darnaudery, M., Corpechot, C., Young, J., Koehl, M., Le Moal, M., Baulieu, E.E., Robel, P., and Simon, H. (1997). Neurosteroids: deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America 94, 14865-14870.
Wang, C., Marx, C.E., Morrow, A.L., Wilson, W.A., and Moore, S.D. (2007). Neurosteroid modulation of GABAergic neurotransmission in the central amygdala: a role for NMDA receptors. Neuroscience letters 415, 118-123.
Wang, T., Xie, K., and Lu, B. (1995). Neurotrophins promote maturation of developing neuromuscular synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience 15, 4796-4805.
Watzka, M., Bidlingmaier, F., Schramm, J., Klingmuller, D., and Stoffel-Wagner, B. (1999). Sex- and age-specific differences in human brain CYP11A1 mRNA expression. Journal of neuroendocrinology 11, 901-905.
Webb, P., Lopez, G.N., Uht, R.M., and Kushner, P.J. (1995). Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Molecular endocrinology (Baltimore, Md) 9, 443-456.
Woolley, C.S., Gould, E., and McEwen, B.S. (1990). Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain research 531, 225-231.
Woolley, C.S., and McEwen, B.S. (1994). Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience 14, 7680-7687.
Zhang, J.M., Konkle, A.T., Zup, S.L., and McCarthy, M.M. (2008). Impact of sex and hormones on new cells in the developing rat hippocampus: a novel source of sex dimorphism? The European journal of neuroscience 27, 791-800.
Ziv, N.E., and Smith, S.J. (1996). Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91-102.
吳姿萱 (2011). Anlysis of Cyp11a1 null in developing mice brain. Graduate insitute of physiology national Taiwan unversity, Taipei
李芮甄 (2010). Analysis of Cyp11a1 null on apoptosis of developing mice retina. Graduate insitute of physiology national Taiwan unversity, Taipei.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17270-
dc.description.abstract在神經系統中,神經類固醇可以經由 P450scc 酵素以膽固醇為原料轉換而來。CYP11A1 基因可生成P450scc (P450 side-chain cleavage) 酵素,其在類固醇生成中為第一個酵素且扮演速率決定步驟之關鍵角色。許多研究結果發現神經類固醇參與了許多神經方面的功能,包括神經突起的生長、神經保護、髓鞘之形成、以及神經發育。另外,在一些行為失調和神經退化性疾病上,例如: 壓力、焦慮和記憶,神經類固醇也扮演了重要的角色。目前已有研究發現神經類固醇能夠影響神經樹突的型態。
根據本實驗室先前研究的結果,在出生後五天大的Cyp11a1基因剔除小鼠的海馬迴中,CA1以及CA3腦區的錐狀神經元之樹突大小和其分支複雜度皆有顯著下降的情形。對於神經突觸的形成和成熟而言,出生後十五天是一個關鍵的時期。本篇實驗想更進一步探討於十五大的剔除小鼠中,Cyp11a1基因對於海馬迴中錐狀神經元之樹突形態的影響。
我們先利用給予固醇類荷爾蒙的方式將這些基因剔除小鼠的生命延續至十五天大。再以Golgi-Cox染色法作海馬迴組織染色,檢驗CA1和CA3區域中錐狀神經元的樹突型態。分析結果顯示在十五天大的基因剔除小鼠中,CA1和CA3區域的錐狀細胞之樹突型態在數突總長度和樹突分枝複雜度上都顯著少於野生型小鼠。此外,由分析錐狀神經元上樹突棘數量的結果可知,在十五天大基因剔除小鼠的海馬迴中CA1和CA3腦區的樹突棘密度都有顯著下降的情形。
為了更進一步探討這些因Cyp11a1基因剔除而造成的樹突大小、分枝複雜度以及樹突棘密度下降的情況與哪些分子相關,以西方點墨法分析microtubule-associated protein 2 (MAP2), GAP-43, synapsin I 以及 PSD-95在基因剔除小鼠的海馬迴中之蛋白質表現量。結果顯示,在十五天大之剔除小鼠的海馬迴中,synapsin I 和 PSD-95的蛋白質表現量都有顯著性下降。
由以上實驗結果可知,Cyp11a1基因剔除會影響發育中海馬迴神經元的樹突型態。
zh_TW
dc.description.abstractNeurosteroids can be de novo synthesized from cholesterol through the P450scc in the nervous system. P450scc, encoded by CYP11A1 gene, is the cholesterol side-chain cleavage enzyme that catalyzes the first and rate-limiting step in the steroidogenesis. Neurosteroids have a variety of neurological functions, such as neurite growth, neuroprotection, myelination, and neurogenesis. They also play roles in many behavioral functions and diseases, including stress, anxiety, seizure disorders, and memory. It has been verified that several neurosteroids such as DHEA, DHEAS, and PREG are able to affect the dendritic morphology through in vitro experiments.
Previous study in our lab has revealed that there were significant shrinkage of dendrite size and diminishment of dendritic branching in CA1 and CA3 pyramidal neurons in the hippocampus of Cyp11a1 null mice at the age of postnatal day 5 (P5). In this study, we further explore the dendritic morphology in the developing hippocampal neurons of the Cyp11a1 null mice at the age of P15, which is a critical period for synapse formation and maturation. The lives of knockout mice were maintained to P15 by receiving hormone administration. To reveal the dendritic morphology, Golgi-Cox method was used to stain the CA1 and CA3 pyramidal neurons in the hippocampus. The results showed that the total dendritic length, number of dendritic branchings versus orders, as well as dendritic arborization in the CA1 and CA3 pyramidal neurons are significantly decreased in P15 knockout mice when compared to the wild type. In addition, the result of quantification of dendritic spine revealed that the spine densities were significantly decreased in an overall pattern in CA1 and CA3 pyramidal neuron of P15 knockout mice.
To further investigate the molecules related to the Cyp11a1 deficiency induced diminishment of dendrite size and dendritic branching as well as shrinkage of the dendritic spine densities, the neuronal markers including microtubule-associated protein 2 (MAP2), GAP-43, synapsin I and PSD-95 were used to measure the expression levels in the hippocampus of CYP11a1 null mice. The western blot analysis showed that the expression levels of synapsin I and PSD-95 were significantly decreased in the knockout mice compared to which in the wild type at P15.
In conclusion, these results suggested that Cyp11a1 deficiency impaired the dendritic morphology in the developing hippocampal pyramidal neurons.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:04:10Z (GMT). No. of bitstreams: 1
ntu-102-R00441015-1.pdf: 2265408 bytes, checksum: 7f4b876ea08fe96a56e69dc003924d23 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
Figures VII
Introduction 1
Cyp11a1 and Steroidogenesis 1
Neurosteroids 1
Steroidogenic enzymes in the hippocampus 6
Purpose 8
Materials and Methods 9
Genotyping of Cyp11a1 Knockout Mice 9
Total RNA Extraction 10
Reverse Transcriptase Polymerase Chain Reaction 10
Real time Quantitative PCR 11
Perfusion 11
Hormone Administration 12
Golgi-Cox Stain 12
Analysis of Dendritic Morphology 12
Quantification of Spine Density 13
Protein Extraction and Western Blotting 13
Statistical Analysis 14
Results 15
Generation and genotyping of Cyp11a1 knockout mice 15
Expression of Cyp11a1 gene in the mouse hippocampus 15
Phenotypes of Cyp11a1 null Mice with hormone cocktail administration 16
Dendritic branching and dendritic arborization decrease in hippocampal CA1 and CA3 regions of Cyp11a1 null mice 17
Spine density decreases in hippocampal CA1 and CA3 regions of Cyp11a1 null mice 20
The expression of microtubule–associated protein 2 levels in the hippocampus of Cyp11a1 null mice 21
The expression of presynaptic and postsynaptic protein levels in the hippocampus of Cyp11a1 null mice 23
Discussion 26
Phenotypes of Cyp11a1 null mice with hormone rescue 26
Dendritic architecture altered in the hippocampal pyramidal neuron with Cyp11a1 deficiency 27
Dendritic spine density is decreased in the hippocampal pyramidal neuron with Cyp11a1 deficiency 30
The expression of microtubule–associated protein 2 levels in the hippocampus of Cyp11a1 null mice 33
The expression of presynaptic and postsynaptic protein levels in the hippocampus of Cyp11a1 null mice 34
Conclusion 37
References 38
dc.language.isoen
dc.title分析Cyp11a1基因剔除對發育中海馬迴神經元樹突型態之影響zh_TW
dc.titleAnalysis of Dendritic Morphology of Developing Hippocampal Neurons in Cyp11a1 Null Miceen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李立仁(Li-Jen Lee),李秀香(Hsiu-Hsiang Lee),湯志永(Chih-Yung Tang)
dc.subject.keyword神經類固醇,發育,海馬迴,基因剔除小鼠,樹突型態,zh_TW
dc.subject.keywordneurosteroids,development,hippocampus,gene null mice,dendritic morphology,en
dc.relation.page67
dc.rights.note未授權
dc.date.accepted2013-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved