Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17254
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭靜穎(Ching-Ying Kuo)
dc.contributor.authorYu-Shu Liuen
dc.contributor.author劉育書zh_TW
dc.date.accessioned2021-06-08T00:03:16Z-
dc.date.copyright2020-08-27
dc.date.issued2020
dc.date.submitted2020-08-08
dc.identifier.citation1 台灣衛生福利部. 107年死因統計年報電子書, <https://dep.mohw.gov.tw/DOS/lp-4472-113.html> (2019).
2 Rebecca L. Siegel, Kimberly D. Miller Ahmedin Jemal. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians 70, 7-30, doi:10.3322/caac.21590 (2020).
3 T. O. Nielsen, F. D. Hsu, K. Jensen et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10, 5367-5374, doi:10.1158/1078-0432.Ccr-04-0220 (2004).
4 M. C. Cheang, S. K. Chia, D. Voduc et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101, 736-750, doi:10.1093/jnci/djp082 (2009).
5 A. Goldhirsch, W. C. Wood, A. S. Coates et al. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Annals of oncology : official journal of the European Society for Medical Oncology 22, 1736-1747, doi:10.1093/annonc/mdr304 (2011).
6 S. Ali R. C. Coombes. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2, 101-112, doi:10.1038/nrc721 (2002).
7 R. Nahta, D. Yu, M. C. Hung, G. N. Hortobagyi F. J. Esteva. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3, 269-280, doi:10.1038/ncponc0509 (2006).
8 N. Gandhi G. M. Das. Metabolic Reprogramming in Breast Cancer and Its Therapeutic Implications. Cells 8, doi:10.3390/cells8020089 (2019).
9 Carey Anders Lisa A. Carey. Understanding and treating triple-negative breast cancer. Oncology (Williston Park) 22, 1233-1243 (2008).
10 H. A. Wahba H. A. El-Hadaad. Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med 12, 106-116, doi:10.7497/j.issn.2095-3941.2015.0030 (2015).
11 S. Cleator, W. Heller R. C. Coombes. Triple-negative breast cancer: therapeutic options. Lancet Oncol 8, 235-244, doi:10.1016/s1470-2045(07)70074-8 (2007).
12 H. Pelicano, W. Zhang, J. Liu et al. Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential. Breast Cancer Res 16, 434, doi:10.1186/s13058-014-0434-6 (2014).
13 Verónica García-Castillo, Eduardo López-Urrutia, Octavio Villanueva-Sánchez et al. Targeting Metabolic Remodeling in Triple Negative Breast Cancer in a Murine Model. J Cancer 8, 178-189, doi:10.7150/jca.16387 (2017).
14 G. J. Du, Z. H. Song, H. H. Lin et al. Luteolin as a glycolysis inhibitor offers superior efficacy and lesser toxicity of doxorubicin in breast cancer cells. Biochem Biophys Res Commun 372, 497-502, doi:10.1016/j.bbrc.2008.05.080 (2008).
15 X. Zhang W. Bai. Repression of phosphoglycerate dehydrogenase sensitizes triple-negative breast cancer to doxorubicin. Cancer Chemother Pharmacol 78, 655-659, doi:10.1007/s00280-016-3117-4 (2016).
16 D. Hanahan R. A. Weinberg. The hallmarks of cancer. Cell 100, 57-70, doi:10.1016/s0092-8674(00)81683-9 (2000).
17 G. Kroemer J. Pouyssegur. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472-482, doi:10.1016/j.ccr.2008.05.005 (2008).
18 Ji Luo, Nicole L. Solimini Stephen J. Elledge. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823-837, doi:10.1016/j.cell.2009.02.024 (2009).
19 O. Warburg. On the origin of cancer cells. Science 123, 309-314, doi:10.1126/science.123.3191.309 (1956).
20 Matthew G. Vander Heiden, Lewis C. Cantley Craig B. Thompson. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033, doi:10.1126/science.1160809 (2009).
21 A. A. Shestov, X. Liu, Z. Ser et al. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. Elife 3, doi:10.7554/eLife.03342 (2014).
22 Patrick S. Ward Craig B. Thompson. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer cell 21, 297-308, doi:10.1016/j.ccr.2012.02.014 (2012).
23 K. C. Patra N. Hay. The pentose phosphate pathway and cancer. Trends Biochem Sci 39, 347-354, doi:10.1016/j.tibs.2014.06.005 (2014).
24 Jason R. Cantor David M. Sabatini. Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2, 881-898, doi:10.1158/2159-8290.CD-12-0345 (2012).
25 Min Pan, Michael A. Reid, Xazmin H. Lowman et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nature cell biology 18, 1090-1101, doi:10.1038/ncb3410 (2016).
26 A. Hirayama, K. Kami, M. Sugimoto et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69, 4918-4925, doi:10.1158/0008-5472.Can-08-4806 (2009).
27 D. B. Zorov, M. Juhaszova S. J. Sollott. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94, 909-950, doi:10.1152/physrev.00026.2013 (2014).
28 N. A. Graham, M. Tahmasian, B. Kohli et al. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol 8, 589, doi:10.1038/msb.2012.20 (2012).
29 D. G. Hardie. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25, 1895-1908, doi:10.1101/gad.17420111 (2011).
30 M. Los, S. Maddika, B. Erb K. Schulze-Osthoff. Switching Akt: from survival signaling to deadly response. Bioessays 31, 492-495, doi:10.1002/bies.200900005 (2009).
31 Yang Zhao, Xingbin Hu, Yajing Liu et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer 16, 79-79, doi:10.1186/s12943-017-0648-1 (2017).
32 B. D. Manning L. C. Cantley. AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274, doi:10.1016/j.cell.2007.06.009 (2007).
33 J. L. Coloff, E. F. Mason, B. J. Altman et al. Akt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells. J Biol Chem 286, 5921-5933, doi:10.1074/jbc.M110.179101 (2011).
34 J. G. C. Peeters, L. W. Picavet, S. G. J. M. Coenen et al. Transcriptional and epigenetic profiling of nutrient-deprived cells to identify novel regulators of autophagy. Autophagy 15, 98-112, doi:10.1080/15548627.2018.1509608 (2019).
35 Sergio Comincini, Giulia Allavena, Silvia Palumbo et al. microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol Ther 14, 574-586, doi:10.4161/cbt.24597 (2013).
36 Haoran Li Burton B. Yang. Stress response of glioblastoma cells mediated by miR-17-5p targeting PTEN and the passenger strand miR-17-3p targeting MDM2. Oncotarget 3, 1653-1668, doi:10.18632/oncotarget.810 (2012).
37 Angelika S. Rambold, Brenda Kostelecky, Natalie Elia Jennifer Lippincott-Schwartz. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proceedings of the National Academy of Sciences 108, 10190, doi:10.1073/pnas.1107402108 (2011).
38 Scott A. Detmer David C. Chan. Functions and dysfunctions of mitochondrial dynamics. Nature Reviews Molecular Cell Biology 8, 870-879, doi:10.1038/nrm2275 (2007).
39 Laura L. Lackner. Shaping the dynamic mitochondrial network. BMC Biology 12, 35, doi:10.1186/1741-7007-12-35 (2014).
40 D. Senft Z. A. Ronai. Regulators of mitochondrial dynamics in cancer. Curr Opin Cell Biol 39, 43-52, doi:10.1016/j.ceb.2016.02.001 (2016).
41 E. Smirnova, L. Griparic, D. L. Shurland A. M. van der Bliek. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12, 2245-2256, doi:10.1091/mbc.12.8.2245 (2001).
42 E. Ingerman, E. M. Perkins, M. Marino et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J Cell Biol 170, 1021-1027, doi:10.1083/jcb.200506078 (2005).
43 A. Santel M. T. Fuller. Control of mitochondrial morphology by a human mitofusin. J Cell Sci 114, 867-874 (2001).
44 Naotada Ishihara, Yuu Fujita, Toshihiko Oka Katsuyoshi Mihara. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. The EMBO journal 25, 2966-2977, doi:10.1038/sj.emboj.7601184 (2006).
45 H. Chen, S. A. Detmer, A. J. Ewald et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160, 189-200, doi:10.1083/jcb.200211046 (2003).
46 V. J. Davies, A. J. Hollins, M. J. Piechota et al. Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet 16, 1307-1318, doi:10.1093/hmg/ddm079 (2007).
47 Naotada Ishihara, Masatoshi Nomura, Akihiro Jofuku et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature Cell Biology 11, 958-966, doi:10.1038/ncb1907 (2009).
48 K. Verhoeven, K. G. Claeys, S. Züchner et al. MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2. Brain 129, 2093-2102, doi:10.1093/brain/awl126 (2006).
49 C. Delettre, G. Lenaers, J. M. Griffoin et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26, 207-210, doi:10.1038/79936 (2000).
50 R. Sheffer, L. Douiev, S. Edvardson et al. Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function. Am J Med Genet A 170, 1603-1607, doi:10.1002/ajmg.a.37624 (2016).
51 Stephan Frank, Brigitte Gaume, Elke S. Bergmann-Leitner et al. The Role of Dynamin-Related Protein 1, a Mediator of Mitochondrial Fission, in Apoptosis. Developmental Cell 1, 515-525, doi:https://doi.org/10.1016/S1534-5807(01)00055-7 (2001).
52 G. Szabadkai, A. M. Simoni, M. Chami et al. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16, 59-68, doi:10.1016/j.molcel.2004.09.026 (2004).
53 R. J. Youle A. M. van der Bliek. Mitochondrial fission, fusion, and stress. Science 337, 1062-1065, doi:10.1126/science.1219855 (2012).
54 Hilary A. Coller. Is cancer a metabolic disease? Am J Pathol 184, 4-17, doi:10.1016/j.ajpath.2013.07.035 (2014).
55 Douglas C. Wallace. Mitochondria and cancer. Nature reviews. Cancer 12, 685-698, doi:10.1038/nrc3365 (2012).
56 Andrew Paul Trotta Jerry Edward Chipuk. Mitochondrial dynamics as regulators of cancer biology. Cell Mol Life Sci 74, 1999-2017, doi:10.1007/s00018-016-2451-3 (2017).
57 J. Zhao, J. Zhang, M. Yu et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32, 4814-4824, doi:10.1038/onc.2012.494 (2013).
58 A. Inoue-Yamauchi H. Oda. Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells. Biochem Biophys Res Commun 421, 81-85, doi:10.1016/j.bbrc.2012.03.118 (2012).
59 J. Rehman, H. J. Zhang, P. T. Toth et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. Faseb j 26, 2175-2186, doi:10.1096/fj.11-196543 (2012).
60 J. A. Kashatus, A. Nascimento, L. J. Myers et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell 57, 537-551, doi:10.1016/j.molcel.2015.01.002 (2015).
61 Xiangxuan Zhao, Changhai Tian, William M. Puszyk et al. OPA1 downregulation is involved in sorafenib-induced apoptosis in hepatocellular carcinoma. Lab Invest 93, 8-19, doi:10.1038/labinvest.2012.144 (2013).
62 Ge-Er Zhang, Hai-Long Jin, Xian-Ke Lin et al. Anti-tumor effects of Mfn2 in gastric cancer. Int J Mol Sci 14, 13005-13021, doi:10.3390/ijms140713005 (2013).
63 Y. Lou, R. Li, J. Liu et al. Mitofusin-2 over-expresses and leads to dysregulation of cell cycle and cell invasion in lung adenocarcinoma. Med Oncol 32, 132, doi:10.1007/s12032-015-0515-0 (2015).
64 R. Rossignol, R. Gilkerson, R. Aggeler et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64, 985-993, doi:10.1158/0008-5472.can-03-1101 (2004).
65 S. S. Kim, Y. M. Chen, E. O'Leary et al. A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins. Proc Natl Acad Sci U S A 93, 15299-15304, doi:10.1073/pnas.93.26.15299 (1996).
66 J. R. Friedman, W. J. Fredericks, D. E. Jensen et al. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 10, 2067-2078, doi:10.1101/gad.10.16.2067 (1996).
67 P. Moosmann, O. Georgiev, B. Le Douarin, J. P. Bourquin W. Schaffner. Transcriptional repression by RING finger protein TIF1 beta that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res 24, 4859-4867, doi:10.1093/nar/24.24.4859 (1996).
68 B. Le Douarin, A. L. Nielsen, J. M. Garnier et al. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. Embo j 15, 6701-6715 (1996).
69 S. Huntley, D. M. Baggott, A. T. Hamilton et al. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res 16, 669-677, doi:10.1101/gr.4842106 (2006).
70 A. V. Ivanov, H. Peng, V. Yurchenko et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell 28, 823-837, doi:10.1016/j.molcel.2007.11.012 (2007).
71 D. C. Schultz, J. R. Friedman F. J. Rauscher, 3rd. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 15, 428-443, doi:10.1101/gad.869501 (2001).
72 A. Satou, T. Taira, S. M. Iguchi-Ariga H. Ariga. A novel transrepression pathway of c-Myc. Recruitment of a transcriptional corepressor complex to c-Myc by MM-1, a c-Myc-binding protein. J Biol Chem 276, 46562-46567, doi:10.1074/jbc.M104937200 (2001).
73 C. Wang, F. J. Rauscher, 3rd, W. D. Cress J. Chen. Regulation of E2F1 function by the nuclear corepressor KAP1. J Biol Chem 282, 29902-29909, doi:10.1074/jbc.M704757200 (2007).
74 H. Bunch S. K. Calderwood. TRIM28 as a novel transcriptional elongation factor. BMC Mol Biol 16, 14, doi:10.1186/s12867-015-0040-x (2015).
75 Chun-Ting Cheng, Ching-Ying Kuo David K. Ann. KAPtain in charge of multiple missions: Emerging roles of KAP1. World J Biol Chem 5, 308-320, doi:10.4331/wjbc.v5.i3.308 (2014).
76 Chun-Ting Cheng, Ching-Ying Kuo, Ching Ouyang et al. Metabolic Stress-Induced Phosphorylation of KAP1 Ser473 Blocks Mitochondrial Fusion in Breast Cancer Cells. Cancer Research 76, 5006, doi:10.1158/0008-5472.CAN-15-2921 (2016).
77 E. Sorianello, F. X. Soriano, S. Fernández-Pascual et al. The promoter activity of human Mfn2 depends on Sp1 in vascular smooth muscle cells. Cardiovasc Res 94, 38-47, doi:10.1093/cvr/cvs006 (2012).
78 M. Liesa, B. Borda-d'Agua, G. Medina-Gómez et al. Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta. PLoS One 3, e3613, doi:10.1371/journal.pone.0003613 (2008).
79 F. X. Soriano, M. Liesa, D. Bach et al. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes 55, 1783-1791, doi:10.2337/db05-0509 (2006).
80 Swati Bhattacharyya, Feng Fang, Warren Tourtellotte John Varga. Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J Pathol 229, 286-297, doi:10.1002/path.4131 (2013).
81 J. Milbrandt. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238, 797-799, doi:10.1126/science.3672127 (1987).
82 B. Christy D. Nathans. DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci U S A 86, 8737-8741, doi:10.1073/pnas.86.22.8737 (1989).
83 X. Cao, R. Mahendran, G. R. Guy Y. H. Tan. Detection and characterization of cellular EGR-1 binding to its recognition site. J Biol Chem 268, 16949-16957 (1993).
84 A. H. Swirnoff J. Milbrandt. DNA-binding specificity of NGFI-A and related zinc finger transcription factors. Mol Cell Biol 15, 2275-2287, doi:10.1128/mcb.15.4.2275 (1995).
85 Florian Duclot Mohamed Kabbaj. The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders. Frontiers in Behavioral Neuroscience 11, doi:10.3389/fnbeh.2017.00035 (2017).
86 H. Yang, J. H. Lee, J. K. Noh et al. Expression Pattern of Early Growth Response Gene 1 during Olive Flounder (Paralichthys olivaceus) Embryonic Development. Dev Reprod 18, 233-240, doi:10.12717/devrep.2014.18.4.233 (2014).
87 M. T. Pritchard, R. N. Malinak L. E. Nagy. Early growth response (EGR)-1 is required for timely cell-cycle entry and progression in hepatocytes after acute carbon tetrachloride exposure in mice. Am J Physiol Gastrointest Liver Physiol 300, G1124-1131, doi:10.1152/ajpgi.00544.2010 (2011).
88 J. Zhang, Y. Zhang, T. Sun et al. Dietary obesity-induced Egr-1 in adipocytes facilitates energy storage via suppression of FOXC2. Sci Rep 3, 1476, doi:10.1038/srep01476 (2013).
89 Y. M. Yang, F. Fang, X. Li, L. Yu Z. C. Wang. TRAIL overexpression co-regulated by Egr1 and HRE enhances radiosensitivity of hypoxic A549 cells depending on its apoptosis inducing role. Oncol Rep 37, 533-539, doi:10.3892/or.2016.5271 (2017).
90 S. Bhattacharyya, M. Wu, F. Fang et al. Early growth response transcription factors: key mediators of fibrosis and novel targets for anti-fibrotic therapy. Matrix Biol 30, 235-242, doi:10.1016/j.matbio.2011.03.005 (2011).
91 D. Kobayashi, M. Yamada, C. Kamagata et al. Overexpression of early growth response-1 as a metastasis-regulatory factor in gastric cancer. Anticancer Res 22, 3963-3970 (2002).
92 Delphine Gitenay Véronique T. Baron. Is EGR1 a potential target for prostate cancer therapy? Future Oncol 5, 993-1003, doi:10.2217/fon.09.67 (2009).
93 W. X. Peng, E. M. Xiong, L. Ge et al. Egr-1 promotes hypoxia-induced autophagy to enhance chemo-resistance of hepatocellular carcinoma cells. Exp Cell Res 340, 62-70, doi:10.1016/j.yexcr.2015.12.006 (2016).
94 S. J. Lee, A. Smith, L. Guo et al. Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med 183, 649-658, doi:10.1164/rccm.201005-0746OC (2011).
95 S. Di Biase, H. S. Shim, K. H. Kim et al. Fasting regulates EGR1 and protects from glucose- and dexamethasone-dependent sensitization to chemotherapy. PLoS Biol 15, e2001951, doi:10.1371/journal.pbio.2001951 (2017).
96 W. James Kent, Charles W. Sugnet, Terrence S. Furey et al. The human genome browser at UCSC. Genome Res 12, 996-1006, doi:10.1101/gr.229102 (2002).
97 UCSC Genome Browser. UCSC Genome Browser on Human Dec. 2013 (GRCh38/hg38) Assembly, <http://genome.ucsc.edu/> (2013).
98 David P. Bartel. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 116, 281-297, doi:https://doi.org/10.1016/S0092-8674(04)00045-5 (2004).
99 G. C. Shukla, J. Singh S. Barik. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. Mol Cell Pharmacol 3, 83-92 (2011).
100 E. C. Lai. Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30, 363-364, doi:10.1038/ng865 (2002).
101 A. Stark, J. Brennecke, R. B. Russell S. M. Cohen. Identification of Drosophila MicroRNA targets. PLoS Biol 1, E60, doi:10.1371/journal.pbio.0000060 (2003).
102 Timothy K. K. Kamanu, Aleksandar Radovanovic, John A. C. Archer Vladimir B. Bajic. Exploration of miRNA families for hypotheses generation. Scientific Reports 3, 2940, doi:10.1038/srep02940 (2013).
103 Bing Liu, Jiuyong Li Murray J. Cairns. Identifying miRNAs, targets and functions. Briefings in Bioinformatics 15, 1-19, doi:10.1093/bib/bbs075 (2012).
104 Z. Fang N. Rajewsky. The impact of miRNA target sites in coding sequences and in 3'UTRs. PLoS One 6, e18067, doi:10.1371/journal.pone.0018067 (2011).
105 Hiro-oki Iwakawa Yukihide Tomari. The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends in Cell Biology 25, 651-665, doi:https://doi.org/10.1016/j.tcb.2015.07.011 (2015).
106 Weige Tan, Bodu Liu, Shaohua Qu et al. MicroRNAs and cancer: Key paradigms in molecular therapy. Oncol Lett 15, 2735-2742, doi:10.3892/ol.2017.7638 (2018).
107 M. Inomata, H. Tagawa, Y. M. Guo et al. MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 113, 396-402, doi:10.1182/blood-2008-07-163907 (2009).
108 E. Mogilyansky I. Rigoutsos. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20, 1603-1614, doi:10.1038/cdd.2013.125 (2013).
109 L. L. Fang, X. H. Wang, B. F. Sun et al. Expression, regulation and mechanism of action of the miR-17-92 cluster in tumor cells (Review). Int J Mol Med 40, 1624-1630, doi:10.3892/ijmm.2017.3164 (2017).
110 Z. Lu, S. Li, S. Zhao X. Fa. Upregulated miR-17 Regulates Hypoxia-Mediated Human Pulmonary Artery Smooth Muscle Cell Proliferation and Apoptosis by Targeting Mitofusin 2. Med Sci Monit 22, 3301-3308, doi:10.12659/msm.900487 (2016).
111 S. Feng, L. Gao, D. Zhang et al. MiR-93 regulates vascular smooth muscle cell proliferation, and neointimal formation through targeting Mfn2. Int J Biol Sci 15, 2615-2626, doi:10.7150/ijbs.36995 (2019).
112 X. Guan, L. Wang, Z. Liu et al. miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. J Mol Cell Cardiol 99, 207-217, doi:10.1016/j.yjmcc.2016.08.016 (2016).
113 Y. Zhang, L. Yang, Y. F. Gao et al. MicroRNA-106b induces mitochondrial dysfunction and insulin resistance in C2C12 myotubes by targeting mitofusin-2. Mol Cell Endocrinol 381, 230-240, doi:10.1016/j.mce.2013.08.004 (2013).
114 Haili Wu, Zhuoyu Li, Yingying Wang et al. MiR-106b-mediated Mfn2 suppression is critical for PKM2 induced mitochondrial fusion. Am J Cancer Res 6, 2221-2234 (2016).
115 M. M. Cohen, G. P. Leboucher, N. Livnat-Levanon, M. H. Glickman A. M. Weissman. Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion. Mol Biol Cell 19, 2457-2464, doi:10.1091/mbc.e08-02-0227 (2008).
116 Yun Chen Gerald W. Dorn, 2nd. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471-475, doi:10.1126/science.1231031 (2013).
117 A. Tanaka, M. M. Cleland, S. Xu et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191, 1367-1380, doi:10.1083/jcb.201007013 (2010).
118 G. P. Leboucher, Y. C. Tsai, M. Yang et al. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol Cell 47, 547-557, doi:10.1016/j.molcel.2012.05.041 (2012).
119 L. Murrow J. Debnath. Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 8, 105-137, doi:10.1146/annurev-pathol-020712-163918 (2013).
120 A. S. Benischke, S. Vasanth, T. Miyai et al. Activation of mitophagy leads to decline in Mfn2 and loss of mitochondrial mass in Fuchs endothelial corneal dystrophy. Sci Rep 7, 6656, doi:10.1038/s41598-017-06523-2 (2017).
121 New England BioLabs. NEBaseChanger, <https://nebasechanger.neb.com> (2011-2018).
122 F. Qiu, Y. R. Chen, X. Liu et al. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal 7, ra31, doi:10.1126/scisignal.2004761 (2014).
123 Vikram Agarwal, George W. Bell, Jin-Wu Nam David P. Bartel. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005, doi:10.7554/eLife.05005 (2015).
124 Nathan Wong Xiaowei Wang. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Research 43, D146-D152, doi:10.1093/nar/gku1104 (2014).
125 Weijun Liu Xiaowei Wang. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biology 20, 18, doi:10.1186/s13059-019-1629-z (2019).
126 C. Y. Kuo, X. Li, X. Q. Kong et al. An arginine-rich motif of ring finger protein 4 (RNF4) oversees the recruitment and degradation of the phosphorylated and SUMOylated Kruppel-associated box domain-associated protein 1 (KAP1)/TRIM28 protein during genotoxic stress. J Biol Chem 289, 20757-20772, doi:10.1074/jbc.M114.555672 (2014).
127 C. A. Schneider, W. S. Rasband K. W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671-675, doi:10.1038/nmeth.2089 (2012).
128 J. Schindelin, I. Arganda-Carreras, E. Frise et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676-682, doi:10.1038/nmeth.2019 (2012).
129 Sushma Iyengar Peggy J. Farnham. KAP1 protein: an enigmatic master regulator of the genome. The Journal of biological chemistry 286, 26267-26276, doi:10.1074/jbc.R111.252569 (2011).
130 I. Barde, B. Rauwel, R. M. Marin-Florez et al. A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy. Science 340, 350-353, doi:10.1126/science.1232398 (2013).
131 J. M. Doyle, J. Gao, J. Wang, M. Yang P. R. Potts. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol Cell 39, 963-974, doi:10.1016/j.molcel.2010.08.029 (2010).
132 Yonghua Yang, Warren Fiskus, Bao Yong et al. Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. Proceedings of the National Academy of Sciences of the United States of America 110, 6841-6846, doi:10.1073/pnas.1217692110 (2013).
133 Sushma Iyengar, Alexey V. Ivanov, Victor X. Jin, Frank J. Rauscher, 3rd Peggy J. Farnham. Functional analysis of KAP1 genomic recruitment. Molecular and cellular biology 31, 1833-1847, doi:10.1128/MCB.01331-10 (2011).
134 M. S. Lechner, G. E. Begg, D. W. Speicher F. J. Rauscher, 3rd. Molecular determinants for targeting heterochromatin protein 1-mediated gene silencing: direct chromoshadow domain-KAP-1 corepressor interaction is essential. Mol Cell Biol 20, 6449-6465, doi:10.1128/mcb.20.17.6449-6465.2000 (2000).
135 Chiung-Wen Chang, Han-Yi Chou, Yu-Sheng Lin et al. Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1. BMC molecular biology 9, 61-61, doi:10.1186/1471-2199-9-61 (2008).
136 Dongping Li, Yaroslav Ilnytskyy, Anna Kovalchuk et al. Crucial role for early growth response-1 in the transcriptional regulation of miR-20b in breast cancer. Oncotarget 4, 1373-1387, doi:10.18632/oncotarget.1165 (2013).
137 W. Zhou, G. Shi, Q. Zhang et al. MicroRNA-20b promotes cell growth of breast cancer cells partly via targeting phosphatase and tensin homologue (PTEN). Cell Biosci 4, 62, doi:10.1186/2045-3701-4-62 (2014).
138 J. Y. Li, Y. Zhang, W. H. Zhang et al. Differential distribution of miR-20a and miR-20b may underly metastatic heterogeneity of breast cancers. Asian Pac J Cancer Prev 13, 1901-1906, doi:10.7314/apjcp.2012.13.5.1901 (2012).
139 Xiang Ao, Peipei Nie, Baoyan Wu et al. Decreased expression of microRNA-17 and microRNA-20b promotes breast cancer resistance to taxol therapy by upregulation of NCOA3. Cell Death Dis 7, e2463-e2463, doi:10.1038/cddis.2016.367 (2016).
140 Hao Ding, Yuchuan Luo, Ke Hu, Pei Liu Mengqing Xiong. Linc00467 promotes lung adenocarcinoma proliferation via sponging miR-20b-5p to activate CCND1 expression. Onco Targets Ther 12, 6733-6743, doi:10.2147/OTT.S207748 (2019).
141 Shubin Hong, Shuang Yu, Jin Li et al. MiR-20b Displays Tumor-Suppressor Functions in Papillary Thyroid Carcinoma by Regulating the MAPK/ERK Signaling Pathway. Thyroid 26, 1733-1743, doi:10.1089/thy.2015.0578 (2016).
142 Hyun Min Jeon, Su Yeon Lee, Min Kyung Ju et al. Early growth response 1 regulates glucose deprivation-induced necrosis. Oncology reports 29, 669-675, doi:10.3892/or.2012.2134 (2013).
143 N. T. Crawford, A. J. McIntyre, A. McCormick et al. TBX2 interacts with heterochromatin protein 1 to recruit a novel repression complex to EGR1-targeted promoters to drive the proliferation of breast cancer cells. Oncogene 38, 5971-5986, doi:10.1038/s41388-019-0853-z (2019).
144 M. Zafarullah, W. Q. Li, J. Sylvester M. Ahmad. Molecular mechanisms of N-acetylcysteine actions. Cellular and Molecular Life Sciences CMLS 60, 6-20, doi:10.1007/s000180300001 (2003).
145 Ana Cuenda, John Rouse, Yair N. Doza et al. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Letters 364, 229-233, doi:https://doi.org/10.1016/0014-5793(95)00357-F (1995).
146 You-Kyung Lee Jin- A. Lee. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Rep 49, 424-430, doi:10.5483/bmbrep.2016.49.8.081 (2016).
147 Vito J. Palombella, Oliver J. Rando, Alfred L. Goldberg Tom Maniatis. The ubiquitinproteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78, 773-785, doi:https://doi.org/10.1016/S0092-8674(94)90482-0 (1994).
148 Marta Olejniczak, Anna Kotowska-Zimmer Wlodzimierz Krzyzosiak. Stress-induced changes in miRNA biogenesis and functioning. Cell Mol Life Sci 75, 177-191, doi:10.1007/s00018-017-2591-0 (2018).
149 Frank Spaapen, Guus G. H. van den Akker, Marjolein M. J. Caron et al. The Immediate Early Gene Product EGR1 and Polycomb Group Proteins Interact in Epigenetic Programming during Chondrogenesis. PLOS ONE 8, e58083, doi:10.1371/journal.pone.0058083 (2013).
150 G. Lu, Y. Li, Y. Ma et al. Long noncoding RNA LINC00511 contributes to breast cancer tumourigenesis and stemness by inducing the miR-185-3p/E2F1/Nanog axis. J Exp Clin Cancer Res 37, 289, doi:10.1186/s13046-018-0945-6 (2018).
151 D. P. Hollern, M. R. Swiatnicki, J. P. Rennhack et al. E2F1 Drives Breast Cancer Metastasis by Regulating the Target Gene FGF13 and Altering Cell Migration. Sci Rep 9, 10718, doi:10.1038/s41598-019-47218-0 (2019).
152 S. Bucha, D. Mukhopadhyay N. P. Bhattacharyya. E2F1 activates MFN2 expression by binding to the promoter and decreases mitochondrial fission and mitophagy in HeLa cells. Febs j 286, 4525-4541, doi:10.1111/febs.14980 (2019).
153 C. Hu, S. Zhang, X. Gao et al. Roles of Kruppel-associated Box (KRAB)-associated Co-repressor KAP1 Ser-473 Phosphorylation in DNA Damage Response. J Biol Chem 287, 18937-18952, doi:10.1074/jbc.M111.313262 (2012).
154 X. Liu F. Fagotto. A method to separate nuclear, cytosolic, and membrane-associated signaling molecules in cultured cells. Sci Signal 4, pl2, doi:10.1126/scisignal.2002373 (2011).
155 Lidong Sun Jia Fang. Macromolecular crowding effect is critical for maintaining SIRT1's nuclear localization in cancer cells. Cell Cycle 15, 2647-2655, doi:10.1080/15384101.2016.1211214 (2016).
156 Chun-Ting Cheng. The Role of KAP1 in Response to Metabolic Stress in Breast Cancer Doctor of Philosophy thesis, (2015).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17254-
dc.description.abstract在實質固態瘤 (solid tumor) 中心區域之癌細胞會因缺乏氧氣與養分而面臨代謝壓力,粒線體的動態平衡對於癌細胞在此等不利環境下之生長具有重要影響。
KRAB-associated protein-1 (KAP1)是個多方參與細胞生理功能調控的共轉錄調節因子。本實驗室先前研究發現在乳癌細胞缺乏養分時,活性氧物質(reactive oxygen species, ROS) 與p38 MAPK會促進KAP1 S473位點磷酸化,進而抑制粒線體融合蛋白 mitofusin 2 (MFN2) 之表現量,避免在缺乏養分時粒線體過度融合、引發不利細胞生存的氧化壓力 (oxidative stress)。然而,KAP1 S473位點磷酸化調控MFN2之相關機制尚未被探討。本論文分別就轉錄調控、轉錄後調控與蛋白質降解等不同機制進行探討。
根據實驗室先前研究,首先挑選出了會被KAP1 S473位點磷酸化調控的微小核醣核酸(microRNA, miRNA) miR-20b-5p作為探討目標。miR-20b-5p可結合至MFN2 3’UTR且可抑制MFN2,但其抑制效果有限,因此初步認為miR-20b-5p可能非主要調控MFN2表現量之因子。另外,轉錄因子EGR1之表現量雖然在缺乏養分時明顯增加,且其被誘發之機制與KAP1 S473位點磷酸化修飾機制相同,但是抑制EGR1後並未影響MFN2表現量,因此EGR1參與調控MFN2之可能性也較低。最終,在抑制蛋白酶體活性後發現MFN2蛋白量明顯增加,顯示在缺乏養分時MFN2下降是與蛋白質降解相關,未來須更進一步探討KAP1 S473位點磷酸化與MFN2蛋白質降解之間的關係。
zh_TW
dc.description.abstractCancer cells in the core region of a solid tumor encounter metabolic stress induced by hypoxia and insufficient nutrition. Mitochondrial dynamics has a profound effect on the survival of cancer cells under this unfavorable condition.
KRAB-associated protein-1 (KAP1) is a transcriptional co-regulator participating in multiple cellular physiological processes. Previously, our study has revealed that KAP1 is phosphorylated at serine 473 (S473) under nutrient deprivation by reactive oxygen species (ROS)-p38 MAPK signaling in breast cancer cells. pS473KAP1 reduces mitochondrial fusion protein mitofusin 2 (MFN2) expression and thus prevents mitochondrial hyperfusion. Mitochondrial hyperfusion leads to ROS overproduction causing detrimental effects to cancer cells under metabolic stress. Therefore, it has been demonstrated that phosphorylation at KAP1 S473 site benefits breast cancer cell survival under nutrient insufficiency-induced metabolic stress.
However, pS473KAP1 mediated regulation of MFN2 remains unclear. In this thesis, the regulatory mechanisms of MFN2 including transcriptional regulation, post-transcriptional regulation and protein degradation will be discussed.
Based on previous study, microRNA (miRNA) miR-20b-5p, which can be upregulated by pS473KAP1, was chosen. Although miR-20b-5p bound to MFN2 3’UTR to repress MFN2 expression, miR-20b-5p had only limited effect on MFN2 reduction. Current results suggested that miR-20b-5p might not be the main regulator of MFN2. Besides, even though the stress response transcription factor EGR1 seemed to share the same regulatory route of KAP1 S473 phosphorylation under nutrient deprivation, knockdown of EGR1 did not affect MFN2 expression. Hence, EGR1 was not likely to involve in the MFN2 regulation. At last, inhibition of proteasomal degradation accumulated MFN2 protein under nutrient deprivation, which suggested the downregulation of MFN2 under nutrient deprivation was associated with protein degradation. In the future, the detailed regulatory mechanism of pS473-KAP1 and MFN2 degradation will be further investigated.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:03:16Z (GMT). No. of bitstreams: 1
U0001-0608202016154200.pdf: 5745595 bytes, checksum: 79e097c51a1d12452139ebbe0a7e1df4 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
中文摘要 ii
Abstract iii
List of Abbreviations v
Table of Contents vi
List of Tables xi
List of Figures xii
Chapter 1 Introduction 1
1.1 Introduction of breast cancer 1
1.2 Intratumoral metabolic stress. 3
1.3 Mitochondrial dynamics is a key regulatory mechanism to sustain cell survival under metabolic stress. 6
1.3.1 Introduction of mitochondrial dynamics 6
1.3.2 Role of mitochondrial dynamics in cancer 8
1.3.3 Mitochondrial dynamics and metabolic stress response 9
1.4 Phosphorylation of KAP1 S473 site has been demonstrated to regulate mitochondrial dynamics under metabolic stress in breast cancer. 9
1.4.1 Introduction of KAP1 10
1.4.2 pS473KAP1 regulates mitochondrial dynamics under metabolic stress in breast cancer. 11
1.5 Introduction of MFN2 protein regulatory pathways: production and degradation of MFN2. 12
1.5.1 Transcription of MFN2 12
1.5.2 Post transcriptional regulation of MFN2: miRNA silences mRNA translation 13
1.5.3 Degradation of MFN2 15
Chapter 2 Specific aim 17
Chapter 3 Materials and Methods 18
3.1 Cell culture and reagents 18
3.2 Plasmid preparation 19
3.3 Virus production and transduction 20
3.4 miRNA transfection 21
3.5 miRNA target prediction 22
3.6 Dual luciferase assay 22
3.7 RNA isolation, cDNA synthesis and real-time quantitative PCR (qPCR) and RNA-sequencing data acquisition 23
3.8 Western blotting analysis 24
3.9 Co-immunoprecipitation assay 25
3.10 Subcellular fractionation 25
3.11 Immunofluorescence staining 26
3.12 Statistical analysis 27
Chapter 4 Results 28
4.1 MFN2 protein decreased under nutrient deprivation in MDA-MB-231 cells. 28
4.2 Knockdown of KAP1 upregulated MFN2 expression. 28
4.3 Putative mechanisms of pS473KAP1 regulating MFN2 under nutrient deprivation. 29
4.4 pS473KAP1-miR-20b-5p-MFN2 regulatory pathway 30
4.4.1 miR-20b-5p was upregulated in KAP1 S473D expressing MDA-MB-231 cells. 31
4.4.2 miR-20b-5p repressed MFN2 expression by targeting the 3’-UTR of MFN2. 31
4.4.3 miR-20b-5p expression under glucose deprivation. 33
4.5 KAP1-EGR1-MFN2 regulatory pathway 34
4.5.1 EGR1 was induced by ROS-p38 pathway under nutrient deprivation. 34
4.5.2 KAP1 repressed EGR1 under glucose deprivation in MDA-MB-231 cells. 35
4.5.3 KAP1-EGR1 interaction under glucose deprivation remained elusive. 36
4.5.4 Knockdown of EGR1 did not affect MFN2 expression under nutrient deprivation in MDA-MB-231 cells. 36
4.6 pS473KAP1-MFN2 degradation pathway 38
4.6.1 KAP1 might promote MFN2 degradation under nutrient deprivation. 38
4.6.2 KAP1 might not promote MFN2 degradation through mitophagy under nutrient deprivation. 38
4.6.3 MFN2 reduction under nutrient deprivation was associated with proteasomal degradation. 39
4.6.4 Subcellular localization of endogenous KAP1 and pS473KAP1 under nutrient deprivation. 40
4.6.5 Subcellular localization of KAP1 S473 mutants under nutrient deprivation. 41
4.6.6 Interaction of KAP1 and MFN2 under nutrient deprivation. 43
4.7 Conclusion 43
Chapter 5 Discussion 45
Part I: General discussion 45
Part II: Experimental discussion 46
(I) miR-20b-5p in pS473KAP1-MFN2 pathway 46
(II) EGR1 in pS473KAP1-MFN2 pathway 48
(III) E2F1 is a transcription factor candidate for MFN2 under nutrient deprivation. 49
(IV) pS473KAP1-MFN2 degradation pathway 50
Tables 52
Figures 55
References 79
dc.language.isoen
dc.title探討乳癌代謝壓力下粒線體融合蛋白MFN2表現量之調控機制zh_TW
dc.titleInvestigating the regulatory mechanisms of mitofusin 2 (MFN2) expression under metabolic stress in breast canceren
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊雅倩(Ya-Chien Yang),蘇剛毅(Kang-Yi Su),林亮音(Liang-In Lin)
dc.subject.keyword乳癌,代謝壓力,養份缺乏,粒線體動態平衡,KAP1,MFN2,miR-20b-5p,EGR1,蛋白酶體降解,zh_TW
dc.subject.keywordbreast cancer,metabolic stress,nutrient deprivation,mitochondrial dynamics,KAP1,MFN2,miR-20b-5p,EGR1,proteasomal degradation,en
dc.relation.page91
dc.identifier.doi10.6342/NTU202002554
dc.rights.note未授權
dc.date.accepted2020-08-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
U0001-0608202016154200.pdf
  目前未授權公開取用
5.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved